首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Conjugation of carboxylate drugs with D-glucuronic acid is of considerable interest because of the inherent reactivity of the resulting β-1-O-acyl glucuronides. These conjugates can degrade by spontaneous hydrolysis and internal acyl migration. β-1-O-acyl glucuronides and their acyl migration products can also react covalently with macromolecules with potential toxicological consequences. The spontaneous degradation of the diastereoisomeric β-1-O-acyl glucuronide metabolites of the racemic drug ketoprofen, two of its ring-hydroxylated metabolites and of tolmetin β-1-O-acyl glucuronide was investigated by 1H-NMR spectroscopy in buffer solutions, at pH 7.4 and 37°C. A plot of the logarithm of the peak integrals against time revealed first-order kinetics. Degradation rates and half-lives were calculated for each glucuronide using first-order reaction equations. Tolmetin glucuronide had the fastest degradation rate, whilst all of the ketoprofen-related glucuronides had similar degradation rates. The degradation of the diastereoisomeric glucuronides was stereoselective, with the rate for the (S)-isomer always slower compared with the (R)-isomer by approximately a factor of 2.  相似文献   

2.
The stereoselective acyl migration of diastereomeric 1beta-O-acyl glucuronides of (R)- and (S)-2-phenylpropionic acid [(R)-1PG and (S)-IPG, respectively] in phosphate buffer (pH 7.4) at 310K was investigated using HPLC. The disappearance of (R)-1PG was faster than that of (S)-1PG according to pseudo first-order kinetics. A kinetic model describing the degradation reactions was constructed. The rate constant for acyl migration from the 1beta-O-isomer to the 2-O-acyl isomer (k12) was about one order magnitude larger than that for hydrolysis from 1beta-O-acyl isomer to aglycone (k10). The k12 of (R)-IPG (0.377 +/- 0.005 h(-1)) was about two times larger than that of (S)-IPG (0.184 +/- 0.003 h(-1)). The results indicated that the stereoselectivity in the degradation of 1PG was apparently governed by the acyl migration from 1-isomer to 2-isomer. The kinetic parameters for acyl migration from 1-isomer to 2-isomer were estimated from temperature-dependent experiments using the transition state theory. The value of the free energy of activation at 310 K for (R)-1PG (99.67 kJ/mol) was smaller than that of (S)-IPG (101.60kJ/mol), suggesting that (R)-IPG showed thermodynamically higher reactivity in acyl migration than (S)-1PG.  相似文献   

3.
A widely held view in drug metabolism and pharmacokinetic studies is that the initial 1-isomer to 2-isomer step in the intramolecular acyl migration of drug ester glucuronides is irreversible, and that alpha-1-O-acyl isomers do not occur under physiological conditions. We investigated this hypothesis using high-performance liquid chromatography directly coupled to proton nuclear magnetic resonance spectroscopy (HPLC/1H NMR) and mass spectrometry (LC/MS) to probe the migration reactions of S-naproxen beta-1-O-acyl glucuronide, in phosphate buffer at pH 7.4, 37 degrees C. We report the first direct observation of the alpha-1-O-acyl isomer of a drug ester glucuronide (S-naproxen) formed in a biosystem via the facile acyl migration of the corresponding pure beta-1-O-acyl glucuronide. The unequivocal identification of the reactive product was achieved using stopped-flow one-dimensional HPLC/1H NMR and two-dimensional 1H-1H total correlation spectroscopy (1H-1H TOCSY). Parallel LC/ion-trap mass spectrometry yielded the confirmatory glucuronide masses. Moreover, "dynamic" stopped-flow HPLC/1H NMR experiments revealed transacylation of the isolated alpha-1-O-acyl isomer to a mixture of alpha/beta-2-O-acyl isomers; the reverse reaction from the isolated alpha/beta-2-O-acyl isomers to the alpha-1-O-acyl isomer was also clearly demonstrated. This application of "dynamic" stopped-flow HPLC/1H NMR allows key kinetic data to be obtained on a reactive metabolite that would otherwise be difficult to follow by conventional HPLC and NMR methods where sample preparation and off-line separations are necessary. These data challenge the widely held view that the alpha-1-O-acyl isomers of drug ester glucuronides do not occur under physiological conditions. Furthermore, the similar formation of alpha-1-O-acyl isomers from zomepirac and diflunisal beta-1-O-acyl glucuronides has recently been confirmed (Corcoran et al., unpublished results). Such reactions are also likely to be widespread for other drugs that form ester glucuronides in biological systems. Ultimately, the presence of significant quantities of the kinetically labile alpha-1-O-acyl glucuronide isomer may also have toxicological implications in terms of reactivity toward cellular proteins.  相似文献   

