首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
The Hox-1.11 gene encodes a protein 372 amino acid residues long that contains a conserved pentapeptide, a homeodomain, and an acidic region. The amino acid sequence of the homeodomain of Hox-1.11 is identical to that of Hox-2.8, and the N-terminal and C-terminal regions of Hox-1.11 are similar to those of human HOX2H, which is the equivalent of murine Hox-2.8. The Hox-1.11 gene was shown to reside on murine chromosome 6, which contains the Hox-1 cluster of homeobox genes. One species of Hox-1.11 poly(A)+ RNA approximately 1.7 kb long was detected in mouse embryos, which is most abundant in 12-day-old embryos and progressively decreases during further embryonic development. The most anterior expression of Hox-1.11 poly(A)+ RNA in 12- to 14-day-old mouse embryos was shown by in situ hybridization to be in the mid and posterior hindbrain. Hox-1.11 poly(A)+ RNA also is expressed in the VII and VIII cranial ganglia, spinal cord, spinal ganglia, larynx, lungs, vertebrae, sternum, and intestine.  相似文献   

5.
In the present study, three preprosomatostatin (PSS) cDNAs were characterized from hypothalamus of orange-spotted grouper Epinephelus coioides. The first cDNA encodes a 123-amino acid protein (PSSI) that contains the SS14 sequence at its C-terminal extremity and that is identical to that of PSSI of human and other vertebrates. The second cDNA encodes a 127-amino acid protein (PSSII) that contains the SS28 sequence with [Tyr7, Gly10]-SS14 at its C-terminus. The third cDNA encodes a 110-amino acid protein (PSSIII) that contains the somatostatin variant [Pro2]-SS14 at its C-terminal extremity. All these three PSS mRNAs were expressed in brain and pituitary with different mRNA levels. In peripheral tissues, PSSII was more widely distributed than PSSI and PSSIII. High mRNA levels of PSS were found in stomach, intestine and ovary. PSS mRNAs were detected throughout embryogeny and early larval development. Its levels increased with the embryonic development and maintained a higher level during larva developing. The mRNA distribution suggests that the three grouper PSS products play important physiological functions in adult fish as well as in cell growth and organ differentiation in embryo and larva development.  相似文献   

6.
M Albitar  A Care  C Peschle  S A Liebhaber 《Blood》1992,80(6):1586-1591
The alpha-globin gene cluster contains four functional globin genes, zeta, alpha 2, alpha 1, and theta. The developmental regulation of the embryonic zeta and fetal/adult alpha 2- and alpha 1-globin genes is well characterized at the level of protein synthesis. The developmental pattern of the theta-globin gene is not well characterized due to the inability to detect its encoded protein. Direct analysis of the globin switching at the steady-state messenger RNA (mRNA) level has been hampered by the difficulty in obtaining quantities of embryonic and early fetal mRNA sufficient for analysis. We analyzed the relative levels of the steady-state zeta-, alpha-, and theta-globin mRNAs in yolk sac in 5-, 6-, 7-, and 8-week postconception embryonic liver, and in cord and adult blood reticulocytes. We show that the switch in the alpha-globin gene cluster from the embryonic to fetal/adult pattern of expression begins at 5 to 6 weeks of gestation. Both the theta- and alpha-globin genes show similar patterns of developmental control that are reciprocal to zeta. alpha-globin RNA is barely detectable or undetectable at 5 weeks, and increases in the 6- to 8-week period, while theta-globin mRNA shows a parallel increase at 5 to 8 weeks postconception and is expressed in cord blood and adult reticulocytes. These data show that the theta-globin gene represents a fetal/adult gene, albeit expressed at a low level.  相似文献   

