首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Plasma pharmacokinetics of VP16-213 were investigated after a 30–60 min infusion in 14 adult patients and six children. In adults the elimination half-life (T1/2 ), plasma clearance (Clp) and volume of distribution (Vd) were respectively 7.05±0.67 h, 26.8±2.4 ml/min/m2, and 15.7±1.8 l/m2; in children 3.37±0.5 h, 39.34±6.6 ml/min/m2, and 9.97±3.7 l/m2. After repeated daily doses no accumulation of VP16-213 was found in plasma. The unchanged drug found in the 24 h urine after administration amounted to 20–30% of the dose.In eight choriocarcinoma patients plasma levels of VP16-213 were measured after oral capsules and drinkable ampoules. The bioavailability compared to the i.v. route was variable, mean values being 57% for capsules and 91% for ampoules. In one further patient, with abnormal d-Xylose absorption results, VP16-213 was not detectable in plasma after the oral ampoule dose.Steady state levels investigated in three patients after 72 h continuous VP16-213 infusion (100 mg/m2/24 h) were around 2–5 g/ml. Levels of VP16-213 were undetectable in CSF after i.v. or oral administration.  相似文献   

2.
Phase I and pharmacokinetic trial of liposome-encapsulated doxorubicin   总被引:2,自引:0,他引:2  
A total of 21 patients with advanced cancer were entered into a phase I study to determine the maximum tolerable dose (MTD) of liposome-encapsulated doxorubicin (LED) given weekly for 3 consecutive weeks at doses of 20, 30, or 37.5 mg/m2 per week. For a comparison of the pharmacokinetic behavior of LED with that of standard-formulation doxorubicin, 13 patients received a dose of standard-formulation doxorubicin 2 weeks prior to the first dose of LED. All doses were given by 1-h infusion through a central vein. Toxicity was evaluated in 22 courses delivered to 17 patients. The MTD with this schedule was 30 mg/m2 per week×3. The single patient treated at 37.5 mg/m2 weekly could not complete the entire course due to myelosuppression. At the dose of 30 mg/m2 per week, three of eight patients had grade 3 leukopenia. Other toxicities included mild to moderate thrombocytopenia, nausea, vomiting, fever, alopecia, diarrhea, fatigue, stomatitis, and infection. At the dose of 30 mg/m2 per week, the total doxorubicin AUC and peak total doxorubicin concentrations in plasma were 8.75±8.80 M h (mean±SD) and 3.07±1.45 M, respectively, after LED administration. The total doxorubicin AUC and peak total doxorubicin concentrations in plasma were 3.92±2.47 M h and 2.75±2.70 M, respectively, after the infusion of standard-formulation doxorubicin. The total body clearance of doxorubicin was 18.42±11.23 l/h after the infusion of LED and 31.21±15.48 l/h after the infusion of standard-formulation doxorubicin. The mean elimination half-lives of doxorubicin were similar: 8.65±5.16 h for LED and 7.46±5.16 h for standard-formulation doxorubicin. Interpatient variability in pharmacokinetic parameters as demonstrated by the percentage of coefficients of variation was 33%–105%. There was no relationship between the percentage of WBC decrease or the duration of WBC suppression and the total doxorubicin or doxorubicinol AUC. There was no correlation between the duration of leukopenia and drug exposure as reflected by the AUC of liposome-associated doxorubicin. LED can be given in doses similar to those of standard-formulation doxorubicin and produces acute toxicities similar to those caused by standard doxorubicin.Abbreviations MTD maximum tolerable dose - LED liposome-encapsulated doxorubicin - AUC area under the plasma concentration x time curve - WBC white blood cell count - PLT platelet count - ECOG Eastern Cooperative Oncology Group - EKG electrocardiogram - MUGA multigated nuclide scan - CLTB total body clearance - PC phosphatidylcholine: PG, phosphatidylglycerol - PEG-DSPE polyethylene glycol conjugated to distearoyl phosphatidylethanolamine - HSPC hydrogenated soy phosphatidylcholine - chol cholesterol This work was supported by DHHS, NCl NO-l-CM 07 303 and by a Career Development Award from the American Cancer Society (to B. A. C.)  相似文献   

