首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies have shown that sleep deprivation produces deficits in learning tasks, but mechanisms underlying these effects remain unclear. Other lines of evidence indicate an involvement of brain GABA systems in cognitive processes. Here, we investigated the possibility that alterations in GABA(A) or benzodiazepine (BDZ) receptor binding might underlie avoidance deficits induced by sleep deprivation. Rats were deprived of sleep for 96 h using the platform method and then trained in a step-through inhibitory avoidance task, or allowed to recover sleep for 24 h before training (sleep rebound group). Thirty minutes after training, animals were given a retention test. Both sleep-deprived and sleep-recovered animals showed a significant impairment in avoidance responding compared to cage controls, and the sleep-deprived group performed significant worse than the sleep-recovered group. A separate group of animals was sacrificed either immediately after 96 h of sleep deprivation or after 96 h of sleep deprivation followed by 24 h of sleep recovery. [(3)H]muscimol and [(3)H]flunitrazepam binding were examined by quantitative autoradiography in 42 brain regions, including areas involved in cognitive processes. No significant differences among groups were found in any brain region, except for a reduction in [(3)H]flunitrazepam binding in the frontal cortex of sleep-recovered animals. These results confirm the deleterious effects of sleep loss on inhibitory avoidance learning, but suggest that such deficits cannot be attributed to altered GABA(A) or BDZ binding in brain.  相似文献   

2.
Numerous studies have described memory deficits following sleep deprivation. There is also evidence that the absence of sleep increases brain oxidative stress. The present study investigates the effects of a pro-oxidant agent--3-nitropropionic acid (3-NP)--on hippocampal oxidative stress and passive avoidance performance of sleep-deprived mice. Mice were repeatedly treated i.p. with saline or 5 or 15 mg/kg 3-NP and sleep-deprived for 24 h by the multiple platform method--groups of 4-5 animals placed in water tanks, containing 12 platforms (3 cm in diameter) surrounded by water up to 1 cm beneath the surface or kept in their home cage (control groups). The results showed that: (1) neither a 24 h sleep deprivation period nor 3-NP repeated treatment alone were able to induce memory deficits and increased hippocampal lipid peroxidation; (2) this same protocol of sleep deprivation, combined with 15 mg/kg 3-NP repeated treatment, induced memory deficits and an increase in hippocampal lipid peroxidation. The results support the involvement of hippocampal oxidative stress in the memory deficits induced by sleep deprivation and the hypothesis that normal sleep would prevent oxidative stress.  相似文献   

3.
Amygdala kindling effects on sleep and memory in rats   总被引:2,自引:0,他引:2  
Sleep disturbances accompany the development of amygdaloid-kindled seizures in cats. Some of these sleep deficits resemble those seen in aged rats; these latter changes in sleep patterns are correlated with memory impairments in the aged animals. In the present study, we examined the hypothesis that sleep deficits after kindling may be related to memory impairments. Rats were kindled for 4 weeks (2-2.5 weeks after stage 5 seizures) and were then allowed a one week recovery period. Sleep patterns were assessed through-out the kindling and recovery periods. The animals were then trained on an inhibitory avoidance apparatus and tested for retention 24 h later. Only transient sleep changes occurred during the development of kindling (to stage 5 seizures). However, continued kindling resulted in significant reductions in several sleep measures which remained depressed for at least one week after the termination of the kindling trials. As a group, kindled rats were impaired in retention of the inhibitory avoidance learned response. In kindled animals, retention performance was significantly correlated with total paradoxical sleep, the ratio of paradoxical/total sleep, and paradoxical sleep, the ratio of paradoxical/total sleep, and paradoxical sleep bout duration. These correlations are consistent with the view that deficits in paradoxical sleep may be related to deficits in some forms of memory.  相似文献   

4.
The deleterious effects of paradoxical sleep deprivation on memory processes are well documented. However, non-selective sleep deprivation occurs more commonly in modern society and thus represents a better translational model. We have recently reported that acute total sleep deprivation (TSD) for 6 h immediately before testing impaired performance of male mice in the plus-maze discriminative avoidance task (PM-DAT) and in the passive avoidance task (PAT). In order to extend these findings to females, we examined the effect of (pre-test) TSD on the retrieval of different memory tasks in both male and female mice. Animals were tested using 3 distinct memory models: 1) conditioning fear context (CFC), 2) PAT and 3) PM-DAT. In all experiments, animals were totally sleep-deprived by the gentle interference method for 6h immediately before being tested. In the CFC task and the PAT, TSD induced memory impairment regardless of sex. In PM-DAT, the memory impairing effects of TSD were greater in females. Collectively, our results confirm the impairing effect of TSD on emotional memory retrieval and demonstrate that it can be higher in female mice depending on the memory task evaluated.  相似文献   

