首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of actives encapsulated in biodegradable poly-lactide-co-glycolide (PLGA)-based microparticles may be diffusion controlled, dependent on polymer degradation, or may occur by a combination of drug diffusion and polymer degradation. This report applies a model, describing combined diffusional and polymer degradation-assisted drug release, to quantify the release of fluphenazine HCl (F-HCl) from PLGA microspheres. Parameters for the release process showed that both the initial drug release phase and the polymer controlled drug release phase were dependent on the F-HCl loading of the microspheres. The percentage drug released in the burst phase and the length of the lag phase were dependent on F-HCl loading. In the degradation controlled release phase, drug release was faster the higher the loading, as shown by the decrease in t(max) from 27 to 10 days, as F-HCl loadings increased from 4.2 to 16.6%w/w. The presence of F-HCl was found to catalyse the degradation of PLGA polymer during particle manufacture and during dissolution. When compared to drug free microspheres, F-HCl accelerated PLGA degradation as shown by the approximately 5-fold increase in both PLGA degradation rate constant (k) and reduction in t(max).  相似文献   

2.
The influence of milk protein emulsifying agents on the characteristics, particularly drug release, of polylactide microspheres was investigated. Diltiazem loaded polylactide (PL) microspheres were successfully prepared using the dairy proteins, sodium casinate (SC) and whey protein isolate (WPI) as the emulsifying agents. Microspheres were characerized in terms of microsphere yield, electron microscopy, particle size, drug loading, DSC and XRD analysis and drug release. The yields of microspheres obtained were 53-63% and were independent of the emulsifying agent used. SEM revealed that, regardless of the emulsifying agent employed, the microspheres were of good sphericity, but the surface appearance of the microspheres was not the same in all cases. The milk proteins resulted in microspheres approximately half the size of those obtained with methylcellulose (MC). Significant differences in drug loading were observed between the three emulgents, the MC systems giving the highest values. Release profiles were sigmoidal in shape and were well fitted to the equation ln (x/1-x) = k·t - k·tmax, reflecting degradation controlled drug release. The parameter k increased with drug loading, while tmax decreased. The relationships between the release parameters [P(k and tmax)] and loading (L) could be quantified by equations of the form P = a·LN, N being negative in the case of tmax. Apart from the effect on loading efficiency, neither SC nor WPI appeared to significantly alter drug release. The quantitative relationships observed in this study may have more general application in quantifying drug release from drug polymer composites at low loadings where polymer degradation controls drug release.  相似文献   

3.
Purpose  To develop and characterize the solid-state properties of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) microspheres for the localized and controlled release of fusidic acid (FA). Methods  The effects of FA loading and polymer composition on the mean diameter, encapsulation efficiency and FA released from the microspheres were determined. The solid-state and phase separation properties of the microspheres were characterized using DSC, XRPD, Raman spectroscopy, SEM, laser confocal and real time recording of single microspheres formation. Results  Above a loading of 1% (w/w) FA phase separated from PLGA polymer and formed distinct spherical FA-rich amorphous microdomains throughout the PLGA microsphere. For FA-loaded PLGA microspheres, encapsulation efficiency and cumulative release increased with initial drug loading. Similarly, cumulative release from FA-loaded PHBV microspheres was increased by FA loading. After the initial burst release, FA was released from PLGA microspheres much slower compared to PHBV microspheres. Conclusions  A unique phase separation phenomenon of FA in PLGA but not in PHBV polymers was observed, driven by coalescence of liquid microdroplets of a DCM-FA-rich phase in the forming microsphere. Electronic supplementary material   The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Purpose. To produce and characterize controlled release formulations of plasmid DNA (pDNA) loaded in poly (D,L-lactide-co-glycolide) (PLGA) microspheres both in free form and as a complex with poly (L-lysine). Methods. Poly (L-lysine) (PLL) was used to form pDNA/PLL complexes with complexation ratio of 1:0.125 and 1:0.333 w/w to enhance the stability of pDNA during microsphere preparation and protect pDNA from nuclease attack. pDNA structure, particle size, zeta potential, drug loading, in vitro release properties, and protection from DNase I were studied. Results. The microspheres were found to be spherical with average particle size of 3.1-3.5 m. Drug loading of 0.6% was targeted. Incorporation efficiencies of 35.1% and 29.4-30.6% were obtained for pDNA and pDNA/PLL loaded microspheres respectively. Overall, pDNA release kinetics following the initial burst did not correlate with blank microsphere polymer degradation profile suggesting that pDNA release is convective diffusion controlled. The percentage of supercoiled pDNA in the pDNA and pDNA/PLL loaded microspheres was 16.6 % and 76.7-85.6% respectively. Unencapsulated pDNA and pDNA/PLL degraded completely within 30 minutes upon the addition of DNase I. Encapsulation of DNA/PLL in PLGA microspheres protected pDNA from enzymatic degradation. Conclusions. The results show that using a novel process, pDNA can be stabilized and encapsulated in PLGA microspheres to protect pDNA from enzymatic degradation.  相似文献   