3.
Purpose The primary purposes of this study were to determine the dose-limiting toxicity (DLT) and maximum tolerated dose (MTD), to recommend a dose for phase II studies, and to analyze the pharmacokinetics of KW-2170. A secondary purpose was to assess tumor response to KW-2170.Experimental design KW-2170 was given as a 30-min i.v. infusion every 4 weeks. Doses were escalated from 1.0 mg/m2 according to a modified Fibonacci method.Results A total of 45 cycles of KW-2170 were delivered to 41 patients at doses ranging from 1.0 to 53.0 mg/m2. The primary DLT was neutropenia which was observed in two of six patients treated at 32.0 mg/m2 and in two of two patients treated at 53.0 mg/m2; therefore, the MTD was 53.0 mg/m2. Although no patients showed a complete response (CR) or partial response (PR), 15 patients were evaluated as having freedom from progression at the 1-month time-point, with two demonstrating slight tumor shrinkage in their metastatic lesions. None of the patients experienced significant cardiotoxicity. The plasma concentration of KW-2170 declined in a triphasic manner. The half-life, total clearance (CLtot) and volume of distribution (Vdss) were nearly constant and independent of dose, and showed a relatively small interpatient variability. A linear relationship was observed between dose and maximum plasma concentration (Cmax) and area under the concentration–time curve (AUC0–). In addition, there was a good correlation between neutropenia and AUC0–. This suggests that toxicity may be dependent on systemic exposure to the drug. Two oxidative metabolites were observed in the patients plasma and urine.Conclusions The primary DLT of KW-2170 in this study was neutropenia, with a MTD of 53 mg/m2. A significant linear relationship was observed between neutropenia and AUC0–. We estimate the recommended dose for phase II studies to be 41.0 mg/m2.  相似文献   

4.
In a pharmacokinetics study, six patients were treated i.v. with epirubicin (EPI) at the two dose levels of 60 and 120 mg/m2, whereas a further six patients were treated at 75 and 150 mg/m2. Both groups were studied according to a balanced cross-over design; the aim of the study was to assess the pharmacokinetic linearity of epirubicin given at high doses. Both the absolute goodness of fit and the Akaike Information Criterion (AIC) point to a linear, tricompartmental open model as the choice framework for discussing EPI plasma disposition after 16/24 administrations, independent of the delivered dose. After 8 treatments, the minimal AIC value corresponded to a nonlinear tissue-binding model. However, even in these cases, second-order effects were present only during the early minutes following treatment. In a model-independent framework, mean EPI plasma clearance was identical at the two dose levels of 60 and 120 mg/m2 (65.4±8.0 vs 65.3±13.4 l/h,P=0.92). Both the mean residence time (MRT) and the volume of distribution at steady-state (Vss) were similar as well (MRT: 22.6±2.9 vs 24.2±3.7 h;P=0.46; Vss: 21.3±1.5 vs 22.6±6.5 l/kg,P=0.46). No statistically significant difference could be found in mean statistical-moment-theory parameters determined after 75- and 150-mg/m2 EPI doses (plasma clearance, PICI: 83.4±13.5 vs 68.5±12.8 l/h,P=0.12; MRT: 22.6±4.8 vs 21.9±3.9 h,P=0.60; Vss: 26.7±10.5 vs 21.2±7.0 l/kg,P=0.17). Analysis of variance also failed to reveal any significant correlation between dose and plasma clearance. However, when data relative to single patients were examined, a trend toward nonlinear drug distribution as well as a consequent increase in peripheral bioavailability could be observed in 4/6 patients of the 75-mg/m2 vs the 150-mg/m2 group. No significant dose-dependent variation was observed in the ratio between the molecular-weight-corrected areas under the concentration-time curve for the metabolites and those for EPI [60 vs 120 mg/m2: epirubicinol (EPIol), 0.23±0.10 vs 0.22±0.06,P=0.20; epirubicin glucoronide (G1), 0.46±0.14 vs 0.62±0.40,P=0.26; epirubicinol glucuronide (G2), 0.21±0.05 vs 0.30±0.16,P=0.06; and 75 vs 150 mg/m2: EPIol, 0.33±0.22 vs 0.32±0.19,P=0.42; G1, 0.51±0.23 vs 0.46±0.17,P=0.53; G2, 0.18±0.10 vs 0.22±0.10,P=0.34]. In conclusion, all the metabolic pathways seemed well preserved when the dose was doubled, and no evident sign of saturation kinetics could be found.  相似文献   

