首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present in vivo microdialysis study evaluates the possible existence of a differential regulation of serotonergic transmission by the antinarcoleptic drug modafinil [(diphenyl-methyl)-sulfinyl-2-acetamide; Modiodal] among various brain regions of the awake rat. The results show that, in the cerebral cortex, the central amygdala, and the dorsal raphe nucleus, modafinil in the dose range of 10-100 mg/kg i.p. dose-dependently increases dialysate serotonin (5-HT) levels. In other brain areas, such as the medial preoptic area and the posterior hypothalamus, the modafinil-induced increase in dialysate 5-HT levels is observed only at tenfold higher doses (100 mg/kg), 10-30 mg/kg being ineffective. Together these data suggest that, in the frontal cortex, the amygdala, and the dorsal raphe, modafinil is more potent in enhancing extracellular 5-HT levels and presumably 5-HT transmission than in the medial preoptic area and the posterior hypothalamus. In view of the role of ascending 5-HT pathways in arousal and depression, it seems likely that the antinarcoleptic drug modafinil may also have an antidepressant potential in addition to its wakefulness-promoting action, both actions involving enhancement of 5-HT neurotransmission.  相似文献   

2.
We examined the relationship between the density of serotonergic (5-hydroxytryptamine [5-HT]) uptake sites and extracellular 5-HT concentration in the rat brain using microdialysis with two different models, lesions with 5,7-dihydroxytryptamine (50 μg in the dorsal raphe nucleus (DRN) 15 days before) and sublines of rats genetically selected displaying extreme values of platelet 5-HT uptake. Compared to controls, lesioned rats had a reduced cortical concentration of 5-hydroxyindoles (45%), unchanged basal extracellular 5-HT in the DRN and ventral hippocampus (VHPC), and reduced basal 5-hydroxyindoleacetic acid (5-HIAA) concentrations (46%, DRN; 22%, VHPC). Yet the perfusion of 100 mmol/L KCl or 1 μmol/L citalopram elevated dialysate 5-HT significantly more in the DRN and VHPC of controls. In genetically selected rats, platelet 5-HT content and uptake were highly correlated (r2 = 0.9145). Baseline dialysate 5-HT (VHPC) was not different between high and low 5-HT rats and from normal Wistar rats. However, KCl or citalopram perfusion increased dialysate 5-HT significantly more in high 5-HT than in low 5-HT rats, and the former displayed a greater in vivo tissue 5-HT recovery. Significant but small differences in the same direction were noted in [3H]citalopram binding in several brain areas, as measured autoradiographically. Thus, basal extracellular 5-HT (but not 5-HIAA) concentrations are largely independent on the density of serotonergic innervation and associated changes in uptake sites. However, marked differences emerge during axonal depolarization or reuptake blockade. The significance of these findings for the treatment of mood disorders in patients with neurological disorders is discussed. Synapse 28:313–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Aims: In order to elucidate the relevance between the delayed onset of clinical efficacy of selective serotonin re‐uptake inhibitors (SSRI) and extracellular 5‐HT levels in the medial prefrontal cortex, the present study compared the ability of low‐dose (3 mg/kg) and high‐dose (30 mg/kg) citalopram to increase extracellular 5‐HT levels in the medial prefrontal cortex following repeated citalopram treatment using in vivo microdialysis. Methods: An SSRI, citalopram, was given 10 mg/kg, s.c. twice daily for 6 days and once on the seventh day in rats. On the eighth day, rats received a single injection of citalopram (3 or 30 mg/kg s.c.), and extracellular 5‐HT levels were assessed in the medial prefrontal cortex of rats using in vivo brain microdialysis. Results: There was no significant difference in basal extracellular 5‐HT levels between the repeated citalopram group and the repeated saline group. The low‐challenge dose of citalopram (3 mg/kg) produced significantly greater increases (170–200% at each time point) in the repeated citalopram group than in the repeated saline group (150%). The high‐challenge dose of citalopram (30 mg/kg), however, increased extracellular 5‐HT levels by 200–250% of basal levels in the repeated citalopram group, which was similar to the increases in the repeated saline group. Conclusions: Repeated SSRI treatment enhances the effect of low‐dose SSRI on extracellular 5‐HT levels but not that of high‐dose SSRI.  相似文献   