5.
Purpose: Alendronate sodium, used systemically as a bone protective agent, proved to also be effective locally in various dental bone applications. Development of alendronate-loaded microspheres with high loading efficiency for such applications would be greatly challenged by the hydrophilicity and low MW of the drug. The aim of this study was to incorporate alendronate sodium, into poly (lactide-co-glycolide) (PLGA) microspheres (MS) with high loading efficiency.

Methods: Three multiple emulsion methods: water-in-oil-in-water (W/O/W), water-in-oil-in-oil (W/O1/O2) and solid-in-oil-in-oil (S/O1/O2) were tested. In addition to entrapment efficiency, MS were characterized for surface morphology, particle size, in vitro drug release and in vitro degradation of the polymer matrix. Alendronate microspheres with maximum drug loading and good overall in vitro performance were obtained using the W/O1/O2 emulsion technique.

Results: Drug release from the microspheres exhibited a triphasic release pattern over a period of 13 days, the last fast release phase being associated with more rapid degradation of the PLGA matrix.

Conclusions: Biocompatible, biodegradable PLGA microspheres incorporating alendronate sodium with high loading efficiency obtained in this study may offer promise as a delivery system for bisphosphonates in dental and probably other clinical applications.  相似文献   

6.
In order to study the development of the delivery device of long-acting local anaesthetics for post-operative analgesia and control of chronic pain of cancer patient, fentanyl loaded poly(l-lactide-co-glycolide) (PLGA, molecular weight; 5000, 8000, 20000, and 33 000 g/mole) microspheres (FMS) were studied. FMS were prepared by an emulsion solvent-evaporation method. The influence of several preparation parameters such as initial drug loading, PLGA concentrations, emulsifier concentrations, oil phase volume and mole ratio and molecular weight has been investigated on the fentanyl release patterns. Generally, the drug showed the biphasic release patterns, with an initial diffusion followed by a lag period before the onset of the degradation phase, but there were no lag times in the device. Fentanyl was slowly released from FMS over 10 days in vitro, with a quasi-zero order property. The release rate increased with increasing drug loading as well as increasing polymer concentration with a relatively small initial burst effect. From the results, FMS may be a good formulation to deliver the anaesthesia for the treatment of chronic pain.  相似文献   

