首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hyperprolactinemia is associated with incubation behavior and ovarian regression in birds. To investigate the association of prolactin (PRL), vasoactive intestinal peptide (VIP), and dopamine (DA) with the neuroendocrine regulation of incubation behavior, changes in the number of visible VIP-immunoreactive (VIP-ir) neurons in the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) and tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the nucleus intramedialis (nI) and nucleus mamillaris lateralis (ML) of incubating native Thai hens were compared with those of nest-deprived hens. TH was used as a marker for dopaminergic (DAergic) neurons. Blood samples were collected to determine PRL levels. The localization and the number of visible VIP-ir and TH-ir neurons were determined by immunohistochemistry. Disruption of incubation behavior was accompanied by a precipitous decline in plasma PRL levels. The number of visible VIP-ir neurons in the IH-IN and TH-ir neurons in the nI and ML were high during incubation and decreased when hens were deprived of their nests. This study indicated an association between VIP neurons in the IH-IN and DA neurons in the nI and ML with the degree of hyperprolactinemia, suggesting that the expression of incubation behavior in birds might be, in part, regulated by the DAergic input from the nI and ML to VIP neurons in the IH-IN and subsequent PRL release.  相似文献   

2.
Serotonin (5-HT) stimulation of prolactin (PRL) secretion is mediated through the dopaminergic (DAergic) system, with 5-HT ligands having no direct effect on pituitary PRL release. Infusion of 5-HT into the third ventricle (ICV) or electrical stimulation (ES) of the medial preoptic area (POM) or the ventromedial nucleus (VMN) induces an increase in circulating PRL in the turkey. These increases in PRL do not occur when a selective antagonist blocks the D1 dopamine (DA) receptors in the infundibular area (INF). In this study, the ICV infusion of (R)(−)-DOI hydrochloride (DOI), a selective 5-HT2A eceptor agonist, caused PRL to increase. Pretreatment with Ketanserin tartrate salt (KETAN), a selective 5-HT2A receptor antagonist, blocked DOI-induced PRL secretion, attesting to the specificity of the response. DOI-induced PRL secretion was prevented when the D1 DA receptors in the INF were blocked by the D1 DA receptor antagonist, R(+)-SCH-23390 hydrochloride microinjection, suggesting that the DAergic activation of the vasoactive intestinal peptide (VIP)/PRL system is mediated by a stimulatory 5-HT2A receptor subtype. The DOI-induced PRL increase did not occur when (±)-8-OH-DPAT (DPAT) was concurrently infused. DPAT is a 5-T1A receptor agonist which appears to mediate the inhibitory influence of 5-HT on PRL secretion. When DPAT was microinjected directly into the VMN, it blocked the PRL release affected by ES in the POM. These data suggested that when 5-HT2A receptors are activated, they influence the release of DA to the INF. When 5-HT1A receptors are stimulated, they somehow inhibit the PRL-releasing actions of 5-HT2A receptors. This inhibition could take place centrally, or it could occur postsynaptically at the pituitary level. It is known that D2 DA receptors in the pituitary antagonize PRL-releasing effect of VIP. A release of DA to the pituitary, initiated by 5-HT1A receptors, could effectively inhibit PRL secretion.  相似文献   

3.
Turkey prolactin (PRL) secretion is controlled by vasoactive intestinal peptide (VIP) neurons residing in the infundibular nuclear complex (INF) of the hypothalamus. The VIPergic activity is modulated by dopamine (DA) via stimulatory D(1) DA receptors. DA (10 nmol/min for 40 min) was infused into the third ventricle of laying turkey hens to study its effect on circulating PRL, hypothalamic VIP and pituitary PRL and LHbeta subunit mRNA levels. Plasma PRL was significantly elevated after 20 min of DA infusion and remained elevated 30 min after cessation of infusion. Hypothalamic VIP mRNA content was significantly greater in the INF of DA-infused birds than it was in the INF of vehicle-infused control birds. No increase in VIP mRNA due to DA infusion was noted in the preoptic area. Pituitary PRL and LHbeta subunit mRNAs were increased in DA-infused hens as compared to vehicle-infused controls but the rate of increase was more in PRL than LHbeta subunit. This study demonstrates that exogenous DA activates hypothalamic VIP gene expression and this increased expression is limited exclusively to the avian INF. The increased VIP mRNA in the INF is correlated with increased levels of circulating PRL and PRL and LHbeta mRNAs in the anterior pituitary.  相似文献   