5.
Sleep loss adversely affects certain types of cognitive processing, particularly associative memory. Given that long-term potentiation (LTP) represents a putative cellular basis of learning and memory consolidation, the influence of sleep deprivation on LTP was examined. Rats were REM sleep deprived for 24, 48, or 72 h using the inverted flowerpot method in temperature-regulated chambers. Hippocampal slices taken from sleep-deprived rats were compared with home cage and pedestal control animals at 5, 15 and 60 min post-tetanization. The results indicated that at 5 min post-tetanization there were no differences in field potentials in any of the sleep-deprived or control groups, suggesting comparable levels of induction. However, analysis of latency-to-peak slope indicated that members of the 48 and 72 h sleep-deprived groups required approximately twice as long to achieve maximum slope as the 24 h group, home cage or 24, 48, 72 h pedestal controls (means 8.17, 7.50, 2.67, 4.67 and 3.17 min, respectively). At 15 min post-tetanization there were no group differences, however at 60 min post-tetanization the slopes of the field excitatory postsynaptic potentials were significantly diminished for the 24, 48 and 72 h sleep-deprived groups (means 30.44, -1.89, 1.47, respectively) as compared with home cage and pedestal controls (means 59.54, 58.42, respectively). This delay in maximal induction, and the degradation of the maintenance phase of LTP, may represent sleep deprivation-induced impairment of the underlying neurochemical mechanisms normally responsible for memory acquisition.  相似文献   

6.
Numerous studies indicate that sleep deprivation alters energy expenditure. However, this conclusion is drawn from indirect measurements. In the present study, we investigated alterations of energy expenditure, body composition, blood glucose levels, plasma insulin, adrenocorticotropic hormone (ACTH) and corticosterone levels immediately after 4 days of sleep deprivation or after 4 days of sleep recovery. Rats were sleep deprived or maintained in a control environment (groups sleep-deprived/deprivation and control/deprivation). One half of these animals were sacrificed at the end of the deprivation period and the other half was transported to metabolic cages, where they were allowed to sleep freely (groups sleep-deprived/recovery and control/recovery). At the end of the sleep recovery period, these rats were sacrificed. After sleep deprivation, sleep-deprived rats exhibited loss of body weight, augmented energy expenditure and reduced metabolic efficiency compared to control rats. These alterations were normalised during the sleep recovery period. The body composition of sleep-deprived rats was altered insofar as there was a loss of fat content and gain of protein content in the carcass compared to control rats. However, these alterations were not reversed by sleep recovery. Finally, plasma levels of insulin were reduced during the sleep deprivation period in both control and sleep deprived groups compared to the recovery period. After the deprivation period, plasma ACTH and corticosterone levels were increased in sleep-deprived rats compared to control rats, and although ACTH levels were similar between the groups after the sleep recovery period, corticosterone levels remained elevated in sleep-deprived rats after this period. By means of direct measurements of metabolism, our results showed that sleep deprivation produces increased energy expenditure and loss of fat content. Most of the alterations were reversed by sleep recovery, except for corticosterone levels and body composition.  相似文献   

7.
Sleep deprivation (SD) causes detrimental effects to the body, such as memory impairment and weight loss. SD also changes the concentration of inflammatory mediators such as cytokines, which, in turn, can affect cognitive functioning. Thus, the objective of this study was to investigate the involvement of these inflammatory mediators in inhibitory avoidance memory deficit in sleep-deprived rats. Male Wistar rats were deprived of sleep by the modified multiple platform method for 96 h, while their respective controls remained in their housing cages. To assess memory after SD, all animals underwent training, followed by the inhibitory avoidance task test 24 h later. Also, the weight of each animal was recorded daily. In the first experiment, animals received an acute administration of lipopolysaccharide (LPS, 50 or 75 μg/kg i.p.) 3 h before the inhibitory avoidance training. In the experiment 2, the animals received acute or chronic administration of anti-IL-6 antibody (Ab, 2 μg/kg i.p.). The acute administration was performed 3 h before the inhibitory avoidance training, while the chronic treatment administrations were performed daily during the SD period. The 75 μg/kg dose of LPS, but not the 50 μg/kg dose, caused a significant attenuation of memory impairment in the sleep-deprived animals. Although the treatments with the anti-IL-6 Ab did not produce any significant changes in cognitive performance, the Ab attenuated weight loss in sleep-deprived animals. Taken together, these results suggest the involvement of inflammatory mediators in the modulation of memory deficit and weight loss that are observed in sleep-deprived rats.  相似文献   