4.
It is still not clear whether the selective serotonin reuptake inhibitors frequently prescribed to depressed pregnant women improve the behavioural outcome in their children. The current study investigated whether administration of citalopram to pregnant rats could prevent anxiety and depressive‐like behaviour induced by gestational stress in their offspring, and restore the expression of serotonin 1A autoreceptors in GABAergic interneurons in the medial prefrontal cortex and dorsal raphe nuclei in males, and of corticotropin‐releasing factor type 2 receptors in GABAergic interneurons in the dorsal raphe nuclei in females. Activation of these receptors modulates serotonergic transmission to target areas and is reduced in a sex‐dependent manner by prenatal stress. Citalopram (10 mg/kg/day), administered orally from day 7 of gestation until 21 days postpartum, prevented the increase in anxiety in stressed mothers but did not reduce anxiety and depressive‐like behaviour in their offspring and even induced depressive‐like behaviour in the offspring of control mothers. Citalopram failed to restore the reduction in the expression of serotonin 1A autoreceptors in the prefrontal cortex of males and in corticotropin‐releasing factor type 2 receptors in the dorsal raphe nuclei of females induced by prenatal stress. Prenatal citalopram did not prevent the behavioural changes or reduction in serotonergic transmission to target areas induced by prenatal stress. It had adverse behavioural effects in the offspring of control rats, which, together with the lack of any change in prenatally‐stressed rats, may be due to inhibition of the foetal serotonin transporter thereby preventing normal development of the serotonin system.  相似文献   

5.
Several studies have shown that the α1-adrenoreceptor is involved in controlling extracellular serotonin levels. The administration of the α1-adrenoreceptor antagonist prazosin was shown to decrease extracellular serotonin levels in the hippocampus, the prefrontal cortex and the raphe nucleus, while the administration of the α1-adrenoreceptor agonist cirazoline was shown to increase serotonin levels. Furthermore, the elevation of serotonin levels induced by the selective serotonin reuptake inhibitor (SSRI) citalopram was attenuated by prazosin. Thus, α1-adrenoreceptor antagonists may affect SSRI-induced increases in extracellular serotonin levels and their antidepressive and anxiolytic effects. However, little is known about the influence of α1-adrenoreceptor antagonists on the behavioral pharmacological effects of SSRIs. The conditioned fear stress-induced freezing behavior is an animal model of anxiety and can detect the anxiolytic effect of SSRIs. To clarify whether an α1-adrenoreceptor antagonist affects the anxiolytic action of SSRIs, we examined the effects of the co-administration of the α1-adrenoreceptor antagonist prazosin and the SSRI citalopram using the contextual conditioned fear stress model. Low-dose prazosin (0.03 mg/kg) significantly attenuated the citalopram (3 mg/kg)-induced decrease in conditioned freezing. Moreover, high-dose (0.5 mg/kg), but not low-dose (0.03 mg/kg), prazosin significantly attenuated citalopram (10 mg/kg)-induced decreases in conditioned freezing. These drugs did not affect the spontaneous motor activity of the rats. Therefore, these results suggest that blocking the α1-adrenoreceptor decreases the anxiolytic effect of citalopram.  相似文献   

6.
Summary We studied changes in the concentrations of 5-hydroxytryptamine (5-HT), other indoleamines, and catecholamines in the cerebrospinal fluid (CSF) of freely-moving rats that had been administered citalopram, ±1-[3-(Dimethylamino)propyl)-1-(4-fluorophenyl)-1, 3-dihydro-5-isobenzofurancarbonitrile hydrobromide), a selective inhibitor of 5-HT uptake. In a microdialysis experiment, the intracerebral extracellular free 5-HT increased significantly, peaking 60 to 90 min after citalopram (30 mg/kg p.o.) was administerd. The 5-HT concentrations in CSF from the cisterna magna increased significantly, reaching a maximum 6 hours after a single dose of citalopram (30 mg/kg p.o.) was given. Six hours after this dose, the CSF 5-HT concentration in the cisterna magna was significantly increased, and the 5-hydroxyindoleacetic acid (5-HIAA) concentration was significantly decreased. There were non-significant changes in the other indoleamines (tryptophan, 5-hydroxytryptophan, and kynurenine) and in the catecholamines (dopamine, homovanillic acid, normetanephrine, and 3-methoxy-4-hydroxyphenethyleneglycol). The 5-HT/tryptophan ratio was correlated significantly with the kynurenine/tryptophan ratio before treatment with citalopram (r=0.81, p=0.051), indicative that there is coordination of the serotonin and kynurenine pathways in normal rats. In the animals posttreatment there was no such correlation, suggesting that the changes in 5-HT are independent of the kynurenine system at least within the 6 hours postreatment. These CSF results appear to reflect selective inhibition of 5-HT uptake in brain tissues by citalopram that is not associated with changes in catecholamines.  相似文献   

