首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of this study was to describe the kinetics of voltage-dependent inactivation of native cardiac L-type Ca2+ currents. Whole-cell currents were recorded from guinea-pig isolated ventricular myocytes. Voltage-dependent inactivation was separated from Ca2+-dependent inactivation by replacing extracellular Ca2+ with Mg2+ and recording outward currents through Ca2+ channels. Voltage-dependent inactivation accelerated from slow monophasic decay at −30 mV to maximal rapid biphasic decay at +20 mV. Maximal voltage-dependent inactivation occurred with τf≈30 ms and τs≈300 ms, the fast component of decay accounted for 70 % of the current amplitude. In basal conditions Ca2+ current availability was sigmoid. Isoproterenol (isoprenaline) evoked a large increase in a time-independent component of the Ca2+ current which also increased with depolarisation. This was responsible for the apparent recovery of Ca2+ channel current availability at positive membrane potentials and thus a U-shaped availability-voltage ( A-V) relationship. It is concluded that β-adrenergic stimulation altered the reaction of native cardiac L-type Ca2+ channels to membrane voltage. In basal conditions, voltage accelerated inactivation. In isoproterenol, voltage could also reduce inactivation.  相似文献   

2.
We studied the properties of a voltage-operated Na+ conductance in descending vasa recta (DVR) pericytes isolated from the renal outer medulla. Whole-cell patch-clamp recordings revealed a depolarization-induced, rapidly activating and rapidly inactivating inward current that was abolished by removal of Na+ but not Ca+ from the extracellular buffer. The Na+ current ( I Na) is highly sensitive to tetrodotoxin  (TTX, K d= 2.2 n m )  . At high concentrations, mibefradil (10 μ m ) and Ni+ (1 m m ) blocked I Na. I Na was insensitive to nifedipine (10 μ m ). The L-type Ca+ channel activator FPL-64176 induced a slowly activating/inactivating inward current that was abolished by nifedipine. Depolarization to membrane potentials between 0 and 30 mV induced inactivation with a time constant of ∼1 ms. Repolarization to membrane potentials between −90 and −120 mV induced recovery from inactivation with a time constant of ∼11 ms. Half-maximal activation and inactivation occurred at −23.9 and −66.1 mV, respectively, with slope factors of 4.8 and 9.5 mV, respectively. The Na+ channel activator, veratridine (100 μ m ), reduced peak inward I Na and prevented inactivation. We conclude that a TTX-sensitive voltage-operated Na+ conductance, with properties similar to that in other smooth muscle cells, is expressed by DVR pericytes.  相似文献   

3.
In many neurons, trains of action potentials show frequency-dependent broadening. This broadening results from the voltage-dependent inactivation of K+ currents that contribute to action potential repolarisation. In different neuronal cell types these K+ currents have been shown to be either slowly inactivating delayed rectifier type currents or rapidly inactivating A-type voltage-gated K+ currents. Recent findings show that inactivation of a Ca2+-dependent K+ current, mediated by large conductance BK-type channels, also contributes to spike broadening. Here, using whole-cell recordings in acute slices, we examine spike broadening in lateral amygdala projection neurons. Spike broadening is frequency dependent and is reversed by brief hyperpolarisations. This broadening is reduced by blockade of voltage-gated Ca2+ channels and BK channels. In contrast, broadening is not blocked by high concentrations of 4-aminopyridine (4-AP) or α-dendrotoxin. We conclude that while inactivation of BK-type Ca2+-activated K+ channels contributes to spike broadening in lateral amygdala neurons, inactivation of another as yet unidentified outward current also plays a role.  相似文献   

4.
Cardiac arrhythmias, which occur in a wide variety of conditions where intracellular calcium is increased, have been attributed to the activation of a transient inward current ( I ti). I ti is the result of three different [Ca]i-sensitive currents: the Na+–Ca2+ exchange current, a Ca2+-activated chloride current and a Ca2+-activated non-selective cationic current. Using the cell-free configuration of the patch-clamp technique, we have characterized the properties of a Ca2+-activated non-selective cation channel (NSCCa) in freshly dissociated human atrial cardiomyocytes. In excised inside-out patches, the channel presented a linear I–V relationship with a conductance of 19 ± 0.4 pS. It discriminated poorly among monovalent cations (Na+ and K+) and was slightly permeable to Ca2+ ions. The channel's open probability was increased by depolarization and a rise in internal calcium, for which the K d for [Ca2+]i was 20.8 μ m . Channel activity was reduced in the presence of 0.5 m m ATP or 10 μ m glibenclamide on the cytoplasmic side to 22.1 ± 16.8 and 28.5 ± 8.6%, respectively, of control. It was also inhibited by 0.1 m m flufenamic acid. The channel shares several properties with TRPM4b and TRPM5, two members of the 'TRP melastatin' subfamily. In conclusion, the NSCCa channel is a serious candidate to support the delayed after-depolarizations observed in [Ca2+] overload and thus may be implicated in the genesis of arrhythmias.  相似文献   