5.
Purpose The pharmacokinetics and bioavailability of monoHER, a promising protector against doxorubicin-induced cardiotoxicity, were determined after different routes of administration.Methods Mice were treated with 500 mg.kg–1 monoHER intraperitoneally (i.p.), subcutaneously (s.c.) or intravenously (i.v.) or with 1000 mg.kg–1 orally. Heart tissue and plasma were collected 24 h after administration. In addition liver and kidney tissues were collected after s.c. administration. The levels of monoHER were measured by HPLC with electrochemical detection.Results After i.v. administration the AUC0–120 min values of monoHER in plasma and heart tissue were 20.5±5.3 mol.min.ml–1 and 4.9±1.3 mol.min.g–1 wet tissue, respectively. After i.p. administration, a mean peak plasma concentration of about 130 M monoHER was maintained from 5 to 15 min after administration. The AUC0–120 min values of monoHER were 6.1±1.1 mol.min.ml–1 and 1.6±0.4 mol.min.g–1 wet tissue in plasma and heart tissue, respectively. After s.c. administration, monoHER levels in plasma reached a maximum (about 230 M) between 10 and 20 min after administration. The AUC0–120 min values of monoHER in plasma, heart, liver and kidney tissues were 8.0±0.6 mol.min.ml–1, 2.0±0.1, 22.4±2.0 and 20.5±5.7 mol.min.g–1, respectively. The i.p. and s.c. bioavailabilities were about 30% and 40%, respectively. After oral administration, monoHER could not be detected in plasma, indicating that monoHER had a very poor oral bioavailability.Conclusions MonoHER was amply taken up by the drug elimination organs liver and kidney and less by the target organ heart. Under cardioprotective conditions (500 mg/kg, i.p.), the Cmax was 131 M and the AUC was 6.3 M.min. These values will be considered endpoints for the clinical phase I study of monoHER.  相似文献   

6.
Summary N-(5-[N-(3,4-Dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl)-l-glutamic acid (ICI D1694) is an analogue of the thymidylate synthase inhibitorN 10-propargyl-5,8-dideazafolic acid (CB3717). CB3717 was found to be an active anticancer agent in early clinical studies, but its use was limited by its relative insolubility at physiological pH. ICI D1694 has been shown to be a more active anticancer agent than CB 3717 in model systems, and it is devoid of the acute renal toxicity associated with the administration of the latter drug to mice. In the present study, the pharmacokinetics of ICI D1694 were studied in both mice and rats using reverse-phase HPLC. In rats, ICI D1694 clearance (CL) conformed to a two-compartment open model and was rapid (CL=10.7 ml min–1 kg–1,t1/2=30 min). Excretion was mainly biliary (65% of the delivered dose in 4 h vs 12% in urine) in the rat following a 100-mg/kg i.v. bolus. A high degree of protein binding was seen in rat plasma (90% over the range of 20–100 m). In mice, ICI D1694CL=27 ml min–1 kg–1 andt1/2=30 min following 100 mg/kg i.v., which was significantly faster than CB3717 clearance (CL=6 ml min–1 kg–1,t1/2=93 min). ICI D1694 was fully bioavailable following i.p. administration (AUC=3.73 mg ml–1 min i.v. 4.03 mg ml–1 min i.p.), but its bioavailability following oral administration appeared to be low (approximately 10%–20%). Tissue distribution and excretion studies in mice suggested that biliary excretion predominated, confirming the results obtained in rats. Following an i.v. dose of 500 mg/kg ICI D1694 in mice, drug was detectable at 24h, suggesting the presence of a third phase of plasma clearance. The initial HPLC assay could not detect this third phase following a dose of 100 mg/kg; hence, a more sensitive assay was developed that includes a solid-phase extraction step. The latter assay was used to define the third phase of ICI D1694 clearance in mice, and preliminary studies demonstrated a terminal half-life of 6.5±2.7 h.These studies were supported by the UK Cancer Research Campaign and the British Technology Group  相似文献   

7.
Summary The pharmacokinetics of high-dose etoposide (total dose, 2100 mg/m2 divided into three doses given as 30-min infusions on 3 consecutive days) were studied in ten patients receiving high-dose combination chemotherapy followed by autologous bone marrow transplantation. In addition to etoposide, all subjects received 2×60 mg/kg cyclophosphamide and either 6×1,000 mg/m2 cytosine arabinoside (ara-C), 300 mg/m2 carmustine (BCNU), or 1,200 mg/m2 carboplatin. Plasma etoposide concentrations were determined by252Cf plasma desorption mass spectrometry. In all, 27 measurements of kinetics in 10 patients were analyzed. According to graphic analysis, the plasma concentration versus time data for all postinfusion plasma ctoposide values were fitted to a biexponential equation. The mean values for the calculated pharmacokinetic parameters were:t1/2, 256±38 min; mean residence time (MRT), 346±47 min; AUC, 4,972±629g min ml–1 (normalized to a dose of 100 mg/m2); volume of distribution at steady state (Vdss), 6.6±1.2l/m2; and clearance (CL), 20.4±2.4 ml min–1 m–2. A comparison of these values with standard-dose etoposide pharmacokinetics revealed that the distribution and elimination processes were not influenced by the dose over the range tested (70–700 mg/m2). Also, the coadministration of carboplatin did not lead to significant pharmacokinetic alterations. Although plasma etoposide concentrations at the time of bone marrow reinfusion (generally at 30 h after the last etoposide infusion) ranged between 0.57 and 2.39 g/ml, all patients exhibited undelayed hematopoietic reconstitution.  相似文献   