4.
Native Thai chicken, an equatorial species breeds throughout the year, whereas turkeys are seasonal temperate zone breeder whose reproductive cycle is terminated by the onset of photorefractoriness. This study investigated VIPergic activity throughout a reproductive cycle in both species, hypothesizing that the differential expression of vasoactive intestinal peptide (VIP) would provide an insight into the differing reproductive strategies of the two species. Distribution of VIP neurons in the native Thai chicken and a comparison of VIPergic activity in the nucleus inferioris hypothalami (IH) and nucleus infundibuli hypothalami (IN) were investigated. VIP immunoreactivity was found throughout the native Thai chicken brain, predominantly located within the IH-IN. The pattern of VIP distribution in the native Thai chicken supports the findings reported in temperate zone species. Unlike the turkey, where there is a dissociation between VIPergic activity and prolactin levels during photorefractoriness, in the native Thai chicken, which do not express photorefractoriness, changes in VIP immunoreactive (VIP-ir) neurons within the IH-IN were directly correlated with prolactin throughout the reproductive cycle. VIPergic activity reached its lowest level after hatching of the chicks in the native Thai chicken, while in the turkey VIPergic activity was lowest only after exposure to a short day photoperiod and the acquisition of photosensitivity. This suggests that VIP neurons in the IH-IN may play a pivotal role in regulating the reproductive cycle and its differential expression following hatching of the young may, in part, account for the difference in reproductive mode between equatorial, continually breeding, non-photoperiodic birds and seasonally breeding, photoperiodic birds.  相似文献   

5.
Avian prolactin (PRL) secretion is regulated by vasoactive intestinal peptide (VIP) neurons residing in the infundibular nuclear complex (INF) of the hypothalamus. This VIPergic activity is modulated by stimulatory dopaminergic inputs. Dynorphin, serotonin (5-HT), dopamine (DA) and VIP all appear to stimulate PRL secretion along a hypothalamic pathway, expressing kappa opioid, serotonergic, dopaminergic and VIPergic receptors in succession, with the VIPergic system as the final mediator. Electrical stimulation (ES) within the turkey hypothalamus at the level of the medial preoptic area (POA), the ventromedial hypothalamic nucleus (VMN), the INF or the median eminence (ME) results in the release of PRL. When the selective D(1) DA receptor antagonist SCH-23390 HCl was infused intraventricularly at the rate of 10 nmol/min, ES in the POA or VMN was unable to increase PRL levels, while ES in the INF and ME did increase PRL to the same level as that of controls. These results were interpreted to suggest that the D(1) DA receptors involved in PRL release lie caudally to the VMN and dorsally to the INF. Bilateral microinjections (50 ng) of the D(1) DA receptor agonist SKF-38393 HCl into the POA or VMN failed to produce any increase in PRL, while similar microinjections in the INF increased PRL significantly within 15 min. Bilateral microinjections of the D(1) DA antagonist (50 ng) into the INF blocked the rise in PRL associated with ES in the POA. Bilateral microinjections of a D(2) DA antagonist (50 ng) into the INF failed to block PRL secretion induced by ES in the POA. Tract tracing, using double-label immunocytochemistry, revealed the presence of a monosynaptic dopaminergic pathway projecting from the POA to the INF. These data imply that the only hypothalamic D(1) DA receptors involved in the regulation of avian PRL secretion are those residing within the INF in the same region as the VIP neurons known to be involved in PRL secretion.  相似文献   