5.
Interstitial cells of Cajal (ICC) are unique cells that generate electrical pacemaker activity in gastrointestinal (GI) muscles. Many previous studies have attempted to characterize the conductances responsible for pacemaker current and slow waves in the GI tract, but the precise mechanism of electrical rhythmicity is still debated. We used a new transgenic mouse with a bright green fluorescent protein (copGFP) constitutively expressed in ICC to facilitate study of these cells in mixed cell dispersions. We found that ICC express a specialized 'slow wave' current. Reversal of tail current analysis showed this current was due to a Cl selective conductance. ICC express ANO1, a Ca2+-activated Cl channel. Slow wave currents are not voltage dependent, but a secondary voltage-dependent process underlies activation of these currents. Removal of extracellular Ca2+, replacement of Ca2+ with Ba2+, or extracellular Ni2+ (30 μ m ) blocked the slow wave current. Single Ca2+-activated Cl channels with a unitary conductance of 7.8 pS were resolved in excised patches of ICC. These are similar in conductance to ANO1 channels (8 pS) expressed in HEK293 cells. Slow wave current was blocked in a concentration-dependent manner by niflumic acid (IC50= 4.8 μ m ). Slow wave currents are associated with transient depolarizations of ICC in current clamp, and these events were blocked by niflumic acid. These findings demonstrate a role for a Ca2+-activated Cl conductance in slow wave current in ICC and are consistent with the idea that ANO1 participates in pacemaker activity.  相似文献   

6.
Spike frequency adaptation (SFA) is a fundamental property of repetitive firing in motoneurones (MNs). Early SFA (occurring over several hundred milliseconds) is thought to be important in the initiation of muscular contraction. To date the mechanisms underlying SFA in spinal MNs remain unclear. In the present study, we used both whole-cell patch-clamp recordings of MNs in lumbar spinal cord slices prepared from motor functionally mature mice and computer modelling of spinal MNs to investigate the mechanisms underlying SFA. Pharmacological blocking agents applied during whole-cell recordings in current-clamp mode demonstrated that the medium AHP conductance (apamin), BK-type Ca2+-dependent K+ channels (iberiotoxin), voltage-activated Ca2+ channels (CdCl2), M-current (linopirdine) and persistent Na+ currents (riluzole) are all unnecessary for SFA. Measurements of Na+ channel availability including action potential amplitude, action potential threshold and maximum depolarization rate of the action potential were found to correlate with instantaneous firing frequency suggesting that the availability of fast, inactivating Na+ channels is involved in SFA. Characterization of this Na+ conductance in voltage-clamp mode demonstrated that it undergoes slow inactivation with a time course similar to that of SFA. When experimentally measured parameters for the fast, inactivating Na+ conductance (including slow inactivation) were incorporated into a MN model, SFA could be faithfully reproduced. The removal of slow inactivation from this model was sufficient to remove SFA. These data indicate that slow inactivation of the fast, inactivating Na+ conductance is likely to be the key mechanism underlying early SFA in spinal MNs.  相似文献   

7.
Small conductance Ca2+-activated K+ channels (SK channels) contribute to the long lasting afterhyperpolarization (AHP) that follows an action potential in many central neurones. The biophysical and pharmacological attributes of cloned SK channels strongly suggest that one or more of them underlie the medium component of the AHP that regulates interspike interval and plays an important role in setting tonic firing frequency. The cloned SK channels comprise a distinct subfamily of K+ channels. Heterologously expressed SK channels recapitulate the biophysical and pharmacological hallmarks of native SK channels, being gated solely by intracellular Ca2+ ions with no voltage dependence to their gating, small unitary conductance values and sensitivity to the bee venom peptide toxin, apamin. Molecular, biochemical and electrophysiological studies have revealed that Ca2+ gating in SK channels is due to heteromeric assembly of the SK α pore-forming subunits with calmodulin (CaM). Ca2+ binding to the N-terminal E–F hands of CaM is responsible for SK channel gating. Crystallographic studies suggest that SK channels gate as a dimer-of-dimers, and that the physical gate of SK channels resides at or near the selectivity filter of the channels. In addition, Ca2+-independent interactions between the SK channel α subunits and CaM are necessary for proper membrane trafficking.  相似文献   