8.
Summary A total of 14 patients, 7 male and 7 female, received in all 21 evaluable courses of cyclophosphamide administered by 5-day continuous infusion. Cyclophosphamide doses were escalated from 300 to 400 mg/m2 per day for 5 days and repeated every 21–28 days. The patient population had a median age of 55 years (range 38–76) and a median Karnofsky performance status of 80 (range 60–100). Only 1 patient had not received prior therapy; 5 patients had received only prior chemotherapy, 1 had received only prior radiotherapy, and 7 had received both. Tumor types were gastric (1), lung (2), colon (4), urethral adenocarcinoma (1), cervical (2), chondrosarcoma (1), melanoma (1), uterine leiomyosarcoma (1), and pancreatic (1). The dose-limiting toxicity was granulocytopenia, with median WBC nadir of 1700/l (range 100–4800) in 8 heavily pretreated patients treated at 350 mg/m2 per day for 5 days. One patient without heavy prior treatment received two courses at 400 mg/m2 and had WBC nadirs of 800/l and 600l. WBC nadirs occurred between days 9 and 21 (median 14). Drug-induced thrombocytopenia occurred in only one patient (350 mg/m2 per day, nadir 85000/l). Neither hyponatremia nor symptomatic hypoosmolality was observed. Radiation-induced hemorrhagic cystitis may have been worsened in one patient. Nausea and vomiting were mild. Objective remissions were not observed. The maximum tolerated dose for previously treated patients is 350 mg/m2 per day for 5 days. This dose approximates the doses of cyclophosphamide commonly used with bolus administration. Plasma steady-state concentrations (Css) of cyclophosphamide, measured by gas liquid chromatography, were 2.09–6.79 g/ml. Steady state was achieved in 14.5±5.9 h (mean ±SD). After the infusion, cyclophosphamide disappeared from plasma monoexponentially, with a t1/2 of 5.3±3.6 h. The area under the curve of plasma cyclophosphamide concentrations versus time (AUC) was 543±150 g/ml h and reflected a cyclophosphamide total-body clearance (CLTB) of 103±31.6 ml/min. Plasma alkylating activity, assessed by p-nitrobenzyl-pyridine, remained steady at 1.6–4.3 g/ml nor-nitrogen mustard equivalents. Urinary excretion of cyclophosphamide and alkylating activity accounted for 9.3%±7.6% and 15.1%±2.0% of the administered daily dose, respectively. The t1/2 and AUC of cyclophosphamide associated with the 5-day continuous infusion schedule are similar to those reported after administration of cyclophosphamide 1500 mg/m2 as an i.v. bolus. The AUC of alkylating activity associated with the 5-day continuous infusion of cyclophosphamide is about three times greater than the AUC of alkylating activity calculated after a 1500-mg/m2 bolus dose of cyclophosphamide. Daily urinary excretions of cyclophosphamide and alkylating activity associated with the 5-day continuous infusion schedule are similar to those reported after bolus doses of cyclophosphamide.  相似文献   

9.
Summary Copovithane is an uncharged, water-soluble, synthetic polymer with an average molecular weight of 5800 daltons. It demonstrates antitumor activity in vivo against a variety of tumors in animal models but is inactive in vitro. This agent has been found to have immunorestorative activity in man. In concert with its phase I clinical trial, copovithane concentrations were analyzed by HPLC in plasma, urine, and autopsy and in tumor biopsy specimens obtained from patients. Copovithane was cleared from plasma biphasically with a mean t1/2 of 11.1±4 min and a t1/2 of 246±78 min at the dose of 1 g/m2, while the plasma half-lives increased to 57.7±12 and 718±149 for the alpha and beta phases, respectively, at the 10 g/m2 dose, demonstrating clear, dose-dependent pharmacokinetics. There were no significant differences between dose 1 and dose 4 pharmacokinetics. The apparent volume of distribution (Vd) was 14.5±1. at the 1 g/m2 dose and increased to 73 1. at the 33 g/m2 dose. The calculated mean clearance rate for copovithane in plasma was between 2.4 and 5.4 mg/kg x min and did not appear to be dose-dependent. The urinary excretion of copovithane was approximately 5% of the administered dose over 120 h at the 1 g/m2 dose and decreased to 1% at the 33 g/m2 dose. In seven tumor biopsy samples, concentrations of drug in tumor varied from 1- to 1000-fold higher than that found in concurrent plasma samples. In three autopsy samples, the highest concentrations were found in kidney, intestine, and liver, in decreasing order. These studies show that copovithane exhibits dose-dependent changes in pharmacokinetics at doses between 1 and 33 g/m2. However, copovithane does penetrate well to tumor tissues, achieving high tumor/plasma ratios. In addition, copovithane concentrations were highest in kidney tissue, which may be a site for potential organ toxicity.  相似文献   