7.
Taking ABT627 as a hydrophobic model drug, poly-(lactic-co-glycolic acid) (PLGA) microspheres were prepared by an emulsion solvent evaporation method. Various process parameters, such as continuous phase/dispersed phase (CP/DP) ratio, polymer concentration, initial drug loading, polyvinyl alcohol concentration and pH, on the characteristics of microspheres and in vitro drug release pattern of ABT627 were investigated. Internal morphology of the microspheres was observed with scanning electron microscopy by stereological method. CP/DP is a critical factor in preparing microspheres and drug loading increased significantly with increasing CP/DP ratios accompanied by a remarkably decreased burst release. At CP/DP ratio 20, microspheres with a core-shell structure were formed and the internal porosity of the microspheres decreased with increasing CP/DP ratio. Increase in PLGA concentration led to increased particle sizes and decreased drug release rates. ABT627 release rate increased considerably with increasing PVA concentrations in the continuous phase from 0.1% to 0.5%. The maximum solubility of ABT627 in PLGA was approximately 30%, under which ABT627 was dispersed in PLGA matrix in a molecular state. Increase in initial drug loading had no significant influence on particle size, drug encapsulation efficiency, burst release and internal morphology. However, drug release rate decreased at higher drug loading. Independent of process parameters, ABT627 was slowly released from the PLGA microspheres over 30 days, by a combination of diffusion and polymer degradation. During the first 13 days, ABT627 was mainly released by the mechanism of diffusion demonstrated by the unchanged internal morphology. In contrast, a core-shell structure of the microspheres was observed after being incubated in the release medium for 17 days, independent of drug loading, implying that the ABT627/PLGA microspheres degraded by autocatalytic effect, starting from inside of the matrix. In conclusion, hydrophobic drug release from the PLGA microspheres is mainly dependent on the internal morphology and drug distribution state in the microspheres.  相似文献   

8.
Purpose The aim of the study is to investigate the effect of polymer blending on entrapment and release of ganciclovir (GCV) from poly(d,l-lactide-co-glycolide) (PLGA) microspheres using a set of empirical equations. Methods Two grades of PLGA, PLGA 7525 [d,l-lactide:glycolide(75:25), MW 90,000–126,000 Da] and Resomer RG 502H [d,l-lactide:glycolide(50:50), MW 8000 Da], were employed in the preparation of PLGA microspheres. Five sets of microsphere batches were prepared with two pure polymers and their 1:3, 1:1, and 3:1 blends. Drug entrapment, surface morphology, particle size analysis, drug release, and differential scanning calorimetric studies were performed. In vitro drug-release data were fitted to a set of empirical sigmoidal equations by nonlinear regression analysis that could effectively predict various parameters that characterize both diffusion and degradation cum diffusion-controlled release phases of GCV. Results Entrapment efficiencies of GCV ranged from 47 to 73%. Higher amounts of GCV were entrapped in polymer blend microspheres relative to individual polymers. Triphasic GCV release profiles were observed, which consisted of both diffusion and degradation cum diffusion-controlled phases. In vitro GCV release was shortest for Resomer RG 502H microsphere (10 days) and longest for PLGA 7525 microspheres (90 days). Upon blending, the duration of release gradually decreased as the content of Resomer RG 502H in the matrix was raised. Equations effectively estimated the drug-release rate constants during both the phases with high R2 values (>0.990). GCV release was slower from the blend microsphere during the initial diffusion phase. Majority of entrapped drug (70–95%) was released during the matrix degradation cum diffusion phase. Conclusions Drug entrapment and release parameters estimated by the equations indicate more efficient matrix packing between PLGA 7525 and Resomer RG 502H in polymer-blended microspheres. The overall duration of drug release diminishes with rising content of Resomer RG 502H in the matrix. Differential scanning calorimetry studies indicate stronger binding between the polymers in the PLGA 7525/Resomer RG 502H∷ 3:1 blend. Polymer blending can effectively alter drug-release rates of controlled delivery systems in the absence of any additives.  相似文献   

