首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Th2 lymphocyte responses are associated with inflammation and disease during allergic responses. Exposure to particular environmental factors during the expression of allergy could result in more pronounced Th2-like immune responses and more severe disease. One factor might be a respiratory virus infection. OBJECTIVE: The aim of our study was to investigate the influence of respiratory syncytial virus (RSV) infection on the expression of ovalbumin (OVA)-induced allergy in BALB/c mice. METHODS: We determined OVA-specific IgE in serum, cytokine profiles and histopathological lesions in lungs of OVA-allergic mice after RSV infection. RESULTS: OVA sensitization and challenge induced OVA-specific IgE in serum, Th2 cytokine mRNA expression, and mononuclear and eosinophilic inflammation in the lungs. RSV inoculation during the challenge period enhanced OVA-induced IL-4 and IL-5 mRNA expression in lung tissue. RSV further enhanced the OVA-induced hypertrophy of mucous cells and eosinophilic infiltration in lung tissue. Surprisingly, RSV infection decreased Th2 cytokine secretion and eosinophilic influx in bronchoalveolar lavage of OVA-allergic mice. Because inactivated RSV did not influence these responses, replication of RSV appeared essential for the modification of OVA-induced Th2 cytokine expression. RSV did not change OVA-specific IgE levels in serum. Furthermore, the RSV-induced IL-12 mRNA expression in lung tissue of OVA-allergic mice was diminished, but IFN-gamma mRNA expression was not affected. CONCLUSION: RSV infection enhanced particular OVA-induced Th2 cytokine mRNA responses and pulmonary lesions in allergic mice and thus aggravated allergic respiratory disease.  相似文献   

2.
BACKGROUND: Respiratory viral infections in early childhood may interact with the immune system and modify allergen sensitization and/or allergic manifestations. In mice, respiratory syncytial virus (RSV) infection during allergic provocation aggravates the allergic T helper (Th) 2 immune response, characterized by the production of IL-4, IL-5, and IL-13, and inflammatory infiltrates. However, it is unclear whether the RSV-enhanced respiratory allergic response is a result of non-specific virus-induced damage of the lung, or virus-specific immune responses. OBJECTIVE: In the present study we investigated whether RSV, pneumonia virus of mice (PVM) and influenza A virus similarly affect the allergic response. METHODS: BALB/c mice were sensitized and challenged with ovalbumin (OVA), and inoculated with virus during the challenge period. Pulmonary inflammation, lung cytokine mRNA responses, and IgE production in serum were assessed after the last OVA-challenge. RESULTS: Like RSV, PVM enhanced the OVA-induced pulmonary IL-4, IL-5, and IL-13 mRNA expression, which was associated with enhanced perivascular inflammation. In addition, PVM increased the influx of eosinophils in lung tissue. In contrast, influenza virus decreased the Th2 cytokine mRNA expression in the lungs. However, like PVM, influenza virus enhanced the pulmonary eosinophilic infiltration in OVA-allergic mice. CONCLUSION: The Paramyxoviruses RSV and PVM both are able to enhance the allergic Th2 cytokine response and perivascular inflammation in BALB/c mice, while the Orthomyxovirus influenza A is not.  相似文献   

3.
To clarify the essential role of NKT cells in allergy, we investigated the contribution of NKT cells to the pathogenesis of eosinophilic airway inflammation using alpha-galactosylceramide (alpha-GalCer), a selective ligand for NKT cells. Although continuous administration of alpha-GalCer during ovalbumin (OVA) sensitization increased OVA-specific IgE levels and worsened eosinophil inflammation, a single administration of alpha-GalCer at the time of OVA challenge completely prevented eosinophilic infiltration in wild-type mice. This inhibitory effect of alpha-GalCer was associated with a decrease in airway hyperresponsiveness, an increase in IFN-gamma, and decreases in IL-4, IL-5 and IL-13 levels in the bronchoalveolar lavage fluids. Analysis of lung lymphocytes revealed that production of IFN-gamma increased in NK cells, but not in T or NKT cells, following alpha-GalCer administration. Induction of vascular cell adhesion molecule-1 in the lungs of wild-type mice was also significantly attenuated by treatment with alpha-GalCer. These effects of alpha-GalCer were abrogated in J alpha281-/- mice, which lack NKT cells, and in wild-type mice treated with anti-IFN-gamma Ab. Hence, our data indicate that alpha-GalCer suppresses allergen-induced eosinophilic airway inflammation, possibly by inducing a Th1 bias that results in inhibition of eosinophil adhesion to the lung vessels.  相似文献   