8.
Extensive evidence has linked both paradoxical sleep (PS) and stress to memory processing. The purpose of the present study was to examine the effect of social instability stress on memory and to verify whether this stress interferes with the amnesic effect of PS deprivation using the modified multiple platform method. In addition to the PS-deprived group (put onto narrow platforms inside the deprivation tanks) two control groups were used: one of them remained in its home-cages and the other was placed inside the deprivation tanks, onto a grid that contained large platforms on it. All groups were subdivided in socially stable and unstable conditions. Immediately after 96 h of sleep deprivation, the animals were trained in three different memory tasks: inhibitory avoidance, classical fear conditioning to a discrete stimulus and contextual fear conditioning. Twenty-four hours after training, the animals were tested in order to assess task acquisition. The results showed that social instability did not impair the performance of animals nor interacted with PS deprivation in any of the tasks. Grid control animals presented a selective impairment in the inhibitory avoidance task and contextual, but not in the classical, fear conditioning task, compared to cage control rats. This finding could be due to the stress to which grid control animals were exposed (humidity and luminosity) during the manipulation period. PS-deprived animals exhibited poorer performance than the other groups in all tasks. As they also showed an increased threshold to shock-induced vocalisation, but not to flinch response, it is not possible to completely rule out a decreased response to noxious stimulation as a contributing factor for the present results with PS deprivation.  相似文献   

9.
'One night' sleep deprivation stimulates hippocampal neurogenesis   总被引:1,自引:0,他引:1  
Neurogenesis in the adult hippocampus can be up- or downregulated in response to a variety of physiological and pathological conditions. Among these, dysregulation of hippocampal neurogenesis has been recently implicated in the pathogenesis of depression. In addition, in animal models of depression, a variety of antidepressant treatments reverse that condition by increasing neurogenesis. As one night sleep deprivation is known to improve mood in depressed patients for at least 1 day, we investigated whether a comparable treatment may affect hippocampal neurogenesis in adult rats. Accordingly, rats were sleep-deprived by gentle handling for 12 h during their physiological period of rest, and were injected with bromodeoxyuridine 4 h and 2 h before the end of sleep deprivation. They were then perfused immediately thereafter, or after 15 days and 30 days. We found that 12 h sleep deprivation significantly increased cell proliferation and the total number of surviving cells in the hippocampal dentate gyrus soon after sleep deprivation, as well as 15 days and 30 days later, in comparison to control rats allowed to sleep. No changes were instead found in the subventricular zone of the lateral ventricles, indicating that 12 h sleep deprivation selectively triggers neurogenic signals to the hippocampus. The present data include acute sleep deprivation among the conditions which upregulate hippocampal neurogenesis and raise the possibility that such response could be implicated in the beneficial effects elicited in depressed patients by one night sleep deprivation. Thus, the findings could contribute to the understanding of the intriguing relationship between depression and neurogenesis in the adult brain.  相似文献   

10.
In the present study, we sought to examine the expression of the c-fos proto-oncogene in the cat brain after two different procedures of 24 h sleep deprivation. A first group of cats was gently sleep-deprived; they were awoken by a gentle touch of the hand (n = 5). A second group was sleep-deprived by the water tank technique which is a stressful deprivation (n = 4). A third group was placed 2 h on the water tank and was therefore stressed but not sleep-deprived (n = 2). A fourth group (control group of basal and unspecific Fos expression) was not sleep-deprived (n = 5). These four groups allowed us to separate Fos expression due to stress from Fos expression due to sleep deprivation. On the one hand, compared with controls cats, an important increase in Fos expression, detected by immunohistochemistry, was observed in the preoptic area of sleep-deprived cats by both gentle and stressful methods. On the other hand, there was a significant increase in Fos expression in the lateral hypothalamus of gently deprived cats as compared with control cats. These data indicate that c-fos expression can be employed as a marker of some putative homeostatic mechanism regulating sleep. The only sites in which there was a significant increased number of c-fos expressing neurons were located in the preoptic area which is known to be involved in sleep and in the lateral hypothalamic area.  相似文献   