7.
The expression of the adenovirus (Ad) early coding region 1a (E1a) is required for virus-induced cell transformation and for the activation of other viral early genes and some cellular genes. Two overlapping early mRNAs of 13S and 12S that are transcribed from this region code for a 289-amino acid protein and a 243-amino acid protein, respectively. Earlier studies have shown that the 289-amino acid protein is essential for cell transformation. We have constructed an Ad type 2 (Ad2) deletion mutant (dl231) in which the intervening sequence for the 13S mRNA is precisely removed. Mutant dl231 is completely viable in human KB cells and produces normal amounts of 13S mRNA but much reduced amounts of a defective 12S mRNA. Mutant dl231 induces focal transformation of established rat embryo fibroblasts at a frequency one-fifth to one-half that of wild-type virus. However, the transformed cells are defective in their ability to form anchorage-independent colonies on semisolid medium. Therefore, our results demonstrate that the 243-amino acid protein is required for full transformation of rat embryo cells.  相似文献   

8.
During erythroid development, the embryonic ε-globin gene becomes silenced as erythropoiesis shifts from the yolk sac to the fetal liver where γ-globin gene expression predominates. Previous studies have shown that the ε-globin gene is autonomously silenced through promoter proximal cis-acting sequences in adult erythroid cells. We have shown a role for the methylcytosine binding domain protein 2 (MBD2) in the developmental silencing of the avian embryonic ρ-globin and human fetal γ-globin genes. To determine the roles of MBD2 and DNA methylation in human ε-globin gene silencing, transgenic mice containing all sequences extending from the 5' hypersensitive site 5 (HS5) of the β-globin locus LCR to the human γ-globin gene promoter were generated. These mice show correct developmental expression and autonomous silencing of the transgene. Either the absence of MBD2 or treatment with the DNA methyltransferase inhibitor 5-azacytidine increases ε-globin transgene expression by 15-20 fold in adult mice. Adult mice containing the entire human β-globin locus also show an increase in expression of both the ε-globin gene transgene and endogenous ε(Y) and β(H1) genes in the absence of MBD2. These results indicate that the human ε-globin gene is subject to multilayered silencing mediated in part by MBD2.  相似文献   

9.
10.
11.
12.
Insulin (INS) plays a critical role in the growth, development, and metabolism of vertebrates. In this study, two unique cDNAs that encode preproinsulin were isolated, cloned and sequenced from the endocrine pancreas (Brockmann body) of rainbow trout. One 592-bp cDNA (INS 1) encodes a 105-amino acid protein and the other 587-bp cDNA (INS 2) encodes a 107-amino acid protein. The sequences share 93% nucleotide identity and 91.4% deduced amino acid identity. Quantitative real-time PCR revealed that the two INS-encoding mRNAs were differentially expressed, both in terms of distribution among tissues as well as in terms of abundance within selected tissues of juvenile trout. Both INS 1 and INS 2 mRNAs were detected in pancreas, adipose tissue, pyloric cecum, and brain; however, only INS 1 mRNA was detected in upper and lower intestine and pituitary. In all cases where INS 1 and INS 2 were co-expressed, INS 1 was more abundant. INS 1 and INS 2 also were differentially expressed in various body regions (head, body, and tail) during embryonic development. Both INS 1 and INS 2 mRNAs were detected early in development (29 days post-fertilization), but their expression declined as development proceeded (through 90 days post-fertilization); in most cases, unlike the situation in juveniles, INS 2 mRNA was more abundant than INS 1 mRNA in embryos. These findings contribute to our understanding of the evolution, distribution, and function of INS.  相似文献   