8.
Before the onset of hearing at postnatal day 12, mouse inner hair cells (IHCs) produce spontaneous and evoked action potentials. These spikes are likely to induce neurotransmitter release onto auditory nerve fibres. Since immature IHCs express both α1D (Cav1.3) Ca2+ and Na+ currents that activate near the resting potential, we examined whether these two conductances are involved in shaping the action potentials. Both had extremely rapid activation kinetics, followed by fast and complete voltage-dependent inactivation for the Na+ current, and slower, partially Ca2+-dependent inactivation for the Ca2+ current. Only the Ca2+ current is necessary for spontaneous and induced action potentials, and 29 % of cells lacked a Na+ current. The Na+ current does, however, shorten the time to reach the action-potential threshold, whereas the Ca2+ current is mainly involved, together with the K+ currents, in determining the speed and size of the spikes. Both currents increased in size up to the end of the first postnatal week. After this, the Ca2+ current reduced to about 30 % of its maximum size and persisted in mature IHCs. The Na+ current was downregulated around the onset of hearing, when the spiking is also known to disappear. Although the Na+ current was observed as early as embryonic day 16.5, its role in action-potential generation was only evident from just after birth, when the resting membrane potential became sufficiently negative to remove a sizeable fraction of the inactivation (half inactivation was at −71 mV). The size of both currents was positively correlated with the developmental change in action-potential frequency.  相似文献   

9.
Proteins of the CLCA gene family including the human ClCa1 (hClCa1) have been suggested to constitute a new family of chloride channels mediating Ca2+-dependent Cl currents. The present study examines the relationship between the hClCa1 protein and Ca2+-dependent Cl currents using heterologous expression of hClCa1 in HEK293 and NCIH522 cell lines and whole cell recordings. By contrast to previous reports claiming the absence of Cl currents in HEK293 cells, we find that HEK293 and NCIH522 cell lines express constitutive Ca2+-dependent Cl currents and show that hClCa1 increases the amplitude of Ca2+-dependent Cl currents in those cells. We further show that hClCa1 does not modify the permeability sequence but increases the Cl conductance while decreasing the G SCN/ G Cl conductance ratio from ∼2–3 to ∼1. We use an Eyring rate theory (two barriers, one site channel) model and show that the effect of hClCa1 on the anionic channel can be simulated by its action on lowering the first and the second energy barriers. We conclude that hClCa1 does not form Ca2+-dependent Cl channels per se or enhance the trafficking/insertion of constitutive channels in the HEK293 and NCIH522 expression systems. Rather, hClCa1 elevates the single channel conductance of endogenous Ca2+-dependent Cl channels by lowering the energy barriers for ion translocation through the pore.  相似文献   

10.
N-type  voltage-dependent  Ca2+ channels (N-VDCCs) play important roles in neurotransmitter release and certain postsynaptic phenomena. These channels are modulated by a number of intracellular factors, notably by Gβγ subunits of G proteins, which inhibit N-VDCCs in a voltage-dependent (VD) manner. Here we show that an increase in intracellular Na+ concentration inhibits N-VDCCs  in hippocampal pyramidal neurones and in Xenopus oocytes. In acutely dissociated hippocampal neurones, Ba2+ current via N-VDCCs was inhibited by Na+ influx caused by the activation of NMDA receptor channels. In Xenopus oocytes expressing N-VDCCs, Ba2+ currents were inhibited by Na+ influx and enhanced by depletion of Na+, after incubation in a Na+-free extracellular solution. The Na+-induced inhibition was accompanied by the development of  VD facilitation, a hallmark of a Gβγ-dependent process. Na+-induced regulation of N-VDCCs is Gβγ dependent, as suggested by the blocking of Na+ effects by Gβγ scavengers and by excess Gβγ, and may be mediated by the Na+-induced dissociation of Gαβγ heterotrimers. N-VDCCs may be novel effectors of Na+ion, regulated by the Na+ concentration via Gβγ.  相似文献   