11.
Early postnatal maternal deprivation is known to cause long-lasting neurobiological effects. Here, we investigated whether some of the cognitive aspects of these deficits might be related to a disruption of the cholinergic system. Pregnant Wistar rats were individually housed and maintained on a 12:12 h light/dark cycle with food and water freely available. The mothers were separated from their pups for 3 h per day from postnatal day 1 (PND-1) to PND-10. To do that, the dams were moved to a different cage and the pups maintained in the original home cage, which was transferred to a different room kept at 32 °C. After they reached 120–150 days of age, maternal-deprived and non-deprived animals were either sacrificed for brain acetylcholinesterase measurement, or trained and tested in an object recognition task and in a social recognition task as described by Rossato et al. (2007) [Rossato, J.I., Bevilaqua, L. R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., Cammarota, M. 2007. On the role hippocampal synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36–46] and Lévy et al. (2003) [Lévy, F., Melo. A.I., Galef. B.G. Jr., Madden, M., Fleming. A.S. 2003. Complete maternal deprivation affects social, but not spatial, learning in adult rats. Dev. Psychobiol. 43, 177–191], respectively. There was increased acetylcholinesterase activity in hippocampus and perirhinal cortex of the deprived animals. In addition, they showed a clear impairment in memory of the two recognition tasks measured 24 h after training. Oral administration of the acetylcholinesterase inhibitors, donepezil or galantamine (1 mg/kg) 30 min before training reversed the memory impairments caused by maternal deprivation. The findings suggest that maternal deprivation affects memory processing at adulthood through a change in brain cholinergic systems.  相似文献   

12.
Prolonged sleep deprivation in rats produces a characteristic syndrome consisting of an increase in food intake yet a decrease in weight. Moreover, the increase in food intake generally precedes the weight loss, suggesting that sleep deprivation may affect appetitive behaviors. Using the multiple platform method to produce rapid eye movement (REM) sleep deprivation, we investigated the effect of REM sleep deprivation (REMSD) on motivation for food reward utilizing food-reinforced operant tasks. In acquisition or maintenance of an operant task, REM sleep-deprived rats, with or without simultaneous food restriction, decreased responding for sucrose pellet reward in comparison to controls, despite the fact that all REM sleep-deprived rats lost weight. Furthermore, the overall response deficit of the REM sleep-deprived rats was due to a within-session decline in responding. REM sleep-deprived rats showed evidence of understanding the contingency of the task comparable to controls throughout deprivation period, suggesting that the decrements in responding were not primarily related to deficits in learning or memory. Rather, REM sleep deprivation appears to alter systems involved in motivational processes, reward, and/or attention.  相似文献   

13.
This study assessed the role of the nucleus basalis magnocellularis (NBM) in specific memory phases of two-way active avoidance conditioning. We evaluated the effects of NBM electrical stimulation applied during different phases of the avoidance task. Rats were trained in a 30-trial acquisition session, and were tested again 24 and 48 h later. NBM stimulation was applied at different stages of memory formation of the conditioning: (1) immediately before the first training session to determine the effects on acquisition of the two-way avoidance task; (2) immediately after the first training session to evaluate effects on memory consolidation; and (3) immediately before the 24-h retention session to analyze the effects on the retrieval process. NBM stimulation before training significantly improved the acquisition of the task, without affecting subsequent retention at either 24 or 48 h. Stimulation of the NBM immediately after the first training session slightly impaired performance in the 24-h retention session. Stimulation of the NBM immediately before the 24-h retention session did not affect performance in either the 24 or 48-h retention sessions. Therefore, the NBM may play a more important role in acquisition of memory in aversively motivated conditioning tasks than in consolidation or retrieval of such memories. These results are discussed in the context of attention enhancement and cortical and amygdala activation.  相似文献   