4.
Mice with homologous disruption of the gene coding for either the p35 subunit or the p40 subunit of interleukin-12 (IL-12) and derived from a strain genetically resistant to infection with Leishmania major have been used to study further the role of this cytokine in resistance to infection and the differentiation of functional CD4+ T cell subsets in vivo. Wild-type 129/Sv/Ev mice are resistant to infection with L. major showing only small lesions which resolve spontaneously within a few weeks and develop a type 1 CD4+ T cell response. In contrast, mice lacking bioactive IL-12 (IL-12p35?/? and IL-12p40?/?) developed large, progressing lesions. Whereas resistant mice were able to mount a delayed-type hypersensitivity (DTH) response to Leishmania antigen, susceptible BALB/c mice as well as IL-12-deficient 129/Sv/Ev mice did not show any DTH reaction. To characterize the functional phenotype of CD4+ T cells triggered in infected wild-type mice and IL-12-deficient mice, the expression of mRNA for interferon-γ (IFN-γ) and interleukin-4 (IL-4) in purified CD4+ lymph node cells was analyzed. Wild-type 129/Sv/Ev mice showed high levels of mRNA for IFN-γ and low levels of mRNA for IL-4 which is indicative of a Th1 response. In contrast, IL-12- deficient mice and susceptible BALB/c mice developed a strong Th2 response with high levels of IL-4 mRNA and low levels of IFN-γ mRNA in CD4+ T cells. Similarly, lymph node cells from infected wild-type 129 mice produced predominantly IFN-γ in response to stimulation with Leishmania antigen in vitro whereas lymph node cells from IL-12-deficient mice and susceptible BALB/c mice produced preferentially IL-4. Taken together, these results confirm in vivo the importance of IL-12 in induction of Th1 responses and protective immunity against L. major.  相似文献   

5.
Allergic conjunctivitis from an allergen-driven T helper type 2 (Th2) response is characterized by conjunctival eosinophilic infiltration. Association between signalling through Toll-like receptor 4 (TLR-4) and adaptive immune responses has been observed in allergic airway disease. We examined whether administration of bacterial lipopolysaccharide (LPS), a prototypic bacterial product that activates immune cells via TLR-4, could affect the development of allergic conjunctivitis and modify the immune response to ovalbumin (OVA) allergen in an experimental allergic conjunctivitis (EAC) model. Mice were challenged with two doses of OVA via conjunctival sac after systemic challenge with OVA in alum. Several indicators for allergy were evaluated in wild-type and TLR-4(-/-) mice with or without adding of different doses of LPS into OVA in alum. Mice challenged with OVA via conjunctival sac following systemic challenge with OVA in alum had severe allergic conjunctivitis. Of interest, LPS administration markedly suppressed immunoglobulin (Ig)E-mediated and eosinophil-dependent conjunctival inflammation. In addition, mice sensitized with OVA plus LPS had less interleukin (IL)-4, IL-5 and eotaxin secretion than mice sensitized with OVA only. The suppression of allergic response by LPS administration was due to Th1 shift. In contrast, the presence of LPS during sensitization with OVA had no effect on severity of allergic conjunctivitis and Th2 responses in TLR4-4(-/-) mice. Our findings demonstrate, for the first time, that LPS suppresses Th2 responses via the TLR-4-dependent pathway in the EAC model.  相似文献   