4.
Internal acyl migration reactions of 1beta-O-acyl glucuronides of 2-arylpropionic acids (profens) are of interest because of their possible role in covalent binding to serum proteins and consequent allergic reactions. The stereoselective degradation of 1beta-O-acyl glucuronides of enantiomeric 2-phenylpropionic acids (PAs), the basic structures of profens, in phosphate buffer (pH 7.4) at 37 degrees C, has been investigated using HPLC. Apparent first-order degradation of 1beta-O-acyl glucuronide and the sequential appearance of 2-, 3- and 4-O-acyl isomers were observed for each enantiomer. Acyl migration was observed to predominate over hydrolysis as in the other profen glucuronides. All the positional isomers and anomers were characterized using NMR and HPLC-NMR. The overall degradation half-life of (R)- and (S)-PA glucuronides was 1.8 and 3.3 h, respectively. These results suggest that (R)-PA glucuronide could be more susceptible to covalent binding to proteins via acyl migration than the corresponding antipode. The lability of the (R)-diastereomer over the antipode is consistent with previous reports on other profen glucuronides. Thus, the diastereomeric PA glucuronides are considered to be the best model compounds for the computation of structural physicochemical parameters to control the stereoselective internal acyl migration of profen glucuronides because PA has the simplest chemical structure of all the profens.  相似文献   

5.
In this investigation, 31 1-O-acyl glucuronides were synthesized and 25 of these were shown to react with 4-(p-nitrobenzyl)pyridine (NBP), a standard chemical nucleophil, on thin layer chromatography plates. A quantitative NBP assay was developed based on existing methods, and the rates of reaction of three acyl glucuronides, clofibric 1-O-acyl glucuronide, indomethacin 1-O-acyl glucuronide, and flufenamic 1-O-acyl glucuronide, were determined. These rates ranged from 0.436 min-1 to 1.08 min-1. Chlorambucil, a powerful alkylating agent, reacted with NBP 127 times faster than the most reactive of the three glucuronides assayed. The half-lives of these three 1-O-acyl glucuronides, determined at pH 2.0, 4.0, 6.0, 7.4, and 10.0 in aqueous phosphate solution, ranged from greater than 1000 hr at pH 2 to less than 1 min at pH 10.0. Determination of the rates of reaction of 1-O-acyl glucuronides with NBP and the rates of hydrolysis as a function of pH further characterize these compounds as activated phase II metabolites.  相似文献   

6.
Acyl glucuronides have been implicated in the toxicity of many xenobiotics and marketed drugs. These toxicities are hypothesized to be a consequence of covalent binding of the reactive forms of the acyl glucuronide to proteins. Reactive intermediates of the acyl glucuronide arise from the migration of the aglycone leading to other positional and stereoisomers under physiological conditions. In order to screen for the potential liabilities of these metabolites during the early phase of pharmaceutical development, an NMR method based on the disappearance of the anomeric resonance of the O-1-acyl glucuronide was used to monitor the degradation kinetics of 11 structurally diverse acyl glucuronides, including those produced from the known nonsteroidal anti-inflammatory drugs (NSAIDs). The acyl glucuronides were either chemically synthesized or were isolated from biological matrices (bile, urine, and liver microsomal extracts). The half-lives attained utilizing this method were found to be comparable to those reported in the literature. NMR analysis also enabled the delineation of the two possible pathways of degradation: acyl migration and hydrolytic cleavage. The previously characterized 1H resonances of acyl migrated products are quite distinguishable from those that arise from hydrolysis. The NMR method described here could be used to rank order acyl glucuronide forming discovery compounds based on the potential reactivity of the conjugates and their routes of decomposition under physiological conditions. Furthermore, we have shown that in vitro systems such as liver microsomal preparations can be used to generate sufficient quantities of acyl glucuronides from early discovery compounds for NMR characterization. This is particularly important, as we often have limited supply of early discovery compounds to conduct in vivo studies to generate sufficient quantities of acyl glucuronides for further characterization.  相似文献   