14.
Guan Z  Peng X  Fang J 《Brain research》2004,1018(1):38-47
Loss of sleep may result in memory impairment. However, little is known about the biochemical basis for memory deficits induced by sleep deprivation. Extracellular signal-regulated kinase (ERK) is involved in memory consolidation in different tasks. Phosphorylation of ERK is necessary for its activation and is an important step in mediating neuronal responses to synaptic activities. The aim of the present study was to determine the effects of total sleep deprivation (TSD) on memory and ERK phosphorylation in the brain. Rats were trained in Morris water maze to find a hidden platform (a spatial task) or a visible platform (a nonspatial task) after 6 h TSD or spontaneous sleep. TSD had no effect on spatial learning, but significantly impaired spatial memory tested 24 h after training. Nonspatial learning and memory were not impaired by TSD. Phospho-ERK levels in the hippocampus were significantly reduced after 6 h TSD compared to the controls and returned to the control levels after 2 h recovery sleep. Total ERK1 and ERK2 were slightly increased after 6 h TSD and returned to the control levels after 2 h recovery sleep. These alterations were not observed in the cortex after TSD. Protein phosphotase-1 and mitogen-activated protein kinase phosphatase-2, which dephosphorylates phospho-ERK, were also measured, but they were not altered by TSD. The impairments of both spatial memory and ERK phosphorylation indicate that the hippocampus is vulnerable to sleep loss. These results are consistent with the idea that decreased ERK activation in the hippocampus is involved in sleep deprivation-induced spatial memory impairment.  相似文献   

15.
Arginine-vasopressin (AVP) is involved in memory processes. The memory effects of AVP are mediated by neuronal mechanisms taking place in limbic-midbrain structures. Therefore, immunoreactive AVP (IR-AVP) was measured in hippocampus and amygdala of male Wistar rats during acquisition and retention of passive avoidance behavior.

IR-AVP concentration was decreased in the hippocampus immediately after the learning trial while IR-AVP content of the amygdala was not affected.

Animals that showed the passive avoidance response (good avoiders) at the 24 h or 120 h retention test had a reduced IR-AVP concentration in the hippocampus immediately after the test. However, IR-AVP content of the hippocampus was not different from that of non-shocked control animals when measured immediately before the 120 h retention test. Poor avoiders that showed only minor avoidance behavior did not differ in hippocampal IR-AVP content from non-shocked control animals. IR-AVP content of the amygdala was also not altered after the retention session.

These effects on IR-AVP content could only be shown in animals that were trained and habituated to the passive avoidance procedure. Such trained and habituated animals had an IR-AVP level in the hippocampus which did not differ from that of animals that were left undisturbed until sacrifice. When the animals were not trained, but place for the first time in the passive avoidance apparatus without being exposed to the learning trial, the hippocampal IR-AVP content was reduced. Under these circumstances additional exposure to the electric footshock did not lead to a measurable further decrease in IR-AVP content of the hippocampus. Again, IR-AVP content of the amygdala was not affected. It is proposed that learning and retention of a passive avoidance response is associated with a reduction in hippocampal IR-AVP content. The reduction ppossibly reflects increased secretory activity at the peptidergic terminal. This AVP released at the terminal might be instrumental in facilitating memory formation.  相似文献   


16.
It is well known that caffeine and sleep deprivation have opposing effects on learning and memory; therefore, this study was undertaken to determine the effects of chronic (4wks) caffeine treatment (0.3g/l in drinking water) on long-term memory deficit associated with 24h sleep deprivation. Animals were sleep deprived using the modified multiple platform method. The results showed that chronic caffeine treatment prevented the impairment of long-term memory as measured by performance in the radial arm water maze task and normalized L-LTP in area CA1 of the hippocampi of sleep-deprived anesthetized rats. Sleep deprivation prevents the high frequency stimulation-induced increases in the levels of phosphorylated-cAMP response element binding protein (P-CREB) and brain-derived neurotrophic factor (BDNF) seen during the expression of late phase long-term potentiation (L-LTP). However, chronic caffeine treatment prevented the effect of sleep-deprivation on the stimulated levels of P-CREB and BDNF. The results suggest that chronic caffeine treatment may protect the sleep-deprived brain probably by preserving the levels of P-CREB and BDNF.  相似文献   