10.
Summary The disposition of cisplatin was evaluated in 28 children and adolescents with cancer, as part of a phase II clinical trial. Patients received either 30 mg/m2 (11) or 90 mg/m2 (17) of cisplatin as a 6-h IV infusion. Serum samples and divided urine collections were obtained over 48 h following completion of the cisplatin infusion, and were assayed in duplicate for total platinum by atomic absorption spectrophotometry. Serum samples obtained up to 4 h after three cisplatin infusions were assayed for parent (free) cisplatin following ultrafiltration. The mean (±SE) elimination half-life of free cisplatin in serum was 1.3 (±0.4) h. Serial serum concentrations of total platinum following 90 mg/m2 dosages were adequately described by a biexponential equation. The mean (±SE) serum T1/2 of total platinum was 0.42 (±0.10) h and the mean (±SE) T1/2 was 44.43 (±8.24) h. The intercompartment distribution rate constants of a two-compartment kinetic model indicate extensive tissue accumulation of total platinum, with a rate of transport into tissue compartments (K12) that is about six times the rate of transport out of tissues (K21). The mean (±SE) renal clearance of total platinum from 0–3 h was 37.36 (±11.96) ml/min/m2 and 35.8 (±13.6) ml/min/m2 for the 30 mg/m2 and 90 mg/m2 groups, respectively. This value decreased to 3.25 (±0.94) and 2.16 (±0.4) ml/min/m2 for the two groups by the 6–12 h interval, and remained between 1 and 3 ml/min/m2 for the duration of the observation period. The ratio of total plantinum clearance to creatinine clearance decreased significantly(P<0.05) beginning 3 h post-infusion. The change in renal clearance of total platinum is apparently a function of two independent first-order processes for renal clearance of parent drug and cisplatin metabolites.  相似文献   

11.
Summary The plasma pharmacokinetic profile of 4-epidoxorubicin (epirubicin) was investigated in 28 patients with nasopharyngeal carcinoma (NPC) after single i.v. rapid infusions. All patients had normal liver and renal functions. Plasma concentrations of the parent compound were specifically determined by a high-performance liquid chromatographic (HPLC) method, with UV detection at 254 nm. Plasma levels of the compound were fitted to a three-compartment open model; a triexponential decrease in plasma concentrations with a long terminal plasma halflife (44.8±21.2 h) was observed in 27 patients. The respective mean (±SD) serum concentration at 72 h and the AUC, plasma clearance, and terminal elimination rate constant in complete responders were 7.67±1.98 ng/ml, 4,002±3,080 ng· h/ml, 26.6±12.9 l/h·m2, and 0.009±0.007 l/h, whereas those in nonresponders were 4.96±1.8 ng/ml, 1,88±652.8 ng·h/ml, 44.4±15 l/h·m2, and 0.017±0.006 l/h, respectively; these differences were significant (P(0.05). Epirubicin produced a 52% response rate, including 6 patients with a complete response, 8 with a partial response, 11 with no change, and 2 with progressive disease. No relationship could be found between the various pharmacokinetic parameters and either leukopenia, age, or sex. These observations strongly suggest that plasma clearance may be one of the determining factors affecting the response or nonresponse of NPC patients to epirubicin, and a dose adjustment according to plasma clearance would probably increase the response rate.  相似文献   

12.
Summary Amonafide, one of a series of imide derivatives of 1,8-naphthalic acid synthesized by Brana et al. [2] has shown significant antitumor activity against a variety of experimental tumors, including L1210 leukemia and P388 leukemia. Along with the clinical trial at our institute, we have studied the disposition of Amonafide in dogs by HPLC and fluorometry. Six dogs received Amonafide i.v. at 5 mg/kg (100 mg/m2) over 15 min; three were sacrificed at 6 h, and three at 24 h. The initial plasma t1/2, of Amonofide was 2.4±0.4 min, the intermediate t1/2, 26.8±3.7 min, and the terminal t1/2, 21.7±4.0 h. the peak plasma concentration achieved was 6.3±1.7 g/ml. The average apparent volume of distribution was 12.84±0.541/kg, and the total clearance was 0.56±0.161/kg/h. In 24 h, 9.5%±0.2% of the administered dose was excreted in the urine as the parent drug, and 7.4%±1.4% in the bile in 6 h. Amonafide penetrated the CSF readily and achieved the highest concentration 20–25 min after administration, which was 30% of the concurrent plasma level. Amonafide underwent extensive metabolism to at least three major metabolites and two or more minor metabolites. The and plasma t1/2 of the major metabolite, an N-oxide derivative, were 24.8 min and 28.6 h, respectively. The 24-h cumulative urinary excretion was 1.4% of the injected dose, and the cumulative biliary excretion was 16.7% in 6 h. At autopsy 6 h after dosing, the liver contained the highest percentage (0.23% of administered dose) of unchanged Amonafide, followed by the stomach (0.11%), lung (0.04%), kidney (0.04%), and pancreas (0.03%). The rest of the major organs retained less than 0.02% of the Amonafide dose. One day after dosing, no detectable amount of Amonafide was found in any of these tissues, indicating that Amonafide appears to be extensively metabolized and not significantly retained in the dog.  相似文献   