11.
We examined the effects of hypoxia on the release of serotonin (5-HT) from intact neuroepithelial body cells (NEB), presumed airway chemoreceptors, in rabbit lung slices, using amperometry with carbon fibre microelectrodes. Under normoxia ( P O2∼155 mmHg; 1 mmHg ≈133 Pa), most NEB cells did not exhibit detectable secretory activity; however, hypoxia elicited a dose-dependent ( P O2 range 95–18 mmHg), tetrodotoxin (TTX)-sensitive stimulation of spike-like exocytotic events, indicative of vesicular amine release. High extracellular K+ (50 m m ) induced a secretory response similar to that elicited by severe hypoxia. Exocytosis was stimulated in normoxic NEB cells after exposure to tetraethylammonium (20 m m ) or 4-aminopyridine (2 m m ). Hypoxia-induced secretion was abolished by the non-specific Ca2+ channel blocker Cd2+ (100 μ m ). Secretion was also largely inhibited by the L-type Ca2+ channel blocker nifedipine (2 μ m ), but not by the N-type Ca2+ channel blocker ω-conotoxin GVIA (1 μ m ). The 5-HT3 receptor blocker ICS 205 930 also inhibited secretion from NEB cells under hypoxia. These results suggest that hypoxia stimulates 5-HT secretion from intact NEBs via inhibition of K+ channels, augmentation of Na+-dependent action potentials and calcium entry through L-type Ca2+ channels, as well as by positive feedback activation of 5-HT3 autoreceptors.  相似文献   

12.
Transient changes in extracellular pH (pHo) occur in the retina and may have profound effects on neurotransmission and visual processing due to the pH sensitivity of ion channels. The present study characterized the effects of acidification on the activity of membrane ion channels in isolated horizontal cells (HCs) of the goldfish retina using whole-cell patch-clamp recording. Currents recorded from HCs were characterized by prominent inward rectification at potentials negative to −80 mV, a negative slope conductance between −70 and −40 mV, a sustained inward current, and outward rectification positive to 40 mV. Inward currents were identified as those of inward rectifier K+ (Kir) channels and Ca2+ channels by their sensitivity to 10 m m Cs+ or 20 μ m Cd2+, respectively. Both of these currents were reduced when pHo decreased from 7.8 to 6.8. Glutamate (1 m m )-activated currents were also identified, as were hemichannel currents that were enhanced by removal of extracellular Ca2+ and application of 1 m m quinidine. Both glutamate-activated and hemichannel currents were suppressed by a similar reduction of pHo. When all of these H+-inhibited currents were blocked, a small, sustained inward current at −60 mV increased following a decrease in pHo from 7.8 to 6.8. In addition, slope conductance between −70 and −20 mV increased during this acidification. Suppression of this H+-activated current by removal of extracellular Na+, and an extrapolated E rev near E Na, indicated that this current was carried predominantly by Na+ ions.  相似文献   

13.
Rat basophilic leukaemia cells (RBL-2H3-M1) were used to study the characteristics of the store-operated Ca2+ release-activated Ca2+ current ( I CRAC) and the magnesium-nucleotide-regulated metal cation current (MagNuM) (which is conducted by the LTRPC7 channel). Pipette solutions containing 10 m m BAPTA and no added ATP induced both currents in the same cell, but the time to half-maximal activation for MagNuM was about two to three times slower than that of I CRAC. Differential suppression of I CRAC was achieved by buffering free [Ca2+]i to 90 n m and selective inhibition of MagNuM was accomplished by intracellular solutions containing 6 m m Mg.ATP, 1.2 m m free [Mg2+]i or 100 μ m GTP-γ-S, allowing investigations on these currents in relative isolation. Removal of extracellular Ca2+ and Mg2+ caused both currents to be carried significantly by monovalent ions. In the absence or presence of free [Mg2+]i, I CRAC carried by monovalent ions inactivated more rapidly and more completely than MagNuM carried by monovalent ions. Since several studies have used divalent-free solutions on either side of the membrane to study selectivity and single-channel behaviour of I CRAC, these experimental conditions would have favoured the contribution of MagNuM to monovalent conductance and call for caution in interpreting results where both I CRAC and MagNuM are activated.  相似文献   