7.
Summary. Present pharmacotherapy of major depression is, in principle, based on enhancement of central monoaminergic neurotransmission. Clinical studies utilizing depletion experiments indicate that antidepressants which primarily enhance serotonergic or noradrenergic central activity, i.e. serotonin or nor-adrenaline reuptake inhibitors, largely work by two separate neuronal pathways. However, experimental studies have shown that noradrenaline may regulate serotonergic neurotransmission both at the serotonin cell body and nerve-terminal level. We therefore investigated the effects of the selective NRI reboxetine on serotonergic neuronal activity and extracellular levels of transmitter in the nerve-terminal area. In vivo electrophysiological experiments showed that low doses of reboxetine significantly enhance the firing rate of serotonergic neurons in the dorsal raphe nucleus of anaesthetized rats. Also, in the medial prefrontal cortex reboxetine (3mg/kg s.c.) enhanced, whereas citalopram (3mg/kg s.c.) reduced, extracellular concentrations of serotonin measured by means of microdialysis in awake rats, using a low dose of citalopram (0,5µM) in the perfusion solution. Local administration of reboxetine only induced an increase in cortical serotonin levels at very high concentrations (1000µM). Hence, NRIs may cause a secondary enhancement of central serotonergic activity by a mechanism separate from 5-HT reuptake inhibition; an effect that may contribute to their clinical antidepressant efficacy.  相似文献   

8.
To clarify the role of serotonin in cerebral ischemia, we examined the effects of selective serotonin reuptake inhibitors, citalopram and clomipramine, on ischemic neuronal damage in the gerbil. Pretreatment with citalopram (40 mg/kg i.p.) and clomipramine (20 mg/kg i.p.) protected against neuronal destruction of hippocampal CA1 pyramidal cells following 5 min of forebrain ischemia. Furthermore, microdialysis assays showed that a striking increase in extracellular excitatory amino acid levels during ischemia was significantly inhibited by pretreatment with citalopram and clomipramine. However, citalopram (40 mg/kg i.p.) did not alter the extracellular amino acid concentrations in normal gerbils. Thus, serotonin reuptake inhibitors have a protective effect against ischemic neuronal damage. Furthermore, the present result suggests that the protective effect is mediated through prevention of the accumulation of extracellular excitatory amino acids during and after ischemia.  相似文献   

9.
Recent evidence indicates that the superior colliculus (SC), in addition to its functions in sensory detection, also participates in controlling the generalized activation state of the forebrain, as measured by the electroencephalogram (EEG) or electrocorticogram (ECoG). The mechanisms by which the SC modulates forebrain activation are not well understood. By using in vivo microdialysis, we examined the role of serotonin release as a mechanism by which the SC can control neocortical activity in the urethane-anesthetized rat. Electrical 100 Hz stimulation of the SC increased frontal cortex serotonin output to 116, 118, and 140% of baseline levels for stimulation intensities of 0.5, 0.75, and 1.0 mA, respectively. Further, 75% of extracellularly recorded single (putative serotonergic) dorsal raphe neurons increased their discharge rate in response to 100 Hz stimulation of the SC. Stimulation of the SC also suppressed frontal cortex low frequency (1-6 Hz) synchronized ECoG activity, replacing it with high-frequency desynchronization. This activation response was resistant to cholinergic-muscarinic receptor antagonists (atropine, 50 mg/kg; scopolamine, 2 mg/kg), but was reduced or abolished by systemic treatment with the serotonergic receptor antagonists ketanserin (10 mg/kg) or methiothepin (5 mg/kg). These data suggest that efferents from the SC, possibly by an excitatory action on serotonergic dorsal raphe cells, produce an enhanced release of serotonin and ECoG activation in the neocortex. The stimulation of cortical serotonin output may constitute a mechanism by which the SC acts on the forebrain to increase cortical excitability in response to sensory stimuli processed by SC neurons.  相似文献   