7.
1. The products arising from intramolecular acyl migration reactions of drug ester glucuronides are reactive towards cellular proteins and can potentially cause toxic side-effects.The relationship between molecular structure and the degradation rates (kd) of 1beta-O-acyl glucuronides were investigated systematically using a series of model compounds based on 4-substituted benzoic acids. 2. A rational method for selecting suitable compounds for inclusion was used and 10 glucuronide esters, predicted to produce a wide range of transacylation rates, were synthesized via a simple "one-pot" method using an imidazolide intermediate. The 10 substituents, where X = NO2, CN, I, Br, F, H, nPr, Et, OMe, O-nPr, had degradation rate half-lives (t1/2 = loge(2)/kd) ranging from 0.9 to 106.6 h. The reactions resulted in mixtures, which predominantly consisted of the desired 1beta-O-acyl glucuronides. 3. It was demonstrated that further purification was unnecessary for determination of kd of the synthetic 1beta-O-acyl glucuronides. Degradation rates (kd) were calculated by following the disappearance of the 1H-NMR signal from the 1beta-anomeric proton of the glucuronic acid moiety as the reaction progressed in pH 7.4 buffer inside an nuclear magnetic resonance tube. Each measured degradation rate represents a pseudo-first-order rate constant, which is a combination of the transacylation rate (1beta to 2beta isomer) and the hydrolysis rate. 4. Degradation rates show a clear relationship with substituent properties, with half-life increasing as the substituent becomes more electron-donating, e.g. 4-nitro t1/2 = 0.9 h and 4-propoxy t1/2 = 106.6 h.  相似文献   

8.
Internal acyl migration reactions of drug 1-O-acyl-beta-D-glucopyranuronates (1beta-acyl glucuronides) are of interest because of their possible role in covalent binding to proteins and consequent adverse effects. The reactivity of the synthetic probenecid 1beta-acyl glucuronide (PRG), the principal metabolite of probenecid (PR) in humans, has been investigated in terms of acyl migration, hydrolysis, and covalent binding to proteins in phosphate buffer (pH 7.4) and human plasma at 37 degrees C. PRG primarily degraded by acyl migration according to apparent first-order kinetics and the 2-, 3-, and 4-acyl isomers sequentially appeared as both alpha- and beta-anomeric forms. In addition, small amounts of PRG and extremely labile 1alpha-acyl isomer existed in the equilibrated mixture favoring the 2alpha/beta-acyl isomer, that provided significant information regarding the mechanism of acyl migration. All of the positional isomers and anomers were characterized using preparative HPLC and NMR spectroscopy. Acyl migration was observed to predominate over hydrolysis in both media although the extent of hydrolysis in plasma was larger than that in the buffer. The overall degradation half-lives (h) in the buffer and plasma were 0.27 +/- 0.003 and 0.17 +/- 0.007, respectively. The covalent binding rapidly proceeded mainly via the Schiff's base mechanism and reached a plateau after 2 h of incubation. The maximal binding was 146 +/- 4.8 pmol/mg of protein, and ca. 10% of the initial concentration of PRG. These results indicated that PRG is most labile and susceptible to acyl migration of all the drug acyl glucuronides reported to date in the physiological conditions, and highly reactive to plasma proteins, that could provide a possible explanation for the immunologically based adverse effects of PR.  相似文献   