6.
Eosinophilic inflammation and bronchial mucus secretion are among the characteristic pathological changes in asthmatic reaction, which is mediated by Th2 type responses. Although it belongs to Th2 cytokines especially in the mouse, IL-10 is often considered an inhibitory cytokine for both Th1 and Th2 cells. In the present study, using a murine asthma model induced by ovalbumin (OVA), we demonstrated that endogenous IL-10 is critical for the development of asthma-like responses. Specifically, in comparison with wild-type controls, IL-10 gene knockout (KO) mice showed significantly reduced IL-5 production, eosinophilic inflammation and mucus production without notable changes in IL-4 and IgE responses following i. p. sensitization and subsequent intranasal challenge with OVA. In addition, Th1-related cytokine (IFN-gamma and IL-12) production in IL-10 KO mice was significantly higher than that in wild-type mice. The results suggest that endogenous IL-10 plays an important role in promoting pulmonary eosinophilic inflammatory reaction and mucus production during asthmatic reaction. The data also argue that IL-10 may be more influential in the development of IL-5-producing Th2 cells which differ from typical Th2 cells producing both IL-4 and IL-5.  相似文献   

7.
Respiratory syncytial virus (RSV) infection has been hypothesized to be a risk factor for the development of allergy and asthma, but epidemiologic studies in humans still remain inconclusive. The association between RSV infection and allergic diseases may be dependent on an atopic background and previous history of RSV infection. It has been reported that RSV infection before sensitization to an allergen decreased the production of Th2‐like cytokines in the lung and the levels of allergen‐specific Th2‐type antibodies in the serum. However, the underlying mechanisms are largely unknown. In the present study, the role of pulmonary γδ T cells in RSV‐affected, allergen‐induced airway inflammation was investigated. BALB/c mice were sensitized to or challenged with ovalbumin (OVA) and infected with RSV either before or after the sensitization period. It became clear that sensitization and challenge of mice with OVA induced a large influx of γδ T cells to the lungs. However, prior RSV infection inhibited the infiltration of γδ T cells as well as activated γδ T cells, characterized by expression of CD40L or CD69 molecular in the cell surface. Moreover, prior RSV infection elevated the type 1 cytokine gene expression but suppressed type 2 cytokine expression in the lung γδ T cells. Adoptive transfer of γδ T cells from OVA‐sensitized and challenged mice increased airway inflammation, suggesting that γδ T cells may play a proinflammatory role in allergic responses. These results described here support the idea of an unknown γδ T cell‐dependent mechanism in the regulation of RSV‐affected, allergen‐induced allergic airway responses. J. Med. Virol. 85:149–156, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
Lymphoid chemokines CCL19 and CCL21 are crucial for the recruitment of circulating naive T cells into lymph nodes. However, it is not completely known how they contribute to the development of allergic diseases. To determine whether the lack of CCL19 and CCL21 affects allergic airway inflammation, CCL19- and CCL21-deficient [paucity of lymph node T cells (plt/plt)] and wild-type (WT) mice were immunized intra-peritoneally and then challenged intra-nasally with chicken ovalbumin (OVA). Plt/plt mice developed more severe allergic airway inflammation characterized by increased eosinophils and lymphocytes in bronchoalveolar lavage (BAL) and profound inflammation in peribronchiolar and perivascular regions than did WT mice. CD4+ alpha4 integrin+ and CD4+ beta7 integrin+ T cells were significantly increased in the BAL of OVA-immunized and OVA-challenged (OVA/OVA) plt/plt mice compared with OVA/OVA WT mice. Moreover, there were higher levels of IL-4 and IL-13 mRNAs and lower levels of IL-2 and IFN-gamma mRNAs in inflamed lungs of OVA/OVA plt/plt mice compared with OVA/OVA WT mice. Plt/plt mice produced higher levels of total and OVA-specific IgE antibody. Thus, our results suggest that lack of lymphoid chemokines CCL19 and CCL21 enhances allergic airway inflammation by modulating the recruitment of CD4+ T cells into the lung, the balance between Th1 and Th2 cytokines and the IgE production.  相似文献   