9.
Abstract

The aim of this work was to develop sustained local release systems for radioiodinated iodo-2′-deoxyuridine (125IUdR) from biodegradable polymeric microspheres to facilitate the controlled delivery of 125IUdR to brain tumours. The selective uptake of IUdR into the cell nucleus results in cell disruption over the short range of the low energy Auger electrons. The biodegradable micro-spheres can be precisely implanted in the brain by stereotactic techniques and the IUdR within the microspheres is protected from degradation and thus a sustained source of radiolabelled IUdR is available in the vicinity of the residual tumour cells. Poly(lactic-co-glycolic acid), PLGA (85:15), microspheres containing cold IUdR and the Auger-electron emitter 125I, as 125IUdR were prepared using the O/W, O/O and W/O/W emulsion-solvent evaporation methods. The W/O/W emulsion method was most effective in achieving good drug loading with the use of bovine plasma in the internal water phase. Also effective in improving the drug loading was the use of 20% acetone in the dichloromethane and the presence of Span 40 in the organic phase. Electrolytes (NaCl and IUdR) in the external acqueous phase also improved drug loading. After an initial rapid release from the microspheres, a sustained release was observed over 15 days for the 'cold' IUdR. The sustained release portions of the release curves showed Higuchi (t1/2), diffusion controlled release kinetics. The radiolabelled IUdR microspheres showed a burst release effect of 30–40% followed by a sustained release over 35 days.  相似文献   

10.
Abstract

The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 33 Box–Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12?h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348?µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12?h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0–∞ value of 3309?±?211 ng?h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.  相似文献   

11.
A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with β-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of β-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. β-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, β-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.  相似文献   

12.
Purpose. We prepared injectable microspheres for controlled release of TAK-029, a water-soluble GPIIb/IIIa antagonist and discussed the characteristics of controlled release from microspheres. Methods. Copoly(dl-lactic/glycolic)acid (PLGA) microspheres were used for controlled release of TAK-029 [4-(4-amidinobenzoylglycyl)-3-methoxycarbonyl-2-oxopiperazine-l-acetic acid]. They were prepared with a solid-in-oil-in-water (S/O/W) emulsion solvent evaporation technique using either a crystalline form or an amorphous form of the drug. Results. An amorphous form of TAK-029 gave more homogeneous S/O dispersion and higher viscosity than its crystalline form when added to dichloromethane solution of PLGA, resulting in a high drug entrapment into microspheres and a well-controlled release of the drug. Additions of sodium chloride into an external aqueous phase and L-arginine into an oil phase also increased entrapment of the drug, and reduced initial burst of the drug from the microspheres. The micro-spheres demonstrated a desirable plasma level profile in therapeutic range (20–100 ng/ml) for 3 weeks in rats after single subcutaneous injection. Conclusions. A well-controlled release of TAK-029, a water-soluble neutral drug, with small initial burst was achieved by utilizing its amorphous form as a result of possible interaction with PLGA and L-arginine.  相似文献   

13.
Woo  Byung H.  Jiang  Ge  Jo  Yeong W.  DeLuca  Patrick P. 《Pharmaceutical research》2001,18(11):1600-1606
Purpose. To prepare and characterize a novel composite microsphere system based on poly(D,L-lactide-co-glycolide) (PLGA) and poly(acryloyl hydroxyethyl starch) (acHES) hydrogel for controlled protein delivery. Methods. Model proteins, bovine serum albumin, and horseradish peroxidase were encapsulated in the acHES hydrogel, and then the protein-containing acHES hydrogel particles were fabricated in the PLGA matrix by a solvent extraction or evaporation method. The protein-loaded PLGA-acHES composite microspheres were characterized for protein loading efficiency, particle size, and in vitro protein release. Protein stability was examined by size-exclusion chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and monitoring the enzymatic activity. Results. Scanning electron microscopy showed discrete PLGA microspheres containing many acHES particles. The composite microspheres were spherical and smooth in size range of 39-93 m. The drug loading efficiency ranged from 51 to 101%. The composite microspheres showed more favorable in vitro release than conventional PLGA microspheres. The composite microspheres showed 20% less initial with a gradual sustained release compared to high burst (60%) followed by a very slow release with the conventional PLGA microspheres. The composite microspheres also stabilized encapsulated proteins from the loss of activity during the microsphere preparation and release. Proteins extracted from the composite microspheres showed good stability without protein degradation products and structural integrity changes in the size-exclusion chromatography and SDS-PAGE analyses. Horseradish peroxidase extracted from microspheres retained more than 81% enzymatic activity. Conclusion. The PLGA-acHES composite microsphere system could be useful for the controlled delivery of protein drugs.  相似文献   