10.
Mirtazapine displayed marked affinity for cloned, human alpha2A-adrenergic (AR) receptors at which it blocked noradrenaline (NA)-induced stimulation of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]-GTPgammaS) binding. Similarly, mirtazapine showed high affinity for cloned, human serotonin (5-HT)2C receptors at which it abolished 5-HT-induced phosphoinositide generation. Alpha2-AR antagonist properties were revealed in vivo by blockade of UK-14,304-induced antinociception, while antagonist actions at 5-HT2C receptors were demonstrated by blockade of Ro 60 0175-induced penile erections and discriminative stimulus properties. Mirtazapine showed negligible affinity for 5-HT reuptake sites, in contrast to the selective 5-HT reuptake inhibitor, citalopram. In freely moving rats, in the dorsal hippocampus, frontal cortex (FCX), nucleus accumbens and striatum, citalopram increased dialysate levels of 5-HT, but not dopamine (DA) and NA. On the contrary, mirtazapine markedly elevated dialysate levels of NA and, in FCX, DA, whereas 5-HT was not affected. Citalopram inhibited the firing rate of serotonergic neurons in dorsal raphe nucleus, but not of dopaminergic neurons in the ventral tegmental area, nor adrenergic neurons in the locus coeruleus. Mirtazapine, in contrast, enhanced the firing rate of dopaminergic and adrenergic, but not serotonergic, neurons. Following 2 weeks administration, the facilitatory influence of mirtazapine upon dialysate levels of DA and NA versus 5-HT in FCX was maintained, and the influence of citalopram upon FCX levels of 5-HT versus DA and NA was also unchanged. Moreover, citalopram still inhibited, and mirtazapine still failed to influence, dorsal raphe serotonergic neurons. In conclusion, in contrast to citalopram, mirtazapine reinforces frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission. These actions reflect antagonist properties at alpha2A-AR and 5-HT2C receptors.  相似文献   

11.
The effects of the putative antiepileptic drug GIZh-298 and the reference standard topiramate on the concentrations of monoamines and their metabolites in the frontal cortex, hypothalamus, nucleus accumbens, striatum, and hippocampus of Wistar rats was investigated using HPLC. It was shown that topiramate at a dose of 100 mg/kg induces an increase in dopamine concentration and a decrease in its metabolism rate in the frontal cortex, a decrease in the level of its metabolites in the dorsal striatum, and an increase in concentrations of dopamine and its metabolites in the hypothalamus 30 minutes after injection. GIZh-298 at a dose of 60 mg/kg caused an increase in the serotonin and dopamine concentration in the frontal cortex and a decrease in the dopamine metabolism rate in the dorsal striatum 30 minutes after injection, which may be considered as one of the components of the antiepileptic effect of this drug.  相似文献   

12.
A high density of opioid receptor-like 1 (ORL1) receptor (also referred to as NOP receptor) is found in limbic areas and in regions containing monoamines, which are implicated in emotional activity and physiopathology of depression and anxiety. We aimed at defining precisely the localization of ORL1 receptors in dorsal raphe nucleus, by means of a lesion strategy and autoradiographic studies. In control rats, [3H]nociceptin and nociceptin-stimulated [35S]GTPgammaS bindings were found to be correlated in several brain regions. We performed in rats a selective destruction of serotoninergic neurons by surgical stereotaxic injection of 5,7-dihydroxytryptamine (5,7-DHT) in dorsal raphe nucleus. This led to a marked decrease in serotonin contents in striata and frontal cortices (about -60%) and in autoradiographic [3H]citalopram binding in posterior regions. In dorsal raphe nucleus, [3H]nociceptin binding was decreased to the same extent as [3H]citalopram binding, whereas it was unchanged in the other regions studied. Nevertheless, in the dorsal raphe, nociceptin-stimulated [35S]GTPgammaS binding was decreased to a lesser extent than [3H]nociceptin binding in 5,7-DHT-lesioned rats. The ratio between nociceptin-stimulated [35S]GTPgammaS binding and [3H]nociceptin binding was significantly increased in 5,7-DHT-lesioned rats compared with controls in this region. These data demonstrate 1) that ORL1 receptors are located on serotoninergic neurons in the dorsal raphe nucleus and 2) that, after a lesion, the functionality of remaining ORL1 receptors appears to be up-regulated, which could correspond to a compensatory mechanism.  相似文献   