9.
BACKGROUND: The role of bacterial enterotoxins like Staphylococcus aureus enterotoxin B (SEB) in allergic asthma remains unknown. We used a mouse model of airway allergy to study the effects of nasal or bronchial contact with SEB on bronchial allergic inflammation. METHODS: The features of allergic asthma were induced in ovalbumin (OVA)-sensitized mice (days 1-13) by repeated exposures to nebulized OVA (days 33-37). Nasal or bronchial application of SEB was performed on three occasions (days 33-35-37), and the effects on bronchial inflammation, IgE titres and expression levels of mRNA for T helper type 2 cytokines and other inflammatory mediators were evaluated. RESULTS: Both nasal and bronchial SEB enhanced the allergen-induced bronchial inflammation, as reflected by more eosinophilic inflammation in the airway lumen and in bronchial tissue. Aggravation of experimental asthma correlated with higher expression of mRNA for IL-5, IL-4, IFN-gamma, IL-12 p40, eotaxin-1 and TGF-beta in bronchi. In addition, nasal SEB elevated concentrations of IL-4, IL-5 and IFN-gamma in serum and bronchial SEB increased titres of OVA-specific and total IgE in serum. CONCLUSION: Our data illustrate the potential of both nasal as well as bronchial SEB to aggravate several features of allergic asthma in a mouse model.  相似文献   

10.
Severe respiratory syncytial virus (RSV)-induced disease is associated with childhood asthma and atopy. We combined murine models of allergen-sensitization and RSV infection to explore the interaction of allergic and virus-induced airway inflammation and its impact on airway hyperresponsiveness (AHR). We found that RSV infection during ova-sensitization (OVA/RSV) increased and prolonged AHR compared to mice only RSV-infected (RSV) or ova-sensitized (OVA). AHR is known to be associated with an increase in Type 2 cytokines (IL-4, IL-5, and IL-13) in allergen-sensitized mice. Therefore, we hypothesized that RSV-induced enhancement of AHR was a result of potentiating the Type 2 cytokine profile promoted by ova-sensitization. Surprisingly, we found that Type 2 cytokines induced by ova-sensitization were not increased by RSV infection despite the increase in AHR, and in some cases were diminished. RNAse protection assay revealed no difference in IL-4 and IL-5 mRNA levels between the OVA and OVA/RSV groups, and IL-13 mRNA was significantly decreased in the OVA/RSV mice compared to the OVA group. Flow cytometric analysis of Type 2 cytokines demonstrated the same frequency of IL-4 and IL-5 production in lung-derived T lymphocytes from the OVA/RSV and OVA groups. Direct cytokine ELISA measurements of lung supernatant showed the level of IL-13 was significantly decreased in the OVA/RSV group compared to OVA mice, while there was no difference in either IL-4 or IL-5 between these two groups. These data indicate that the enhanced and prolonged AHR caused by the interaction of allergic airway inflammation and virus-induced immune responses is a complex process that can not be explained simply by augmented production of Type 2 cytokines.  相似文献   

11.
12.
The aim of the present study was to determine whether or not the development of a helper T (Th) 1 response induced by Reovirus type-2 (Reo-2) infection would protect against the development of Th2-mediated late allergic asthma. This hypothesis was examined by infecting one day old neonatal DB A/1J mice with Reo-2 in an ovalbumin (OVA)-induced late asthma model. Compared with the controls (either infected or uninfected mice with or without OVA sensitization and/or OVA challenge), Reo-2 infection lessened the magnitude of the subsequent allergic Th2-mediated late asthma. In infected mice with allergic late asthma, there was decreased infiltration of interleukin (IL)-4(+), IL-5(+), IL-13(+) and very late antigen (VLA)-4(+) lymphocytes, and eotaxin-2(+) and VLA-4(+) eosinophils, in both bronchial and bronchiolar lesions. Also the expression of vascular cell adhesion molecule (VCAM)-1 and eotaxin-2 on vascular endothelial cells was reduced. Moreover, the systemic production of IL-4, IL-5, tumour necrosis factor-α and OVA-specific IgE was reduced, whereas systemic IFN-γ production was increased. In addition, there was no increase in IFN-α production. Thus the present study suggests that systemic Reo-2 infection at birth may reduce the development of subsequent late allergic asthma by the induction of a Th1 response. Therefore the potential suppressive mechanism(s) that might be induced by Reo-2 infection in newborn mice and their effects on the development of late allergic asthma are discussed.  相似文献   