6.
The regulation of avian prolactin (PRL) secretion and PRL gene expression is influenced by hypothalamic vasoactive intestinal peptide (VIP), the PRL-releasing factor in avian species. Recent evidence indicates that D(1) and D(2) dopamine (DA) receptors play a pivotal role in VIP and PRL secretion. The differential expression of DA receptors located on hypothalamic VIP neurons and anterior pituitary cells may affect the degree of prolactinemia observed during the turkey reproductive cycle. The relative expression of D(1D) and D(2) DA receptor subtype mRNA was quantitated using in situ hybridization histochemistry (ISH). D(1D) and D(2) DA receptor mRNA was found expressed throughout the hypothalamus and pituitary. The expression of D(1D) DA receptor mRNA in the hypothalamus was found to be 6.8-fold greater than that of D(2) DA receptor mRNA. Higher D(1D) DA receptor mRNA content was found in the anterior hypothalamus (3.6-fold), the ventromedial nucleus (2.0-fold), the infundibular nuclear complex (INF; 1.9-fold), and the medial preoptic nucleus (1.5-fold) of laying hens as compared to that of reproductively quiescent non-photostimulated hens. The levels seen in incubating hyperprolactinemic hens were essentially the same as in laying hens, except for the INF where levels were 52% higher. During the photorefractory stage (hypoprolactinemia), the D(1D) DA receptor mRNA was at its lowest level in all areas tested. No differences were observed in hypothalamic D(2) DA receptor mRNA abundance throughout the reproductive cycle, except for an increase in D(2) DA receptor mRNA within the INF of photorefractory hens. Also, a marked reduction in D(2) DA receptor mRNA was observed in the pituitary of incubating hens. Pituitary D(1D) DA receptor levels did not change when birds entered the incubating phase. Double ISH revealed that D(1D) and D(2) DA receptor mRNAs were co-expressed within neurons expressing VIP mRNA, predominantly within the lateral hypothalamus and INF. D(1D) DA receptor mRNA was more highly expressed than D(2) DA receptor mRNA. The present findings clearly demonstrate that the expression of stimulatory D(1) DA receptor mRNA in the hypothalamus increases in hyperprolactinemic incubating hens, whereas inhibitory D(2) DA receptor mRNA increases in the pituitary of hypoprolactinemic photorefractory hens.  相似文献   

7.
Circulating prolactin (PRL) levels increase when dynorphin is infused into the turkey brain. This study tested the hypothesis that centrally infused dynorphin requires an intact vasoactive intestinal peptide (VIP) system in order to stimulate turkey PRL secretion. It also investigated the roles of the dopaminergic and serotonergic systems in dynorphin-induced PRL release. Drugs were infused into the third ventricle of anesthetized laying turkeys via stereotaxically guided cannulae and circulating blood was assayed for changes in PRL levels. When a highly selective kappa opioid receptor antagonist was given prior to dynorphin injection, the PRL response to dynorphin was almost totally blocked. The coinfusion of either a serotonin (5-HT) or a D(1) dopamine (DA) receptor antagonist with dynorphin prevented the increase in PRL observed in birds when dynorphin was infused alone. On the other hand, the kappa opioid receptor antagonist failed to prevent the 5-HT-induced release of PRL. In hens actively immunized against VIP, infused dynorphin was unable to increase plasma PRL levels and infused VIP gave a muted PRL rise, while large increases in PRL were seen in nonimmunized birds receiving the same infusions. These data show that: (1) dynorphin stimulates PRL secretion by activating kappa opioid receptors in the avian hypothalamus, and (2) dynorphin, 5-HT, DA, and VIP stimulate avian PRL secretion via a common pathway expressing kappa opioid, serotonergic, dopaminergic, and VIPergic receptors at synapses arranged serially in that functional order, with the VIPergic system as the final mediator (releasing factor).  相似文献   

8.
Vasoactive intestinal peptide (VIP) appears to be a physiologically relevant prolactin (PRL)-releasing factor during the avian reproductive cycle, yet little is known of the factors involved in modulating the hypothalamic concentrations of this neuropeptide. A heterologous chicken VIP radioimmunoassay was developed to examine the effects of reproductive status, ovariectomy, and photoperiod on hypothalamic VIP immunoreactivity in the female turkey. VIP concentrations were highest in the median eminence/infundibular nuclear complex (ME/INF) relative to other subregions of the hypothalamus and changed only in this region during the reproductive cycle. Quiescent, nonphotostimulated hens subjected to stimulatory photoperiod exhibited a 1.6-fold increase in VIP in the ME/INF (quiescent 59.9 +/- 6.0 vs photostimulated 95.8 +/- 7.1 pg/microgram protein). An additional 2-fold increase in ME/INF VIP concentrations was observed in laying hens (183.0 +/- 28.5 pg/microgram protein). Coincident increases in plasma PRL were also observed. In contrast, during incubation and the photorefractory stage, a dissociation between hypothalamic VIP and plasma PRL occurred. No changes were observed in VIP in incubating hens, yet a 6-fold increase in PRL was noted, compared to layers. In addition, ME/INF VIP concentrations exhibited no change during the photorefractory stage, whereas a 28-fold decrease in plasma PRL occurred. VIP concentrations in the ME/INF of laying hens were unaffected by ovariectomy, whereas exposure to short photoperiod reduced VIP by 44%. The inhibitory effects of short photoperiod could not be reversed by administration of exogenous steroids, while steroid treatment reduced VIP concentrations by 45% in the ovariectomized hens. These results provide additional correlative evidence for a modulatory role of VIP in PRL secretion and suggest that the expression of this neuropeptide in the INF may serve as a neural link between photoperiodic mechanisms and PRL release during the avian reproductive cycle.  相似文献   