13.
The locomotor effects of acute amphetamine treatment (1 mg/kg, i.p.) were assessed in Long-Evans rats after 5,7-dihydroxytryptamine (5, 7-DHT) injections into the fimbria-fornix/cingular bundle (FiFx/CB; 4 microg/side), or the dorsal and median raphe (Raphe; 10 microg). In control rats, amphetamine induced a significant increase of home-cage activity for about 2 h. This effect was similar in Raphe rats, but was absent in FiFx/CB rats. The raphe lesions reduced serotonin concentrations by 50% in the dorsal hippocampus, 75% in the ventral hippocampus and 58% in the fronto-parietal cortex. After FiFx/CB lesions, the reduction amounted 50, 61 and only 25%, in each of these regions, respectively. In the fronto-partietal cortex, dopamine concentration was significantly decreased in Raphe (-27%) and FiFx/CB rats (-65%). The results suggest that a serotonergic denervation of the hippocampus by injections of 5,7-DHT into the FiFx/CB pathways hampers the stimulating effects of amphetamine on locomotor activity. This effect might be related to the reduced dopaminergic tone in the fronto-parietal cortex.  相似文献   

14.
[3H]CUMI-101 is a 5-HT(1A) partial agonist, which has been evaluated for use as a positron emission tracer in baboon and humans. We sought to evaluate the properties of [3H]CUMI-101 ex vivo in awake rats and determine if [3H]CUMI-101 can measure changes in synaptic levels of serotonin after different challenge paradigms. [3H]CUMI-101 shows good uptake and good specific binding ratio (SBR) in frontal cortex 5.18 and in hippocampus 3.18. Binding was inhibited in a one-binding-site fashion by WAY100635 and unlabeled CUMI-101. The ex vivo B(max) of [3H]CUMI-101 in frontal cortex (98.7 fmol/mg) and hippocampus (131 fmol/kg) agree with the ex vivo B(max) of [3H]MPPF in frontal cortex (147.1 fmol/mg) and hippocampus (72.1 fmol/mg) and with in vitro values reported with 8-OH-DPAT. Challenges with citalopram, a selective serotonin reuptake inhibitor, fenfluramine, a serotonin releaser, and 4-chloro-DL-phenylalanine, a serotonin synthesis inhibitor, did not show any effect on the standardized uptake values (SUVs) in any region. Citalopram did alter SBR, but this was due to changes in cerebellar SUVs. Our results indicate that [3H]CUMI-101 is a good radioligand for imaging 5-HT(1A) high-density regions in rats; however, the results from pharmacological challenges remain inconclusive.  相似文献   

15.
The regional concentrations of dopamine, serotonin, dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole acetic acid were measured in mouse brain following administration of the dihydropyridine calcium channel activator BAY K 8644, and antagonist, nifedipine. BAY K 8644 (1-8 mg/kg) produced dose- and time-dependent increases in dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid concentrations in the caudate, without altering dopamine and serotonin levels. No changes in 5-hydroxyindoleacetic acid concentration were observed in the raphe nuclei, hypothalamus, hippocampus and frontal cortex. Nifedipine (4 mg/kg) blocked BAY K 8644- (2 mg/kg) elicited increases in dihydroxyphenylacetic acid in the caudate. Furthermore, a higher dose of nifedipine (8 mg/kg) decreased dihydroxyphenylacetic acid and homovanillic acid, but did not affect dopamine, serotonin or 5-hydroxyindoleacetic acid concentrations, while a lower dose of nifedipine (2 mg/kg) significantly increased serotonin, 5-hydroxyindoleacetic acid and homovanillic acid, but did not affect dopamine and dihydroxyphenylacetic acid concentrations. The findings that both BAY K 8644 and nifedipine affect neurotransmitter metabolism in vivo in a dose-, time- and brain region-dependent manner, suggest that high-affinity dihydropyridine calcium channel binding sites play an important role in regulating neurotransmitter turnover in the central nervous system.  相似文献   