14.
To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19?±?1.17 to 59.15?±?0.67μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established.  相似文献   

15.
Amoxycillin-poly (D,L-lactide-co-glycolide) (PLGA) compacts were prepared by direct compression of both powder mixtures or films in a pre-heated press. Release profiles generally showed two phases separated by an induction period. Thus, both diffusion and polymer degradation mechanisms were involved in drug release, the relative importance of each depending on processing type and drug loading. Drug release parameters for each phase were determined. The fraction of total drug released, in the initial release phase, increased with drug loading and was much larger for compressed physical mixtures than for compressed composites prepared from co-evaporate films. Comparison of the polymer mass loss profiles of drug-loaded and drug-free discs indicated that the presence of the amphoteric drug amoxycillin had little impact on the polymer degradation rate, in contrast to the marked acceleration previously reported for basic drugs. Significant drug degradation occurred and was associated with release at later times. Release data was fitted to an equation accounting for degradation of the drug on release and suggested accelerated amoxycillin degradation during the polymer degradation controlled release phase, consistent with changes in pH in the microenvironment of the eroding compact.  相似文献   

16.
Multiphase microspheres of poly(DL-lactic-co-glycolic acid) (PLGA) containing water-soluble compounds were prepared by a multiple-emulsion solvent evaporation technique. These compounds were dissolved in the aqueous phase of a W/O emulsion with soybean oil as the oil phase. This emulsion was dispersed throughout the matrix of the microsphere. The morphological properties of the multiphase microspheres during in vitro dissolution studies were compared to those of conventional microspheres prepared from the same polymer. Drug release from the multiphase microspheres was characterized by an initial uniform release for the first 20 days followed by a more rapid phase of drug release. Chlorpheniramine maleate (CPM) and brilliant blue (BB) were the soluble model compounds investigated. The release rates of these agents from the multiphase microspheres were independent of the drug content in the microspheres. The release profiles from the conventional microspheres showed a lag time of 10 and 16 days for the CPM and BB, respectively. The dissolution rate of the model soluble compounds from the conventional microspheres increased as the loading in the microspheres increased. No differences in the degradation rate of the PLGA from the multiphase and the conventional microspheres were seen during the dissolution studies.  相似文献   

17.
Abstract

Human serum albumin microspheres containing neomycin sulphate were prepared using emulsion polymerization and polymer dispersion techniques. The many variables which may affect the shape, size, stability, release of the drug from the microspheres such as internal phase to external phase volume ratio, human serum albumin content, stirring rate, polymer content and stabilizing agent concentration, were studied. Unlike the microspheres prepared by the emulsion polymerization technique, polymer dispersion stabilised microspheres were uniform in size and shape with a narrow range of size distribution. In vitro release of neomycin sulphate from albumin microspheres was studied using the dialysis cell method. The drug release from microspheres followed Q versus (t)?1/2 linear relationship. The in vivo distribution studies on prepared microspheres revealed that the localization takes place preferably in lung tissues, liver, spleen and kidney and is found to be dependent on the microsphere size. On administration of microspheres of 3-6 μm size, approximately 55 per cent of administered drug could be localized in the lungs.  相似文献   