9.
Prolactin (PRL) has been implicated in central actions including those that result in its own regulation and/or the suppression of gonadotropin secretion. It is not clear, however, which neuronal systems may mediate the central effects of PRL. Here, using dual immunohistochemistry for c-Fos and either tyrosine hydroxylase (TH) or proopiomelanocortin (POMC), we have assessed neuronal activation, following centrally administered PRL, within two neuronal networks that have been shown to participate in the inhibitory regulation of reproductive function. Male rats received one intracerebroventricular injection of either PRL (5 microg) or saline (vehicle control) 5 days after cannulae were inserted into the lateral ventricles. Ninety minutes after treatment, animals were perfused with 4% paraformaldehyde, the brains were removed and 30-microm frozen sections were cut throughout the entire hypothalamic region. Parallel sets of sections were processed for both c-Fos immunoreactivity (ir) and either TH-ir or POMC-ir. PRL increased the mean number of c-Fos-ir neurons within the rostral arcuate nucleus (9.3 +/- 2.0 vs. 5.0 +/- 1.2 cells/section, for PRL and control rats, respectively; p < 0.05). Within the TH-ir neurones, PRL induced a significant increase in c-Fos in the dorsomedial portion of the mid-arcuate nucleus (p < 0.05). In contrast, there was no significant increase in the expression of c-Fos within the POMC neurones of the arcuate nucleus. PRL also induced c-Fos expression in the supraoptic nucleus (SON) (11.7 +/- 3.2 vs. 3.0 +/- 1.4 cells/section for PRL and control rats, respectively; p < 0.05), but not in the medial preoptic nucleus, ventromedial nucleus or the dorsomedial nucleus, areas reported to either contain gonadotropin-releasing hormone neurones or express PRL receptors. The results from this study show immediate early gene activation within both the arcuate nucleus and the SON of the hypothalamus following acute PRL administration. While the role of PRL-responsive neurones in the SON remains to be elucidated, these findings support the notion that the central actions of PRL could be mediated via the TH neurones of the dorsomedial arcuate nucleus and/or by a population of neurones in the rostral arcuate nucleus that contain neither TH nor POMC.  相似文献   

10.
11.
Vasoactive intestinal peptide (VIP) has potent PRL-releasing activity, but its physiological role in the regulation of PRL release during the avian reproductive cycle is not known. We used indirect immunofluorescence to determine if changes in hypothalamic VIP are associated with the shifts in circulating PRL during the reproductive cycle of the domestic turkey. In the naturally hyperprolactinemic incubating hen, the majority of VIP immunoreactivity (VIP-IR) existed within neurons of the infundibular nuclear complex (INF) and fibers in the external layer of the median eminence. Within the INF, the numbers of VIP-IR cells increased during the cycle, paralleling increases in serum PRL. In the reproductively inactive, nonphotostimulated hen with low serum PRL, essentially no positive cells were noted, whereas the incubating hen exhibited 32.1 +/- 2.2 cells/pair of adjacent sections in the anterior INF and 59.6 +/- 2.0 cells in the posterior INF. Exposure of inactive hens to a stimulatory photoperiod resulted in a 2.6-fold increase in serum PRL with the appearance of VIP-IR cells in the INF. During laying and incubation, further increases were observed in the number of positive cells in the INF and serum PRL as well as a greater fiber density in the median eminence. To further examine the association between changes in VIP-IR and serum PRL, circulating PRL was artificially lowered by depriving incubating hens of their nests for 0, 2, 5, and 10 days. On day 2 of nest deprivation, serum PRL declined markedly to 12% of day 0 levels, with VIP-IR cell numbers at 64% and 46% in the anterior and posterior INF, respectively. By day 10, birds exhibited cell numbers in the INF averaging 20% of those observed in the day 0 incubating hens, with serum PRL at 6% of day 0 levels. The results of these studies indicate a possible causal relationship between hypothalamic VIP and changes in PRL secretion during the avian reproductive cycle, providing a basis for further research on the importance of this peptide as well as factors responsible for the modulation of its expression in hypothalamic INF neurons.  相似文献   