16.
The dorsal and median raphe 5-HT neurons give rise to projections that differ in axon morphology and in vulnerability to certain amphetamine derivatives. The present study was undertaken to determine if these two 5-HT systems possess different functional properties. To this end, we studied the effects of selective 5-HT1A or 5-HT1A/5-HT1B receptor agonists and of p-chloroamphetamine on extracellular levels of indoleamines, as measured by differential pulse voltammetry with extracellular levels of indoleamines, as measured by differential pulse voltammetry with electrochemically pretreated carbon fiber electrodes, in cell body and nerve terminal regions of these subsets of 5-HT neurons in the rat brain. The selective 5-HT1A agonist 8-OH-DPAT produced a gradual decrease in the height of the 300 mV oxidation peak in the dorsal raphe and in the frontal cortex, reaching a maximum of 60% 3 h after the i.v. injection of 30 micrograms/kg. However, the same dose of 8-OH-DPAT was ineffective in the median raphe and in the dentate gyrus that receives its 5-HT innervation exclusively from the median raphe. A higher dose of 8-OH-DPAT (150 micrograms/kg, i.v.) produced a 60% decrease in the height of the 300 mV oxidation peak in the median raphe, whereas only a 20% decrease was obtained in the dentate gyrus. In contrast, the non-selective 5-HT1 agonist RU 24,969 (10 mg/kg, i.p.) caused a 70% reduction of the 300 mV peak height in both the dorsal and median raphe and a 50% decrease in both the frontal cortex and the dentate gyrus. Moreover, although a high dose of 8-OH-DPAT (150 micrograms/kg, i.v.) given alone reduced by 20% the amplitude of the oxidative peak in the dentate gyrus, subsequent administration of RU 24,969 (10 mg/kg, i.p.) caused a further 30% diminution of the oxidative peak height. The greater responsiveness of dorsal as compared to median raphe 5-HT systems to 5-HT1A receptor agonists was confirmed in two further series of experiments. First, the microiontophoretic application of 8-OH-DPAT directly onto 5-HT neurons was three times more potent in suppressing the firing rate of dorsal raphe 5-HT neurons than that of their median raphe congeners. Second, 8-OH-DPAT and buspirone were ten and four times, respectively, more potent in decreasing 5-HT synthesis in the frontal cortex than in the hippocampus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Interactions between central corticotropin-releasing factor (CRF) and serotonergic systems are believed to be important for mediating fear and anxiety behaviors. Recently we demonstrated that infusions of CRF into the rat dorsal raphe nucleus result in a delayed increase in serotonin release within the medial prefrontal cortex that coincided with a reduction in fear behavior. The current studies were designed to study the CRF receptor mechanisms and pathways involved in this serotonergic response. Infusions of CRF (0.5 μg/0.5 μL) were made into the dorsal raphe nucleus of urethane-anesthetized rats following either inactivation of the median raphe nucleus by muscimol (25 ng/0.25 μL) or antagonism of CRF receptor type 1 or CRF receptor type 2 in the dorsal raphe nucleus with antalarmin (25–50 ng/0.5 μL) or antisauvagine-30 (2 μg/0.5 μL), respectively. Medial prefrontal cortex serotonin levels were measured using in-vivo microdialysis and high-performance liquid chromatography with electrochemical detection. Increased medial prefrontal cortex serotonin release elicited by CRF infusion into the dorsal raphe nucleus was abolished by inactivation of the median raphe nucleus. Furthermore, antagonism of CRF receptor type 2 but not CRF receptor type 1 in the dorsal raphe nucleus abolished CRF-induced increases in medial prefrontal cortex serotonin. Follow-up studies involved electrical stimulation of the central nucleus of the amygdala, a source of CRF afferents to the dorsal raphe nucleus. Activation of the central nucleus increased medial prefrontal cortex serotonin release. This response was blocked by CRF receptor type 2 antagonism in the dorsal raphe. Overall, these results highlight complex CRF modulation of medial prefrontal cortex serotonergic activity at the level of the raphe nuclei.  相似文献   