13.
The pharmacokinetics of 222 infusions of high-dose methotrexate (MTX) with leucovorin rescue were studied in 22 adults with osteosarcoma. To reduce the variability of plasma concentration, we individualized dose regimens using a Bayesian method to reach a concentration of 10–3 M MTX at the end of an 8-h infusion. The mean concentration observed at the end of the infusion was 1016±143 mol/l. The mean dose delivered was 13.2±2 g/m2. The clearance was 49.1±11.7 ml min–1 m–2. The decay of the plasma concentration of MTX after completion of the infusion followed a two-compartment model with at 1/2 of 2.66±0.82 h and at 1/2 of 15.69±8.63 h. The volume of distribution was 0.32±0.08 l/kg. As compared with previously published data, the interindividual and intraindividual variations in the concentration at the end of the infusion were reduced, with values of 14% and 5.9%–21%, respectively, being obtained. Severe toxicities were avoided, and there were only 3 hematologic and 8 digestive grade 3 side effects and no grade 4 complication. Thet 1/2 and the MTX plasma concentrations at 23 and 47 h were correlated with renal toxicity (P<0.001). However, no correlation was found between the pharmacokinetic parameters and other signs of toxicity. There was no significant difference in pharmacokinetics between the toxic and nontoxic groups. In the same manner, the parameters of the group of patients sensitive to MTX were not statistically significantly different from those of the group of nonsensitive patients.  相似文献   

14.
In an earlier phase I study, we reported that the maximal tolerated dose (MTD) of prochlorperazine (PCZ) given as a 15-min i.v. infusion was 75 mg/m2. The highest peak plasma PCZ concentration achieved was 1100 ng/ml. The present study was conducted to determine if PCZ levels high enough to block doxorubicin (DOX) efflux in vitro could be achieved and sustained in vivo by increasing the duration of i.v. infusion from 15 min to 2 h. The treatment schedule consisted of i.v. prehydration with at least 500 ml normal saline (NS) and administration of a fixed standard dose of 60 mg/m2 DOX as an i.v. bolus over 15 min followed by i.v. doses of 75, 105, 135, or 180 mg/m2 PCZ in 250 ml NS over 2 h. The hematologic toxicities attributable to DOX were as expected and independent of the PCZ dose. Toxicities attributable to PCZ were sedation, dryness of mouth, anxiety, akathisia, hypotension, cramps, and confusion. The MTD of PCZ was 180 mg/m2. Large interpatient variation in peak PCZ plasma levels (91–3215 ng/ml) was seen, with the plasma half-life (t1/2) being approximately 57 min in patients given 135–180 mg/m2 PCZ. The volume of distribution (Vd), total clearance (ClT), and area under the curve (AUC) were 350.1±183.8 l/m2, 260.7±142.7 l m2 h–1 and 1539±922 ng ml h–1, respectively, in patients given 180 mg/m2 PCZ and the respective values for patients receiving 135 mg/m2 were 48.9±23.76 l/m2, 33.2±2.62 l m2 h–1, and 4117±302 ng ml h–1. High PCZ plasma levels (>600 ng/ml) were sustained in all patients treated with 135 mg/m2 PCZ for up to 24 h. DOX plasma elimination was biphasic at 135 and 180 mg/m2 PCZ, and a>10-ng/ml DOX plasma level was maintained for 24 h. Partial responses were seen in three of six patients with malignant mesothelioma, in two of ten patients with non-small-cell lung carcinoma, and in the single patient with hepatoma. Our data show that PCZ can be safely given as a 2-h infusion at 135 mg/m2 with clinically manageable toxicities. The antitumor activity of the combination of DOX and PCZ needs to be confirmed in phase II trials.This work was supported by NIH grant R01 CA-29360 and S1488, CRC grant M01 RR-05280, and the Joan Levy Cancer Foundation. This paper was presented at the meeting of the American Association for Cancer Research, Orlando, Florida, May 19–22, 1993  相似文献   