12.
Three populations of hypothalamic neuroendocrine dopaminergic (NEDA) neurons, arising from the arcuate and periventricular nuclei of the hypothalamus release dopamine (DA) that acts at the pituitary gland to regulate the secretion of PRL. It is generally accepted that NEDA neurons lack functional DA transporters (DATs), which are responsible for uptake of DA from the synaptic cleft into the presynaptic axon terminal. This study localized DATs to the hypothalamo-pituitary axis and evaluated the effect of DAT blockade on the hypothalamo-pituitary regulation of PRL. After 7 days of treatment with cocaine (a nonspecific amine transporter blocker) or mazindol (a specific DAT blocker), the relative abundance of PRL messenger RNA (mRNA) in the anterior lobe (AL) of OVX rats was significantly decreased, whereas the relative abundance of tyrosine hydroxylase mRNA in the hypothalamus was significantly increased. The effect of cocaine or mazindol administration on DA turnover and serum PRL concentration was examined in estradiol (E2)-treated OVX rats. E2 administration (i.v.) resulted in a significant increase in serum PRL within 4 h; however, cocaine or mazindol administration abolished the E2-induced increase of PRL. Cocaine or mazindol significantly increased the concentration of DA at the site of the axon terminals within the median eminence (ME), intermediate lobe (IL) and neural lobe (NL), indicating blockade of uptake. Because formation of DOPAC requires uptake of DA, concentrations of DOPAC in the ME, IL and NL decreased following treatment with either cocaine or mazindol. These data, together with the presence of immunopositive DAT in the ME, pituitary stalk, IL, and NL, suggest that a functional DAT system is present within all three populations of NEDA neurons. Moreover, similarity between the effects of cocaine and mazindol treatment indicate that blockade of the DAT, but not other amine transporters, is responsible for suppression of PRL gene expression and secretion. Blockade of DATs prevent uptake of DA into NEDA neurons and consequently increases the amount of DA that diffuses into the portal vasculature and reaches the AL. These data provide evidence that DATs play a physiological role in the regulation of DA release from and TH expression in NEDA neurons and consequently PRL secretion and PRL gene expression and further support our previous observation that the regulation of PRL secretion involves all three populations of NEDA neurons.  相似文献   

13.
14.
15.
16.
The present studies were designed to obtain a detailed characterization of pulsatile PRL secretory patterns under basal conditions and to explore the role of dopamine (DA) and vasoactive intestinal peptide (VIP) in the genesis of PRL pulses. Adult intact male rats received chronic indwelling jugular canula and were bled at 3-min intervals for periods ranging from 90-150 min. Pulse analysis was performed using the algorithm Detect. Blockade of DA receptors with domperidone, pimozide, or haloperidol resulted in a 2-fold increase in PRL pulse frequency, with no change in pulse duration. All quantitative parameters, i.e. peak and trough values, pulse amplitude, and area under the pulse, were significantly increased after dopaminergic blockade. Blockade of endogenous VIP activity was achieved by passive immunization with a potent VIP antiserum. This treatment, by itself, did not modify basal PRL levels or PRL pulsatility parameters. However, when VIP antiserum was administered in combination with domperidone, a reduction in all quantitative pulse parameters was observed. Heterogeneity of PRL pulses was evaluated by frequency distribution analysis, using the area under the pulse divided by basal secretion, to evaluate the mass of hormone secreted per pulse normalized to the basal rate of secretion. Untreated animals presented pulses within a range of different masses. Dopaminergic blockade resulted in a great reduction in big mass pulses, and the distribution of pulses was restricted primarily to small mass pulses. The increased pulse frequency after dopaminergic blockade, therefore, results mainly from an increase in the appearance of small mass pulses. These results indicate that DA exerts a tonic inhibitory action on the frequency as well as the qualitative parameters of PRL pulses. They also suggest that big mass PRL pulses are dopaminergic in origin, i.e. they may result from temporary interruptions in DA activity. Small mass PRL pulses appear to result from other neural stimulatory inputs. Endogenous VIP enhances quantitative PRL pulse parameters, but this activity is only apparent after removal of DA inhibition.  相似文献   