13.
14.
15.
Mutations in the adenomatous polyposis coli gene (which encodes a protein called APC) are associated with the formation of intestinal polyps and colon cancers. To facilitate the functional study of APC we have isolated its Drosophila homolog (D-APC) by screening an expression library with an antibody against human APC. The isolated cDNA encodes a predicted 2416-amino acid protein containing significant homology to multiple domains of mammalian APCs. D-APC has seven complete armadillo repeats with 60% identity to its human homolog, one β-catenin binding site, and up to 7 copies of a 20-amino acid repeat with the average of 50% identity to human APC at amino acid level. D-APC, like its human counterpart, also contains a basic domain. Expression of the domain of D-APC homologous to the region required for β-catenin down-regulation resulted in down-regulation of intracellular β-catenin in a mammalian cell line. This same region bound to the Armadillo (Arm) protein, in vitro, the Drosophila homolog of β-catenin. D-APC RNA and protein expression is very low, if detectable at all, during stages when Arm protein accumulates in a striped pattern in the epidermis of the Drosophila embryos. Removing zygotic D-APC expression did not alter Arm protein distribution, and the final cuticle pattern was not affected significantly. As observed in the rodent, high levels of D-APC expression have been detected in the central nervous system, suggesting a role for D-APC in central nervous system formation.  相似文献   

16.
Developmental regulation of gamma-globin gene expression probably occurs through developmental-stage-specific trans-acting factors able to promote the interaction of enhancer elements located in the far upstream locus control region with regulatory elements in the gamma gene promoters and 3' A gamma enhancer located in close proximity to the genes. We have detected a nuclear protein in K562 and baboon fetal bone marrow nuclear extracts capable of binding to A+T-rich sequences in the locus control region, gamma gene promoter, and 3' A gamma enhancer. SDS/polyacrylamide gel analysis of the purified K562 binding activity revealed a single protein of 87 kDa. A K562 cDNA clone was isolated encoding a beta-galactosidase fusion protein with a DNA binding specificity identical to that of the K562/fetal bone marrow nuclear protein. The cDNA clone encodes a homeodomain homologous to the Drosophila antennapedia protein.  相似文献   

17.
18.
In searching for androgen-responsive genes in human prostate cancer cells, we have isolated two cDNAs that encode alternate forms of a novel Src homology 3 domain-containing guanine nucleotide exchange factor (SGEF). The SGEF mRNA is widely expressed in human tissues, and the predicted 871-amino acid SGEF protein contains Dbl homology and pleckstrin homology domains as well as an N-terminal proline-rich domain, a C-terminal Src homology 3 domain, and two nuclear localization signals. The second cDNA encodes a 139-amino acid N-terminally truncated form of SGEF designated C-terminal SGEF (CSGEF). In contrast to SGEF, CSGEF mRNA expression is restricted to prostate and liver. Moreover, CSGEF expression is up-regulated by androgens in LNCaP cells, whereas that of SGEF is not. Up-regulation of CSGEF was sensitive to actinomycin D but did not require new protein synthesis. The SGEF gene is located on chromosome 3q25.2 and consists of at least 15 exons. Based on the structure of the SGEF and CSGEF cDNAs, we deduced that CSGEF expression is controlled by an alternate androgen-responsive promoter of the SGEF gene. We hypothesize that SGEF is a ubiquitous regulator of Rho guanosine triphosphatases, whereas CSGEF may function as an androgen-induced regulator of Rho guanosine triphosphatase activity in epithelial cells of the human prostate.  相似文献   

19.
20.
This work describes a vertebrate homeobox gene, designated Homez (homeodomain leucine zipper-encoding gene), that encodes a protein with an unusual structural organization. There are several regions within Homez, including three atypical homeodomains, two leucine zipper-like motifs, and an acidic domain. The gene is ubiquitously expressed in human and murine tissues, although the expression pattern is more restricted during mouse development. Genomic analysis revealed that human and mouse genes are located at 14q11.2 and 14C, respectively, and are composed of two exons. The zebrafish and pufferfish homologs share high similarity to mammalian sequences, particularly within the homeodomain sequences. Based on homology of homeodomains and on the similarity in overall protein structure, we delineate Homez and members of ZHX family of zinc finger homeodomain factors as a subset within the superfamily of homeobox-containing proteins. The type and composition of homeodomains in the Homez subfamily are vertebrate-specific. Phylogenetic analysis indicates that Homez lineage was separated from related genes >400 million years ago before separation of ray- and lobe-finned fishes. We apply a duplication-degeneration-complementation model to explain how this family of genes has evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号