9.
Some carboxylic acid-containing drugs have been implicated in rare but serious adverse reactions. These compounds can be bioactivated via two distinct pathways: by UDP-glucuronosyltransferase-catalyzed conjugation with glucuronic acid, resulting in the formation of acyl glucuronides, or by acyl-CoA synthetase-catalyzed formation of acyl-CoA thioesters. This review compares the two types of potentially reactive metabolites with respect to their stability, protein-reactivity, target selectivity, and disposition in the liver, and summarizes the evidence which links acyl glucuronide and acyl-CoA thioester formation with downstream toxicologic effects. While with increasing drug concentration the acyl glucuronide pathway may prevail, CoA intermediates may be more reactive. Both metabolites are electrophilic species which can acylate target proteins if they escape inactivation by S-glutathione-thioester formation. A crucial factor is the up-concentration of acyl glucuronides in hepatocytes and the biliary tree, due to vectorial transport by conjugate export pumps, where they may selectively acylate canalicular membrane proteins. Furthermore, positional isomers, which are avidly formed by acyl migration, can glycate proteins in the liver and at more distal sites. In contrast, acyl-CoA esters may be more rapidly hydrolysed or further metabolized in hepatocytes, and their hepatobiliary transport has not been well explored. While there is accumulating evidence that acyl glucuronides can alter cellular function by various mechanisms, including haptenation of peptides, critical protein acylation or glycation, or direct stimulation of neutrophils and macrophages, the role of acyl-CoA intermediates is less clear. More work is needed to provide a causal link between protein-reactive acyl glucuronides and acyl-CoA thioesters and the rare and unpredictable idiosyncratic drug reactions in humans.  相似文献   

10.
The reactive metabolite S-naproxen-beta-1-O-acyl glucuronide was purified from human urine using solid phase extraction (SPE) and preparative HPLC. The structure was confirmed by 600 MHz 1H NMR. Directly coupled 600 MHz HPLC-1H NMR was used to assign the peaks in chromatograms obtained when analysing a sample containing S-naproxen aglycone and the 1-, 2-, 3-, and 4-isomers of S-naproxen-beta-1-O-acyl glucuronide in two simple isocratic reversed phase HPLC-systems. Using mobile phase 1 (50 mM formate buffer pH 5.75/acetonitrile 75:25 v/v) the elution order was: 4-O-acyl isomers, beta-1-O-acyl glucuronide, 3-O-acyl isomers, 2-O-acyl isomers, and S-naproxen aglycone. Using mobile phase II (25 mM potassium phosphate pH 7.40/acetonitrile 80:20 v/v) the elution order was: alpha/beta-4-O-acyl isomers, S-naproxen aglycone, beta-1-O-acyl glucuronide, 3-O-acyl isomers, and alpha/beta-2-O-acyl isomers. In both systems the elution order for the 2-, 3- and 4-O-acyl isomers corresponded with previously published results for 2-, 3-, and 4-fluorobenzoic acid glucuronide isomers determined by reversed phase HPLC-1H NMR (U.G. Sidelmann, S.H. Hansen, C. Gavaghan, A.W. Nicholls, H.A.J. Carless, J.C. Lindon, I.D. Wilson, J.K. Nicholson, J. Chromatogr. B Biomed. Appl. 685 (1996) 113-122]. The alpha-1-O-acyl isomer was found to be present at approximately 3% of the initial S-naproxen-beta-1-O-acyl glucuronide concentration in the glucuronide isomer mixture after 6 h of incubation at pH 7.40 and 37 degrees C. In both HPLC systems it eluted just before the beta-1-O-acyl glucuronide well separated from other isomers. Investigators should consider the possible formation of a alpha-1-O-acyl isomer when studying glucuronide reactivity and degradation.  相似文献   