17.
In mammals, prolactin (PRL) secretion is regulated by vasoactive intestinal peptide (VIP) and peptide histidine isoleucine (PHI). In birds, however, VIP is considered a PRL-releasing factor (PRF), while the role of PHI is unknown. The purpose of this study was to compare the effects of turkey PHI (tPHI) and turkey VIP (tVIP) on PRL secretion in vitro, and to study their physiological significance in vivo through active immunization against tPHI and tVIP. In vitro studies were conducted using pituitary cell cultures from female turkeys. In the in vivo study, female turkeys were immunized with keyhole limpet hemocyanin (KLH; control), synthetic tPHI conjugate (KLH-tPHI), or synthetic tVIP conjugate (KLH-tVIP). Both tVIP and tPHI stimulated PRL secretion from anterior pituitary cells in a dose response manner. However, tPHI was 100-fold less potent than tVIP in stimulating maximum PRL secretion in vitro. In addition, the highest dose (10(-4) M) of tPHI inhibited its own PRL-releasing activity as well as that of VIP-stimulated PRL release. Whereas, circulating PRL levels and nesting activity remained low and unchanged during the photo-induced reproductive cycle (i.e., experimental period) in tVIP-immunized birds, control and tPHI-immunized turkeys showed a significant increase in plasma PRL levels and in the incidence of incubation behavior over time following photostimulation. These findings, taken together with earlier results, indicate that VIP is the sole physiological PRF in the turkey (avian species).  相似文献   

18.
Photostimulation (PS) of turkeys increases the number of hypothalamic vasoactive intestinal peptide (VIP)-immunoreactive neurons, the number of anterior pituitary VIP binding sites, and prolactin (PRL) secretion. Serotonin (5-HT) was recently shown to stimulate PRL secretion through VIP. This study tested the hypothesis that 5-HT's ability to induce PRL secretion is mediated by reproductive status and/or photoperiod in normally cycling turkey hens. Initially, saline or 5-HT was infused into the third ventricle of nest-deprived, previously incubating (ND) hens for 60 min at rates of 0.1, 1.0, or 10 nmol/min. The results led to use of the 10 nmol/min infusion rate for the remaining 5-HT infusions. Next, 5-HT was infused into short-day (SD;6), laying (6), ND (5), and photorefractory (P/R;6) hens. Plasma PRL was elevated in all groups except for the SD hens (P < 0.05). In Experiment 3, VIP was infused into the median eminence of SD (6), laying (5), and P/R (5) hens, increasing circulating PRL levels in all three groups (P < 0.05). Finally, SD hens were photostimulated for 0, 3, or 10 days and then infused with 5-HT. Only the birds which were photostimulated for 10 days exhibited elevated plasma PRL (P < 0.05). In conclusion, PS regulates PRL secretion at the hypothalamic level and more than 3 days of PS are required for 5-HT-ergic stimulation of PRL secretion.  相似文献   

19.
Ovariectomized rats, when transplanted with 4 anterior pituitaries (APs) to the kidney capsule for 2-3 weeks, had elevated plasma prolactin (PRL) levels (3.8-fold) and showed decreased in situ AP weights (0.62-fold) and PRL concentrations (0.63-fold). The concentrations of dopamine (DA) and oxytocin (OT) in pituitary portal plasma of hyperprolactinemic rats were increased 1.7- and 1.9-fold, respectively. However, the levels of vasoactive intestinal peptide (VIP) in pituitary portal plasma of these rats were decreased 0.31-fold. The secretion of DA, dihydroxyphenylalanine (DOPA) and OT from fetal hypothalamic cells in primary culture was increased, whereas VIP secretion from these cells was reduced in a dose-dependent fashion following PRL treatment. These data are the first in vivo and in vitro demonstration of a stimulatory action of PRL on OT release and an inhibitory action of PRL on VIP release. Furthermore, these data suggest that a subtle imbalance between the secretion of the PRL-inhibiting factor (DA) and the PRL-releasing factors (VIP and OT) during elevated systemic levels of PRL is responsible for decreased lactotrophic function.  相似文献   

20.
During incubation, female turkeys exhibit elevated circulating prolactin (PRL) which may be the result of enhanced pituitary responsiveness to vasoactive intestinal peptide (VIP). This hypothesis was tested by comparison of spontaneous and porcine VIP-induced PRL secretion from anterior pituitary cells of hens in various reproductive conditions. The effect of VIP and luteinizing hormone releasing hormone (LHRH), alone and in combination, on luteinizing hormone (LH) secretion was also examined. Incubation with pVIP (10(-10) to 10(-6) M) significantly stimulated PRL secretion at all incubation times tested (1-5 hr). This increase was greatest in cells from incubating hens, with those from laying, photorefractory, and quiescent (nonphotostimulated) hens secreting successively less PRL. These responses were obtained when spontaneous PRL secretions were compared. VIP induced approximately a similar 1.5-fold increase in LH secretion, in all reproductive groups. Also, VIP enhanced LHRH-induced LH secretion (1.2- to 1.6-fold; P less than 0.0001). It is concluded that PRL secretion in vitro by pituitary cells from turkey hens in various reproductive stages reflects the circulating levels of PRL at these stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号