15.
Background:Quercetin is a naturally occurring flavonoid with manybiological activities including inhibition of a number of tyrosine kinases.A phase I, dose-escalation trial of quercetin defined the maximum tolerateddose (MTD) as 1700 mg/m2 three weekly, but the vehicle, dimethylsulphoxide (DMSO) is unsuitable for further clinical development ofquercetin. Patients and methods:A water-soluble, pro-drug of quercetin(3(N-carboxymethyl)carbomyl-3,4,5,7-tetrahydroxyflavone), QC12has been synthesised. Six cancer patients received 400 mg of QC12 (equivalentto 298 mg of quercetin), orally on day 1 and intravenously (i.v.) in normalsaline on day 14. Results:Following oral administration of QC12 we were unable todetect QC12 or quercetin in plasma. After i.v. administration, we detectedpeak plasma concentrations of QC12 of 108.7 ± 41.67 µMolar(µM). A two-compartment model with mean t1/2 of 0.31± 0.27 hours and mean t1/2 of 0.86 ± 0.78 hoursbest described the concentration-time curves for QC12. The mean AUC was 44.54± 13.0 µM.hour and mean volume of distribution (Vd) of 10.0± 6.2 litres (l). Quercetin was found in all patients following i.v.infusion of QC12, with peak levels of quercetin 19.9 ± 11.8 µM.The relative bioavailability of quercetin was estimated to be20%–25% quercetin released from QC12. Conclusions:QC12 is not orally bioavailable. This water-solublepro-drug warrants further clinical investigation; starting with a formal phaseI, IV, dose-escalation study.  相似文献   

16.
Summary Melphalan (L-PAM) pharmacokinetics were investigated in nine ovarian cancer patients before and after cisplatin (DDP) treatment. When L-PAM was given 24 h before DDP, the elimination half-life (t1/2), plasma clearance (Clp), and volume of distribution (Vd) of L-PAM were, respectively: 46.4±6.7 min, 20.5±3.7 l/m2, and 306.8±34.4 ml/min per square meter. When L-PAM was inoculated 24 h after DDP, t1/2, Clp, and Vd were 47.5±6.3 min, 20.4±2.8 l/m2, and 322.0±54.1 ml/min per square meter. Thus, DDP pretreatment does not significantly affect L-PAM pharmacokinetics. Regression analysis showed a significant correlation between the L-PAM elimination rate constant () and renal function assessed by creatinine clearance. One patient who received this sequence of treatment for six courses showed a threefold decrease of L-PAM clp after the last treatment. The reported high myelotoxicity of the combination of DDP and L-PAM when DDP was given 24 h before L-PAM cannot be attributed to DDP-induced changes in L-PAM kinetics but might to some extent be related to a loss of renal function consequent to many courses of treatment.This work was supported by a Grant from the Swiss League against Cancer  相似文献   

17.
The pharmacokinetics and pharmacodynamics of prolonged oral etoposide chemotherapy were investigated in 15 women with metastatic breast cancer who received oral etoposide 100 mg as a single daily dose for up to 15 days. There was considerable interpatient variability in the day 1 pharmacokinetic parameters: area under the plasma concentration time curve (AUC) (0–24 h) 1.95±0.87 mg/ml per min (mean ± SD), apparent oral clearance 60.9±21.7 ml/min per 1.73 m2, peak plasma concentration 5.6±2.5 g/ml, time to peak concentration 73±35 min and half-life 220±83 min. However, intrapatient variability in systemic exposure to etoposide was much less with repeated doses. The intrapatient coefficient of variation (CV) of AUC for day 8 relative to day 1 was 20% and for day 15 relative to day 1 was 15%, compared to the day 1 interpatient CV of 45%. Neutropenia was the principal toxicity. Day 1 pharmacokinetic parameters were related to the percentage decrease in absolute neutrophil count using the sigmoidal Emax equation. A good fit was found between day 1 AUC and neutrophil toxicity (R 2=0.77). All patients who had a day 1 AUC>2.0 mg/ml per min had WHO grade III or IV neutropenia. The predictive performance of the models for neutrophil toxicity was better for AUC (percentage mean predictive error 5%, percentage root mean square error 18.1%) than apparent oral clearance, peak plasma concentration, or daily dose (mg/m2). A limited sampling strategy was developed to predict AUC using a linear regression model incorporating a patient effect. Data sets were divided into training and test sets. The AUC could be estimated using a model utilizing plasma etoposide concentration at only two time points, 4 h and 6 h after oral dosing (R 2=98.9%). The equation AUCpr=–0.376+0.631×C4h+0.336×C6h was validated on the test set with a relative mean predictive error of –0.88% and relative root mean square error of 6.4%. These results suggest monitoring of AUC to predict subsequent myelosuppression as a strategy for future trials with oral etoposide.Division of Haematology and Medical Oncology, Peter MacCallum Cancer Institute, Locked Bag 1, A'Beckett St, Melbourne 3000, Australia  相似文献   