11.
The products arising from the intra-molecular acyl migration reactions of drug ester glucuronides can be reactive towards cellular proteins and have been proposed to cause toxic side effects. The relative reactivity of a range of drug and model glucuronides have previously been determined by measuring the rate of disappearance of a peak characteristic of the 1-beta-O-acyl glucuronide using 1H NMR spectroscopy. Here the degradation rate of ibuprofen 1-beta-O-acyl glucuronide has been investigated using NMR spectroscopy for the first time using material isolated from human urine with solid-phase extraction chromatography (SPEC). The degradation rate was measured by following the disappearance of the 1H NMR signal from the 1-beta-anomeric proton of the glucuronic acid moiety as the reaction progressed in pH 7.4 buffer inside an NMR tube. The measured degradation rate represents a pseudo-first order rate constant, a combination of the transacylation rate (1-beta-isomer to 2-beta-isomer) and the hydrolysis rate, and is presented as a half-life of 3.5 h. This value is compared to those from drug glucuronides where adverse effects have been observed in patients after administration of the drug.  相似文献   

12.
Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
An in vitro screening model was developed to determine the reactivity of acyl glucuronide metabolites from carboxylic drugs. This assay is composed of two phases. The first is a phase of biosynthesis of acyl glucuronides by human liver microsomes (HLM). The second, during which acyl glucuronides are incubated with human serum albumin (HSA), consists of assessing the reactivity of acyl glucuronides toward HSA. Both phases are performed successively in the same experiment. This model was validated using eight carboxylic drugs that were well known for their reactivity, their extent of covalent binding, and their immunological potential. These products were representative of the scale of reactivity. Each compound was incubated with HLM at 400 microM and metabolized into acyl glucuronide to different extents, ranging from 5.6% (tolmetin) to 89.4% (diclofenac). The first-order aglycone appearance rate constant and the extent of covalent binding to proteins were assayed during the incubation of acyl glucuronides formed with HSA for 24 h. Extensive isomerization phenomenon was observed for each acyl glucuronide between the two phases. An excellent correlation was observed (r(2), 0.94) between the extent of drug covalent binding to albumin and the aglycone appearance constant weighted by the percentage of isomerization. This correlation represents an in vitro reactivity scale, which will be helpful in drug discovery support programs to predict the covalent binding potential of new chemical entities. This screening model will also allow the comparison of acyl glucuronide reactivity for related structure compounds.  相似文献   

14.
Acyl glucuronides are potentially reactive intermediates, which not only undergo hydrolysis and intramolecular acyl migration, but also bind irreversibly to plasma protein in vitro and in vivo. To evaluate the impact of renal failure, liver dysfunction and other disease states on the pharmacokinetics of acyl glucuronides and their parent compounds, a pharmacokinetic model has been established. The model has been successfully utilized to predict the pharmacokinetics of six compounds, diflunisal (DF), valproic acid (VPA), zomepirac (Z), suprofen (S), R-etodolac (R-ET), S-etodolac (S-ET), and their acyl glucuronides in various simulated disease states in experimental animals. Modeling studies revealed that altering the metabolic pathways of these compounds had significant impact on exposure and clearance of acyl glucuoninde. The simulation results also indicated that disease states that affect irreversible metabolic pathways other than glucuronidation may have major impacts on the apparent plasma clearance of the parent compound or exposure to the reactive acyl glucuronide as well. The study concluded that the model is sufficiently robust and applicable for pharmacokinetic studies of acyl glucuronides and their parent compounds in various disease states that may modulate drug clearance. The model is also applicable to understanding the complex disposition of other drugs subject to conjugation, especially those that can be reversible and undergo enterohepatic recycling, such as sulfation and glycine conjugation.  相似文献   