13.
It has been postulated that low-level interleukin (IL)-12 production of antigen-presenting cells is associated with the risk of developing atopic asthma. To study the relationship between IL-12 production capacity of dendritic cells (DCs) and development of T helper type 2 (Th2) responses in the lung, we genetically engineered DCs to constutively overexpress bioactive IL-12. Retrovirally mediated overexpression of IL-12 in DCs strongly polarized naive ovalbumin (OVA)-specific CD4+ T cells toward Th1 effector cells in vitro. After intratracheal injection, OVA-pulsed IL-12-overexpressing DCs failed to induce Th2 responses in vivo and no longer primed mice for Th2-dependent eosinophilic airway inflammation upon OVA aerosol challenge, readily observed in mice immunized with sham-transfected, OVA-pulsed DCs. Analysis of a panel of cytokines and chemokines in the lung demonstrated that the lack of Th2 sensitization was accompanied by increased production of the Th1 cytokine interferon-gamma (IFN-gamma), chemokines induced by IFN-gamma, and the immunoregulatory cytokine IL-10. When Th2 priming was induced using OVA/alum prior to intratracheal DC administration, DCs constitutively expressing IL-12 were no longer capable of preventing eosinophilic airway inflammation and even enhanced it. These data show directly that high-level expression of IL-12 in DCs prevents the development of Th2 sensitization. Enhancing IL-12 production in DCs should be seen as a primary prevention strategy for atopic disorders. Enhancing IL-12 production in DCs is less likely to be of benefit in already Th2-sensitized individuals.  相似文献   

14.
Short palate, lung and nasal epithelium clone 1 (SPLUNC1) is enriched in normal airway lining fluid, but is significantly reduced in airway epithelium exposed to a Th2 cytokine milieu. The role of SPLUNC1 in modulating airway allergic inflammation (e.g., eosinophils) remains unknown. We used SPLUNC1 knockout (KO) and littermate wild-type (C57BL/6 background) mice and recombinant SPLUNC1 protein to determine the impact of SPLUNC1 on airway allergic/eosinophilic inflammation, and to investigate the underlying mechanisms. An acute ovalbumin (OVA) sensitization and challenge protocol was used to induce murine airway allergic inflammation (e.g., eosinophils, eotaxin-2, and Th2 cytokines). Our results showed that SPLUNC1 in the bronchoalveolar lavage fluid of OVA-challenged wild-type mice was significantly reduced (P < 0.05), which was negatively correlated with levels of lung eosinophilic inflammation. Moreover, SPLUNC1 KO mice demonstrated significantly higher numbers of eosinophils in the lung after OVA challenges than did wild-type mice. Alveolar macrophages isolated from OVA-challenged SPLUNC1 KO versus wild-type mice had higher concentrations of baseline eotaxin-2 that was amplified by LPS (a known risk factor for exacerbating asthma). Human recombinant SPLUNC1 protein was applied to alveolar macrophages to study the regulation of eotaxin-2 in the context of Th2 cytokine and LPS stimulation. Recombinant SPLUNC1 protein attenuated LPS-induced eotaxin-2 production in Th2 cytokine-pretreated murine macrophages. These findings demonstrate that SPLUNC1 inhibits airway eosinophilic inflammation in allergic mice, in part by reducing eotaxin-2 production in alveolar macrophages.  相似文献   

15.
BACKGROUND: Recent epidemiological studies have suggested that exposure to certain viruses and bacteria influences the development of allergy and allergic diseases, such as asthma. However, there is a paucity of experimental evidence examining the consequences of concurrent exposure to allergen and infectious agents, and the potential mechanisms by which allergic disease might be averted as a result. OBJECTIVE: To model this situation experimentally, we investigated whether a virally induced immune response, elicited by a replication-deficient human type 5 adenovirus (RDA) administered at a site distant from the airways, could inhibit ovalbumin (OVA)-induced airways eosinophilic inflammation. METHODS: C57BL/6 mice were infected intramuscularly with RDA 16h prior to intraperitoneal OVA sensitization. Cellular and cytokine responses in the lung/airways were examined after an OVA aerosol challenge. RESULTS: RDA infection significantly inhibited the inflammatory response in the lung tissue after antigen challenge. In the bronchoalveolar lavage (BAL), total cell number, eosinophils and lymphocytes were decreased by 70, 85 and 65%, respectively, after antigen challenge in RDA-treated, compared with untreated, mice. RDA infection had no effect on IgE synthesis. The levels of IL-5, IL-4 and IFNgamma in the BAL after antigen challenge were significantly lower in RDA-treated mice. In vitro production of cytokines by splenocytes in response to OVA restimulation revealed a shift from IL-4 in sensitized, PBS-treated mice, to IFNgamma in sensitized mice treated with RDA. Flow cytometric analysis revealed that RDA infection increased the proportion of CD8 T cells in the BAL; this change in T-cell subsets was accompanied by an increase in both CD4 and CD8 T cells positive for intracellular IFNgamma. Inhibition of antigen-induced airways inflammation was IFNgamma-dependent but did not require IL-12, as RDA-treatment inhibited airways inflammation in IL-12 but not IFNgamma knock-out mice. CONCLUSION: This study demonstrates that an immune response against a replication-deficient adenovirus during the initial exposure to OVA inhibits the development of airways inflammation after antigen aerosol challenge.  相似文献   