18.
Purpose. The purpose of this study was to investigate the potential of poly(lactide-co-glycolide) (PLGA) microspheres to stabilize and deliver the analogue of camptothecin, 10-hydroxycamptothecin (10-HCPT). Methods. 10-HCPT was encapsulated in PLGA 50:50 microspheres by using an oil-in-water emulsion-solvent evaporation method. The influence of encapsulation conditions (i.e., polymer molecular weight (Mw), polymer concentration, and carrier solvent composition) on the release of 10-HCPT from microspheres at 37°C under perfect sink conditions was examined. Analysis of the drug stability in the microspheres was performed by two methods:i) by extraction of 10-HCPT from microspheres and ii). by sampling release media before lactone— carboxylate conversion could take place. Results. Microspheres made, of low Mw polymer (inherent viscosity 0.15 dl/g) exhibited more continuous drug release than those prepared from polymers of higher Mw (i.v. = 0.58 and 1.07 dl/g). In addition, a high polymer concentration and the presence of cosolvent in the carrier solution to dissolve 10-HCPT were both necessary in the microsphere preparation in order to eliminate a large initial burst of the released 10-HCPT. An optimal microsphere formulation released 10-HCPT slowly and continuously for over two months with a relatively small initial burst of the released drug. Both analytical methods used to assess the stability of 10-HCPT revealed that the unreleased camptothecin analogue in the microspheres remained in its active lactone form (>95%) over the entire 2-month duration of study. Conclusions. PLGA carriers such as those described here may be clinically useful to stabilize and deliver camptothecins for the treatment of cancer.  相似文献   

19.
Purpose. This study describes the preparation and characterization of a controlled release formulation of granulocyte-macrophage colony-stimulating factor (GM-CSF) encapsulated in poly(glycolide-co-D,L-lactide) (PLGA) and poly(D,L-lactide) (PLA) microspheres. Methods. GM-CSF was encapsulated in PLGA/PLA microspheres by a novel silicone oil based phase separation process. Several different blends of PLGA and low molecular weight PLA were used to prepare the microspheres. The microspheres and the encapsulated GM-CSF were extensively characterized both in vitroand in vivo. Results. Steady release of GM-CSF was achieved over a period of about one week without significant 'burst' of protein from the microspheres. Analysis of microsphere degradation kinetics by gel permeation chromatography (GPC) indicated that low molecular weight PLA enhanced the degradation of the PLGA and thereby affected release kinetics. GM-CSF released from the microspheres was found to be biologically active and physically intact by bioassay and chromato-graphic analysis. Analysis of serum from mice receiving huGM-CSF indicated that the GM-CSF was biologically active and that a concentration of greater than 10 ng/mL was maintained for a period lasting at least nine days. MuGM-CSF was not detected followingin vivo administration of muGM-CSF microspheres. The tissues of mice receiving muGM-CSF microspheres were characterized by infiltration of neutrophils, and macrophages which were in significant excess of those found in mice administered with placebo controls (i.e. microspheres without GM-CSF). Conclusions. This study demonstrates the influence of formulation parameters on the encapsulation of GM-CSF in PLGA/PLA microspheres and its controlled release in biologically active form. The intense local tissue reaction in mice to muGM-CSF microspheres demonstrates the importance of the mode of delivery on the pharmacologic activity of GM-CSF.  相似文献   

20.
Purpose. To investigate the use of buccal bioadhesive device in targeting controlled drug delivery to the gastrointestinal tract. Methods. A three-leg crossover study was designed to evaluate the application of buccal bioadhesive device for providing controlled drug delivery to the gastrointestinal tract of a model drug cyanocobalamin in four healthy adult male beagle dogs. Results. In vitro dissolution studies using deionized water as the medium indicated that 100% of the drug was released within 15 min from a immediate release oral capsule formulation, whereas 90% of the drug was released within a period of 18 hrs from a buccal bioadhesive device formulation. Drug release from the buccal bioadhesive devices appeared to follow Higuchi's square root of time dependent model. The terminal half-life of the drug following I.V. administration in four dogs was found to be 16.4 ± 2.4 hrs. Following immediate release oral capsule administration of the drug Cmax, tmax and bioavailability were 2333 ± 1469 ng/L, 2.5± 1.0 hrs and 14.1 ± 7.9%, respectively. Following buccal bioadhesive device administration of the drug Cmax, tmax and bioavailability were 4154 ± 1096 ng/L, 11 ± 1.2 hrs and 35.8 ± 4.1%, respectively. Significantly higher bioavailability of the drug was observed with the buccal bioadhesive device administration when compared to the immediate release oral capsule. Conclusions. The buccal bioadhesive device appears to improve the oral bioavailability of cyanocobalamin by providing controlled delivery of the drug to the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号