15.
Glucuronidation reaction is catalyzed by mammalian uridine diphosphoglucuronosyl transferases by using uridine diphosphoglucuronic acid as a cosubstrate. Conjugation of glucuronic acid to nucleophilic functional groups in chemical entities results in formation of glucuronides. As anticipated, a number of nucleophilic functional groups such as hydroxyl, phenolic, acyl, primary secondary and tertiary amino, etc. in a diverse set of chemical compounds are known to form the corresponding glucuronides. Glucuronides have been reported to be formed at carbon atoms, selenium atoms, and upon N-carbamoylation of primary and secondary amino groups. Glucuronides are also believed to be the end products of metabolism. However, there are examples where glucuronidation results in further oxidative or conjugative biotransformation reactions. The objective of this review is to highlight unusual glucuronide conjugates. Diglucuronide conjugates reported in the literature fall under two distinct categories. Use of prefixes such as "bis" versus "di" has been previously proposed for separating the two types of diglucuronides. In spite of this, literature reports for diconjugative glucuronide metabolites reflect interchangeable use of "bisglucuronides" and "diglucuronides." Furthermore, the application of such prefixes does not adhere to recommendations of International Union of Pure and Applied Chemistry nomenclature for substituent groups. Therefore, an effort is made in this review to document the historic reports for diglucuronides into two distinct types for sake of clarity and to allow differentiation between the two types of diconjugative metabolites. Overall, this commentary centers on unusual glucuronide metabolites that result from conjugation at uncommon functional groups, glucuronides undergoing ensuing oxidative or conjugative metabolic transformations. Structural and mechanistic aspects are also discussed.  相似文献   

16.
A direct high-performance liquid chromatographic (HPLC) assay was developed to simultaneously quantitate diflunisal and its three known metabolites (i.e., the phenolic and acyl glucuronides and the sulfate conjugate) in human urine. Chromatographically pure standards of the diflunisal conjugates were isolated from urine of volunteers following ingestion of multiple doses of diflunisal (500 mg twice daily). Diflunisal, its three conjugates, and an internal standard (naproxen) were separated on a reversed-phase column using gradient elution. The column eluate was monitored fluorometrically (excitation: 258 nm; emission: 428 nm). Urine samples were diluted with phosphate buffer (pH 5.75) and injected onto the column. The limit of detection was approximately 1 microgram/mL for each conjugate and 0.1 microgram/mL for diflunisal. Due to the presence in most urine samples of significant concentrations of rearrangement products of the biosynthetic 1-O-acyl glucuronide of diflunisal, the acyl glucuronide could not be reliably quantitated by direct injection of diluted urine samples. Instead, diflunisal acyl glucuronide was quantitated indirectly following alkaline hydrolysis of the urine samples. The method has been successfully used to investigate the dose-dependent glucuronidation and sulfation of diflunisal in humans.  相似文献   

17.
Acylation of albumin by 1-O-acyl glucuronides   总被引:2,自引:0,他引:2  
Representative examples of drug metabolites containing a carboxylic acid group conjugated to glucuronic acid are shown to be active chemical electrophiles, which acylate albumin in vitro through transesterification reactions. Based on these and other observations, we propose that this acylating reactivity is characteristic of 1-O-acyl glucuronides as a class, and that albumin is representative of many susceptible biopolymers. The hypothesis is advanced that this reaction can occur in vivo as well, and that it may offer a molecular mechanism for the physiological activity or toxicity of some xenobiotic and lipophilic compounds.  相似文献   

18.
The aim of this investigation was to assess the pharmacokinetics of naproxen in 10 human subjects after an oral dose of 500 mg using a direct HPLC analysis of the acyl glucuronide conjugates of naproxen and its metabolite O-desmethylnaproxen. The mean t1/2 of naproxen in 9 subjects was 24.7 ± 6.4 h (range 16 to 36 h). The t1/2 of 7.4 as found in subject number 10 must, therefore, be regarded as an extraordinary case (p <0.0153). Naproxen acyl glucuronide accounts for 50.8 ± 7.32 per cent of the dose, its isomerized conjugate isoglucuronide for 6.5 ± 2.0 per cent, O-desmethylnaproxen acyl glucuronide for 14.3 ± 3.4 per cent, and its isoglucuronide for 5.5 ± 1.3 per cent (n = 10; 100 h collection period). Naproxen and O-desmethylnaproxen are excreted in negligible amounts ( <1 per cent). Even though urine pH of the subjects was kept acid (range pH 5.0–5.5) in order to stabilize the acyl glucuronides, isomerization takes place in blood when the acyl glucuronide is released from the liver for excretion by the kidney. Binding to plasma proteins was measured as 98 per cent and 100 per cent, respectively for the unconjugated compounds naproxen and O-desmethylnaproxen. Binding of the acyl glucuronides was less, being 92 per cent; for naproxen acyl glucuronide, 66 per cent for naproxen isoglucuronide, 72 per cent for O-desmethylnaproxen acyl glucuronide and 42 per cent for O-desmethylnaproxen isoglucuronide.  相似文献   