18.
Serotonin (5-hydroxytryptamine, 5-HT) autoreceptors may desensitize during prolonged administration of antidepressant drugs. If autoreceptors desensitize, their inhibitory influence on extracellular 5-HT should be attenuated. To test this hypothesis, the selective serotonin reuptake inhibitor (SSRI) citalopram (10 mg kg(-1), s.c., b.i.d.) or saline was administered for 14 days to rats. After a 24-h washout period, rats were anesthetized, and implanted with dialysis probes for determination of 5-HT in the frontal cortex (FCx) and dorsal hippocampus (DH). In response to citalopram (5 mg kg(-1), s.c.) challenge, there were moderate increases in 5-HT in the FCx and DH of both the chronic citalopram and saline pretreatment groups. After subsequent administration of the 5-HT(1A/1B) autoreceptor antagonist, (-)-penbutolol, there were further increases in 5-HT in the FCx and DH of the saline pretreatment group. Moreover, contrary to the expected effect if autoreceptors were desensitized, the potentiation produced by (-)-penbutolol was greater in the FCx and DH of the chronic citalopram group as compared to rats pretreated with saline. These results suggest that autoreceptors still restrain the increase in 5-HT produced by an SSRI after prolonged administration.  相似文献   

19.
Genetic deficiency of monoamine oxidase-A (MAO-A) induces major alterations of mood and behaviour in human. Because serotonin (5-HT) is involved in mood regulation, and MAO-A is responsible for the catabolism of 5-HT, we investigated 5-HT mechanisms in knock-out mice (2-month-old) lacking MAO-A, using microdialysis, electrophysiological, autoradiographic and molecular biology approaches. Compared to paired wild-type mice, basal extracellular 5-HT levels were increased in ventral hippocampus (+202%), frontal cortex (+96%) and dorsal raphe nucleus (DRN, +147%) of MAO-A mutant mice. Conversely, spontaneous firing rate of 5-HT neurons in the DRN (recorded under chloral hydrate anaesthesia) was approximately 40% lower in mutants. Acute 5-HT reuptake blockade by citalopram (0.2 and 0.8 mg/kg i.v.) produced a much larger increase in extracellular 5-HT levels (by approximately 4 fold) and decrease in DRN neuronal firing (with a approximately 4.5 fold decrease in the drug's ED50) in MAO-A knock-out mice, which expressed lower levels of the 5-HT transporter throughout the brain (-13 to -34% compared to wild-type levels). The potency of the 5-HT1A agonist 8-OH-DPAT to produce hypothermia and to reduce the firing of DRN serotoninergic neurons was significantly less in the mutants, indicating a desensitization of 5-HT1A autoreceptors. This was associated with a decreased autoradiographic labelling of these receptors (-27%) in the DRN. Altogether, these data indicate that, in MAO-A knock-out mice, the enhancement of extracellular 5-HT levels induces a down-regulation of the 5-HT transporter, and a desensitization of 5-HT1A autoreceptors which allows the maintenance of tonic activity of 5-HT neurons in the DRN.  相似文献   

20.
The effects of injecting testosterone propionate or estradiol benzoate to newborn rats on dopaminergic and serotoninergic activity in the frontal cortex, dorsal and median raphe nucleus were analyzed when animals reached adulthood. High performance liquid chromatography was used to measure tissue levels of dopamine, serotonin and its metabolites. Activity was calculated as the metabolite/neurotransmitter ratio. An increase in androgen or estrogen levels at birth caused a significant decrease in serotoninergic activity in the frontal cortex and in the dorsal raphe nucleus, without causing apparent changes in dopaminergic activity; serotinergic activity in the median raphe nucleus was not affected. The results suggest that the transmission of DA and 5-HT in these structures are differentially influenced by early androgenization or estrogenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号