18.
Summary The pharmacokinetics ofN-[2-(dimethylamino)ethyl]acridine-4-carboxamide (AC) were investigated in rats after i. v. administration of 18, 55 and 81 mol/kg [3H]-AC. The plasma concentration-time profiles of AC (as measured by high-performance liquid chromatography) typically exhibited biphasic elimination kinetics over the 8-h post-administration period. Over this dose range, AC's kinetics were first-order. The mean (±SD) model-independent pharmacokinetic parameters were; clearance (Cl), 5.3±1.1 1 h–1 kg–1; steady-state volume of distribution (Vss), 7.8±3.0 l/kg; mean residence time (MRT), 1.5±0.4 h; and terminal elimination half-life (t 1/2Z), 2.1±0.7 h (n=10). The radioactivity levels (expressed as AC equivalents) in plasma were 1.3 times the AC concentrations recorded at 2 min (the first time point) and remained relatively constant for 1–8 h after AC administration. By 6 h, plasma radioactivity concentrations were 20 times greater than AC levels. Taking into account the species differences in the unbound AC fraction in plasma (mouse, 16.3%; rat, 14.8%; human, 3.4%), allometric equations were developed from rat and mouse pharmacokinetic data that predicted a Cl value of 0.075 (range, 0.05–0.10; 95% confidence limits) 1 h–1 kg–1 and a Vss value of 0.63 (range, 0.2–1.1) l/kg for total drug concentrations in humans.  相似文献   

19.
Summary Oxantrazole (now designated as piroxantrone) is an anthrapyrazole analog under evaluation as a potentially useful anthracycline-like antitumor agent. In preparation for phase I clinical trials, we characterized certain aspects of oxantrazole preclinical pharmacology, including plasma stability, murine pharmacokinetics, in vitro/in vivo metabolism, and DNA damage following incubation with human tumor cells in culture. Oxantrazole was relatively unstable in fresh mouse and dog plasma and particularly unstable in fresh human plasma (t1/2 >5 min at 37°C). Its decomposition in plasma was prevented by the addition of ascorbic acid, suggesting oxidative degradation. following rapid i.v. administration of oxantrazole to mice, plasma elimination was best described by a two-compartment open model with an elimination-phase half-life, total body clearance, and steady-state volume of distribution of 330 min, 458 ml/min per m2, and 87.9 l/m2, respectively. The c x t value calculated following i.v. administration of 90 mg/m2 oxantrazole to mice was 177 g-min/ml. This value was subsequently used in a pharmacologically guided dose-escalation scheme for the oxantrazole phase I clinical trial. Oxantrazole was converted to a polar conjugate, presumably a -glucuronide, by rat but not mouse hepatic microsomal preparations and in vivo by the mouse. Oxantrazole introduced protein-associated DNA strand breaks following incubation with a human rhabdomyosarcoma cell line. Repair of the damage was complete by 15 h. Clinical pharmacologic studies are currently under way in conjunction with the phase I clinical trial of oxantrazole.  相似文献   

20.
Summary Doxifluridine (5-deoxy-5-fluorouridine, 5-dFUR) metabolism has been reported to be saturable and associated with a fall in clearance of the drug as the dose is increased. The aim of the present study was to determine the disposition of 5-dFUR and 5-fluorouracil (5-FU) when 5-dFUR was given as a 5-day infusion, with the infusion rate increased stepwise every 24 h. Measurement of plasma and urinary levels of 5-dFUR and 5-FU at steadystate for each infusion rate enabled the estimation of 5-dFUR renal (ClR) and nonrenal (ClNR) clearance and 5-FU renal clearance. A total of 28 patients with histologically proven malignancy received 5-day courses of 5-dFUR ranging in dose from 3.75 to 20 g/m2 per 120 h. The lowest dose given over 24 h was 0.25 g/m2, and the highest was 5 g/m2. Steady-state plasma levels of 5-dFUR ranged from 167 to 6.519 ng/ml. At these plasma levels there was no evidence of significant saturation of 5-dFUR metabolism; steady-state plasma levels of 5-dFUR increased approximately linearly with dose, and nonrenal clearance did not change significantly with dose. There was also no evidence of nonlinearity in 5-dFUR renal clearance. The mean (±SD) ClR of 5-dFUR was 108.9±53.6 ml/min per m2 (range, 45.7–210 ml/min per m2), and the ClNR was 728±181 ml/min per m2 (range, 444–1,119 ml/min per m2). Renal clearance comprised 13% of the total 5-dFUR clearance. The mean renal clearance of 5-FU was 100.8±48.6 ml/min per m2 (range, 23.5–198 ml/min per m2). There was considerable interpatient variability in 5-dFUR renal and nonrenal clearance, event at the same dose level. We concluded that the administration of 5-dFUR by the infusion method described avoided the saturation of nonrenal elimination processes reported to occur with shorter infusion schedules.This study was supported by a grant from F. Hoffmann-La Roche, Basel, Switzerland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号