16.
BACKGROUND: Different subsets of dendritic cells (DCs), identified in mouse spleen by their differential expression of CD8 alpha, can induce different T-helper (Th) responses after systemic administration. CD8 alpha(-) DCs have been shown to preferentially induce Th type 2 (Th2) responses whereas CD8 alpha(+) DCs induce Th1 responses. OBJECTIVE: To study if these DC subsets can still induce different Th responses in the Th2-prone milieu of the lung and differentially prime for eosinophilic airway inflammation, typical of asthma. METHODS: Donor mice first received daily Flt3L injections to expand DC numbers. Purified CD8 alpha(+) or CD8 alpha(-) splenic DCs were pulsed with ovalbumin (OVA) or phosphate-buffered saline and injected intratracheally into recipient mice in which carboxyfluorescein diacetate succinimidyl ester-labelled OVA-specific T cell receptor transgenic T cells had been injected intravenously 2 days earlier. T cell proliferation and cytokine production of Ag-specific T cells were evaluated in the mediastinal lymph nodes (MLNs) 4 days later. The capacity of both subsets of DCs, to prime for eosinophilic airway inflammation was determined by challenging the mice with OVA aerosol 10 days later. RESULTS: CD8 alpha(-) DCs migrated to the MLN and induced a vigorous proliferative T cell response accompanied by high-level production of IL-4, IL-5, IL-10 and also IFN-gamma during the primary response and during challenge with aerosol, leading to eosinophilic airway inflammation. In the absence of migration to the MLN, CD8 alpha(+) DCs still induced a proliferative response with identical levels of IFN-gamma but reduced Th2 cytokines compared with CD8 alpha(-) DCs, which led to weak eosinophilic airway inflammation upon OVA aerosol challenge. Unpulsed DCs did not induce proliferation or cytokine production in Ag-specific T cells. CONCLUSION: CD8 alpha(-) DCs are superior compared with CD8 alpha(+) DCs in inducing Th2 responses and eosinophilic airway inflammation in the Th2-prone environment of the lung.  相似文献   

17.
Recent studies have demonstrated that IL-13 mediates susceptibility to cutaneous L. major infection via IL-4-independent pathway. To determine whether IL-13 also plays a similar role in pathogenesis of cutaneous L. mexicana infection, we analyzed the course of L. mexicana infection in IL-13(-/-) and IL-4/IL-13(-/-) C57BL/6x129sv/Ev mice and compared with that in similarly infected wild-type mice. IL-13(-/-) mice were as susceptible as the wild-type mice to L. mexicana and developed rapidly progressing, large non-healing lesions following cutaneous L. mexicana infection. In contrast, similarly infected IL-4/IL-13(-/-) mice were highly resistant and developed either no lesions or small lesions containing few parasites that totally resolved by 12 weeks following infection. Throughout the course of infection IL-13(-/-) and the wild-type mice produced significantly more Th2-associated L. mexicana antigen (LmAg)-specific IgG1 than IL-4/IL-13(-/-) mice. All three groups produced comparable levels of Th1-associated IgG2a. At week 12 post infection, LmAg-stimulated spleen cells from L. mexicana-infected IL-4/IL-13(-/-) produced significantly higher levels of IL-12 and IFN-gamma as compared to those from similarly infected wild-type and IL-13(-/-) mice. Although both IL-13(-/-) and the wild-type spleen cells produced IL-4 following in vitro antigenic stimulation, the wild-type mice produced significantly more. These findings demonstrate that IL-13 is not involved in mediating susceptibility to L. mexicana. Moreover, they also indicate that IL-4 not IL-13 is a dominant cytokine involved in pathogenesis of cutaneous L. mexicana infection.  相似文献   