19.
PA-457 [3-O-(3',3'-dimethylsuccinyl)-betulinic acid] represents a new class of anti-HIV drug candidates termed maturation inhibitors. After oral administration to rats, PA-457 was metabolized to several glucuronide conjugates and mainly eliminated into rat bile. Liquid chromatography-electrospray ionization-mass spectrometry analysis showed that the glucuronidation products of PA-457 were acyl glucuronides including one di-glucuronide, di-PA-457G, and two mono-glucuronides, referred to as mono-PA-457G (I) and mono-PA-457G (II), respectively. In-source fragmentation of MS spectra supported the conclusion that mono-PA-457G (I) was glucuronidated at the C-28 carboxyl of PA-457, whereas mono-PA-457G (II) was conjugated at the dimethylsuccinic acid side chain of the C-3 position. Quantification demonstrated that the predominant glucuronide of PA-457 in rat bile was mono-PA-457G (I) with lower amounts of mono-PA-457G (II) and di-PA-457G. In vitro stability indicated that the mono-acyl glucuronides of PA-457 were not degraded after incubation with 0.1 M phosphate buffer (pH 4, 7.4 and 9), plasma (human, rat, and mouse), and UDP-glucuronosyltransferase reaction media (without uridine 5'-diphosphoglucuronic acid) with microsomes (human, rat, and mouse liver microsomes), respectively, whereas the minor diglucuronide was unstable in rodent liver microsomes. All glucuronides of PA-457 could be hydrolyzed both by beta-glucuronidase and alkaline (1 M NaOH). Minor putative acyl migration products were slowly formed at pH 9, suggesting that the acyl glucuronides of PA-457 have relatively high in vitro stability.  相似文献   

20.
Many nonsteroidal anti-inflammatory drugs (NSAIDs) are carboxylic acid-containing compounds that are conjugated in the liver to acyl glucuronides and excreted across the hepatocanalicular membrane into bile. Chronic and acute NSAID use has not only been associated with gastric injury but also increasingly recognized to cause small intestinal injury (enteropathy). The mechanisms of NSAID enteropathy are still unknown, but a combination of topical effects (including mitochondrial injury) combined with inhibition of COX1/2, followed by an inflammatory response triggered by LPS-mediated activation of LTR4 on macrophages, have been implicated in the pathogenesis. Some of the nucleophilic proteins that are targeted by the electrophilic NSAID acyl glucuronides or their iso-glucuronides have been identified both in bile canaliculi and on the apical membrane domain of enterocytes (e.g., aminopeptidase N); however, the mechanistic role of covalent adducts has remained enigmatic. In contrast, it has become increasingly clear that acyl glucuronide formation is a major toxicokinetic determinant, in that the drug conjugates are a transport form delivering the drug to the more distal parts of the jejunum/ileum, where the glucuronic acid moiety is cleaved off the aglycone due to higher local pH and the presence of bacterial β-glucuronidase. Through this mechanism, high local concentrations of the parent NSAID can be attained, potentially leading to local tissue injury. Thus, even if one considers the formation of acyl glucuronides not as a potentially dangerous toxophore by virtue of their protein-reactivity, acyl glucuronides could still be a red flag in drug development if excreted at high rates into bile and delivered to more distal areas of the small intestine where high amounts of parent drug is released.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号