14.
Sodium channels Nav1.2 and Nav1.6 are both normally expressed along premyelinated and myelinated axons at different stages of maturation and are also expressed in a subset of demyelinated axons, where coexpression of Nav1.6 together with the Na+/Ca2+ exchanger is associated with axonal injury. It has been difficult to distinguish the currents produced by Nav1.2 and Nav1.6 in native neurones, and previous studies have not compared these channels within neuronal expression systems. In this study, we have characterized and directly compared Nav1.2 and Nav1.6 in a mammalian neuronal cell background and demonstrate differences in their properties that may affect neuronal behaviour. The Nav1.2 channel displays more depolarized activation and availability properties that may permit conduction of action potentials, even with depolarization. However, Nav1.2 channels show a greater accumulation of inactivation at higher frequencies of stimulation (20–100 Hz) than Nav1.6 and thus are likely to generate lower frequencies of firing. Nav1.6 channels produce a larger persistent current that may play a role in triggering reverse Na+/Ca2+ exchange, which can injure demyelinated axons where Nav1.6 and the Na+/Ca2+ exchanger are colocalized, while selective expression of Nav1.2 may support action potential electrogenesis, at least at lower frequencies, while producing a smaller persistent current.  相似文献   

15.
Mexiletine is a class 1b antiarrhythmic drug used for ventricular arrhythmias but is also found to be effective for paramyotonia congenita, potassium-aggravated myotonia, long QT–3 syndrome, and neuropathic pain. This drug elicits tonic block of Na+ channels when cells are stimulated infrequently and produces additional use-dependent block during repetitive pulses. We examined the state-dependent block by mexiletine in human skeletal muscle hNav1.4 wild-type and inactivation-deficient mutant Na+ channels (hNav1.4-L443C/A444W) expressed in HEK293t cells with a β1 subunit. The 50% inhibitory concentrations (IC50) for the inactivated-state block and the resting-state block of wild-type Na+ channels by mexiletine were measured as 67.8 ± 7.0 μ m and 431.2 ± 9.4 μ m , respectively ( n = 5). In contrast, the IC50 for the block of open inactivation-deficient mutant channels at +30 mV by mexiletine was 3.3 ± 0.1 μ m ( n = 5), which was within the therapeutic plasma concentration range (2.8–11 μ m ). Estimated on- and off-rates for the open-state block by mexiletine at +30 mV were 10.4 μ m −1 s−1 and 54.4 s−1, respectively. Use-dependent block by mexiletine was greater in inactivation-deficient mutant channels than in wild-type channels during repetitive pulses. Furthermore, the IC50 values for the block of persistent late hNav1.4 currents in chloramine-T-pretreated cells by mexiletine was 7.5 ± 0.8 μ m ( n = 5) at +30 mV. Our results together support the hypothesis that the in vivo efficacy of mexiletine is primarily due to the open-channel block of persistent late Na+ currents, which may arise during various pathological conditions.  相似文献   

16.
Interstitial cells of Cajal (ICC) provide pacemaker activity in some smooth muscles. The nature of the pacemaker conductance is unclear, but studies suggest that pacemaker activity is due to a voltage-independent, Ca2+-regulated, non-selective cation conductance. We investigated Ca2+-regulated conductances in murine intestinal ICC and found that reducing cytoplasmic Ca2+ activates whole-cell inward currents and single-channel currents. Both the whole-cell currents and single-channel currents reversed at 0 mV when the equilibrium potentials of all ions present were far from 0 mV. Recordings from on-cell patches revealed oscillations in unitary currents at the frequency of pacemaker currents in ICC. Voltage-clamping cells to −60 mV did not change the oscillatory activity of channels in on-cell patches. Depolarizing cells with high external K+ caused loss of resolvable single-channel currents, but the oscillatory single-channel currents were restored when the patches were stepped to negative potentials. Unitary currents were also resolved in excised patches. The single-channel conductance was 13 pS, and currents reversed at 0 mV. The channels responsible were strongly activated by 10−7 m Ca2+, and 10−6 m Ca2+ reduced activity. The 13 pS channels were strongly activated by the calmodulin inhibitors calmidazolium and W-7 in on-cell and excised patches. Calmidazolium and W-7 also activated a persistent inward current under whole-cell conditions. Murine ICC express Ca2+-inhibited, non-selective cation channels that are periodically activated at the same frequency as pacemaker currents. This conductance may contribute to the pacemaker current and generation of electrical slow waves in GI muscles.  相似文献   