18.
RSV is an important cause of bronchiolitis in infants. Immunopathology may play a role in RSV-induced bronchiolitis and severe RSV-induced disease has been associated with a Th2 type immune response. The aim of the study was to identify cytokine pathways that are crucial in influencing RSV-induced disease. For that purpose we inoculated IFNgammaR-/-, IL-12-/-, IL-18-/-, or IL-4-/- mice with RSV. We observed that an RSV infection resulted in a predominant Th1 cytokine response associated with slight bronchiolitis and alveolitis. Pulmonary histopathology was only aggravated in IFN R-/- mice, characterised by eosinophilic influx around the bronchioles. Despite subtle changes in cytokine expression, no differences in histopathology were observed in IL-12-/- and IL-18-/- mice. Deficiency of IL-4 has no effect on RSV-induced Th1 cytokines and pulmonary histopathology. IFNgamma-receptor deficiency during primary RSV infection resulted in a disturbed Th1 response based on increased IL-4, IL-5, and IL-13 expression and the presence of eosinophils in the lungs. It is concluded that IFNgamma signalling is required for a pronounced Th1 response to RSV while IL-12 and IL-18 are not. A shift in the balance between Th1 and Th2 towards a Th2 response induced by missing IFNgamma signalling leads to aggravated pulmonary pathology. This is not caused by enhanced viral load.  相似文献   

19.
We investigated the effects of respiratory syncytial virus (RSV) infections on ovalbumin (OVA)-challenged mice via regulation of Th17/Treg cell responses. BALB/c mice were challenged with OVA, followed by RSV infections twice. In OVA-challenged mice, the secretion of Th2/Th17-type cytokines, airway hyperresponsiveness and inflammation were significantly inhibited by initial RSV infection. Moreover, the in vivo findings demonstrated that initial RSV infection reversed the imbalance of Th17/Treg responses. In contrast, RSV re-infection strengthened Th2/Th17-type cytokine secretion, airway hyperresponsiveness, and inflammation, especially for lymphocyte infiltration in OVA-challenged mice. Meanwhile, RSV re-infection enhanced the imbalanced Th17/Treg responses. Upon all results reveal that RSV-induced respiratory infections may lead to dual effects pertaining to allergic airway inflammation by regulation of Th17/Treg responses.  相似文献   

20.
BACKGROUND: We demonstrated that mekabu fucoidan obtained from Undaria pinnatifida (Up) sporophylls augments the type 1 T-helper (Th1) cell response in normal BALB/c mice. In this study, we examined the effects of the fucoidan of mekabu on the type 2 T-helper (Th2) response in bronchoalveolar lavage fluid (BALF) after ovalbumin (OVA) aerosol challenge. METHODS: Mekabu fucoidan (50 mg/kg) was injected intraperitoneally into BALB/c mice for 4 days, and then the mice were sensitized with 50 microg/mouse of OVA plus alum (1 mg/mouse) 1 and 8 days later. The mice were challenged with OVA delivered using a nebulizer 7, 8 and 9 days after the second challenge with OVA plus alum. After 24 h, we assessed T cell responses in BALF by measuring the amount of Th2 cytokines (IL-4, IL-5, IL-13) and gamma-interferon (IFN-gamma) produced by Th1 cells. RESULTS: The production of Th2 cytokines was suppressed (p < 0.05), and the amount of IFN-gamma was not increased in the mice treated with mekabu fucoidan. Anti-OVA immunoglobulin E (IgE) and IgE levels in serum determined after challenge with aerosolized OVA at the end of the experiment were lower (p < 0.05) in the treated than in the control mice. CONCLUSIONS: The pulmonary inflammation was relieved by mekabu fucoidan, which also downregulated Th2-dominated responses. These results indicate that mekabu fucoidan modulates Th2 responses and might be useful for treating allergic inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号