17.
The acid-sensitive K+ channel, TASK1 is a member of the K+-selective tandem-pore domain (K2P) channel family. Like many of the K2P channels, TASK1 is relatively insensitive to conventional channel blockers such as Ba2+. In this paper we report the impact of mutating the pore-neighbouring histidine residues, which are involved in pH sensing, on the sensitivity to blockade by Ba2+ and Cs+; additionally we compare the selectivity of these channels to extracellular K+, Na+ and Rb+. H98D and H98N mutants showed reduced selectivity for K+ over both Na+ and Rb+, and significant permeation of Rb+. This enhanced permeability must reflect changes in the structure or flexibility of the selectivity filter. Blockade by Ba2+ and Cs+ was voltage-dependent, indicating that both ions block within the pore. In 100 m m K+, the K D at 0 mV for Ba2+ was 36 ± 10 m m  ( n = 6)  , whilst for Cs+ it was 20 ± 6.0 m m  ( n = 5)  . H98D was more sensitive to Ba2+ than the wild-type (WT); in addition, the site at which Ba2+ appears to bind was altered (WT: δ, 0.64 ± 0.16, n = 6; H98D: δ, 0.16 ± 0.03, n = 5, statistically different from WT; H98N: δ, 0.58 ± 0.09, not statistically different from WT). Thus, the pore-neighbouring residue H98 contributes not only to the pH sensitivity of TASK1, but also to the structure of the conduction pathway.  相似文献   

18.
The relative contributions of voltage- and Ca2+-dependent mechanisms of inactivation to the decay of L-type Ca2+ channel currents ( I CaL) is an old story to which recent results have given an unexpected twist. In cardiac myocytes voltage-dependent inactivation (VDI) was thought to be slow and Ca2+-dependent inactivation (CDI) resulting from Ca2+ influx and Ca2+-induced Ca2+-release (CICR) from the sarcoplasmic reticulum provided an automatic negative feedback mechanism to limit Ca2+ entry and the contribution of I CaL to the cardiac action potential. Physiological modulation of I CaL by β-adrenergic and muscarinic agonists then involved essentially more or less of the same by enhancing or reducing Ca2+ channel activity, Ca2+ influx, sarcoplasmic reticulum load and thus CDI. Recent results on the other hand place VDI at the centre of the regulation of I CaL. Under basal conditions it has been found that depolarization increases the probability that an ion channel will show rapid VDI. This is prevented by β-adrenergic stimulation. Evidence also suggests that a channel which shows rapid VDI inactivates before CDI can become effective. Therefore the contributions of VDI and CDI to the decay of I CaL are determined by the turning on, by depolarization, and the turning off, by phosphorylation, of the mechanism of rapid VDI. The physiological implications of these ideas are that under basal conditions the contribution of I CaL to the action potential will be determined largely by voltage and by Ca2+ following β-adrenergic stimulation.  相似文献   

19.
Retinal bipolar cells convey light-evoked potentials from photoreceptors to ganglion cells and mediate the initial stages of visual signal processing. They do not fire Na+-dependent action potentials (APs) but the Mb1 class of goldfish bipolar cell exhibits Ca2+-dependent APs and regenerative potentials that originate in the axon terminal. I have examined the properties of Ca2+-dependent APs in isolated bipolar-cell terminals in goldfish retinal slices. All recorded terminals fired spontaneous or evoked APs at frequencies of up to 15 Hz. When an AP waveform was used as a voltage stimulus, exocytosis was evoked by single APs, maintained throughout AP trains and modulated by AP frequency. Furthermore, feedback inhibition of the Ca2+ current ( I Ca) by released vesicular protons reduced depression of exocytosis during AP trains. In the absence of K+ current inhibition, step depolarizations and AP waveforms evoked a rapidly activated outward current that was dependent on Ca2+ influx ( I K(Ca)). I therefore investigated whether proton-mediated feedback inhibition of I Ca affected the activation of I K(Ca). A transient inhibition of I K(Ca) was observed that was dependent on exocytosis, blocked by high-pH extracellular buffer, of similar magnitude to inhibition of I Ca but occurred with a delay of 2.7 ms. In addition, the amplitude of APs evoked under current clamp was inhibited by the action of vesicular protons released by the APs. Protons released via exocytosis may therefore be a significant modulator of Ca2+-dependent currents and regenerative potentials in bipolar-cell terminals.  相似文献   

20.
Ion channels from bovine neurohypophysial secretory granules (NSG) were incorporated into artificial lipid bilayers. Specific antibodies against identified synaptic vesicle proteins were tested on such incorporated channel activity and on peptide release from rat permeabilized neurohypophysial terminals. Both the NSG cation channel and Ca2+-dependent release were inhibited by only SY-38, a monoclonal antibody directed against the C-terminus of synaptophysin. SY-38 and Ca2+ altered both the gating and conductance of the NSG cation channel, but in opposite ways. The close correlation between SY-38 effects on Ca2+-dependent channel activity and release leads us to conclude that this synaptophysin-like NSG channel is directly involved in peptide secretion from these central nervous system terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号