17.
Inadequate sleep is prevalent in modern societies and is known to profoundly impair cognitive function. We examined the impact of 4 weeks of regular treadmill exercise on sleep deprivation induced spatial learning and memory, synaptic plasticity and related signaling molecules in area CA1 of the rat hippocampus. Rats were exercised on a treadmill and subsequently sleep-deprived for 24h using the modified multiple platform technique. Testing of learning and short-term memory performance in the radial arm water maze showed that although sedentary sleep deprived rats were severely impaired, exercised sleep deprived rats' performance was normal. Extracellular recording from area CA1 of anesthetized rats revealed that early phase LTP (E-LTP) was markedly impaired in the sedentary sleep deprived animals, but was normal in the exercised sleep deprived group. Additionally, immunoblot analysis of CA1 area before (basal) and after expression of E-LTP indicated that the significant down-regulation of the brain derived neurotrophic factor (BDNF) and phosphorylated calcium-calmodulin dependent protein kinase II (P-CaMKII) levels in sleep deprived animals was prevented by the regular exercise regimen. The results suggest that the regular exercise protocol prevents the sleep deprivation induced impairments in short-term memory and E-LTP by preventing deleterious changes in the basal and post-stimulation levels of P-CaMKII and BDNF associated with sleep deprivation.  相似文献   

18.
Two experiments using male rats evaluated the effects of a range of doses of the neurosteroid, pregnenolone sulfate (PS), or of the synthetic neurosteroid, ethylestrenol (E), on the retention of a passive avoidance task. The steroids either were given immediately after the training trial or 1 h before the first retention test. Retention tests were given both 24 h and 48 h after acquisition. In both experiments, separate groups of animals were trained under low or moderate footshock conditions. At all doses tested both PS and E improved retention under the low footshock conditions. In groups trained with the higher footshock, the steroid-treated groups performed no better than the vehicle controls. Indeed, there were suggestions that some doses impaired retention. These results seem best understood as an induction of bimodality or ‘turbulence’ in behavior as used in Chaos theory rather than a shift in an inverted U-shaped retention function. In the second experiment in which the steroids were given before retention testing, they were generally without effect.  相似文献   

19.
Previous studies suggest that stress associated to sleep deprivation methods can affect the expression of sleep rebound. In order to examine this association and possible mechanisms, rats were exposed to footshock stress during or immediately after a 96-h period of paradoxical sleep deprivation (PSD) and their sleep and heart rate were recorded. Control rats (maintained in individual home cages) and paradoxical sleep-deprived (PS-deprived) rats were distributed in three conditions (1) no footshock - NF; (2) single footshock - SFS: one single footshock session at the end of the PSD period (6-8 shocks per minute; 100ms; 2mA; for 40min); and (3) multiple footshock - MFS: footshock sessions with the same characteristics as described above, twice a day throughout PSD (at 7:00h and 19:00h) and one extra session before the recovery period. After PSD, animals were allowed to sleep freely for 72h. Additional groups were sacrificed at the end of the sleep deprivation period for blood sampling (ACTH, corticosterone, prolactin and catecholamine levels) and brain harvesting (monoamines and metabolites). Neither SFS nor MFS produced significant alterations in the sleep patterns of control rats. All PS-deprived groups exhibited increased heart rate which could be explained by increased dopaminergic activity in the medulla. As expected, PS deprivation induced rebound of paradoxical sleep in the first day of recovery; however, PSD+MFS group showed the highest rebound (327.3% above the baseline). This group also showed intermediate levels of corticosterone and the highest levels of prolactin, which were positively correlated with the length of PS episodes. Moreover, paradoxical sleep deprivation resulted in elevation of the serotonergic turnover in the hypothalamus, which partly explained the hormonal results, and in the hippocampus, which appears to be related to adaptive responses to stress. The data are discussed in the realm of a prospective importance of paradoxical sleep for processing of traumatic events.  相似文献   

20.
The present study investigated the involvement of two amygdala pathways, the stria terminalis (ST) and the ventral amygdalofugal pathway (VAF), in the effect of post-training electrical stimulation of the amygdala on retention. Rats with implanted amygdaloid electrodes and ST lesions, VAF transections or sham pathway operations, were trained on an inhibitory avoidance task and an active avoidance task. Electrical stimulation of the amygdala was given immediately after training and retention was tested 24 h later. In rats with sham ST lesions, post-training amygdaloid stimulation impaired retention in both tasks. Lesions of the ST did not significantly affect retention in the unstimulated rats. However, the ST lesions attenuated the amnestic effect of amygdaloid stimulation. In rats with sham VAF transections, stimulation of the amygdala impaired retention in the inhibitory avoidance task but enhanced retention in the active avoidance task. Transecting the VAF impaired retention performance of the unstimulated rats in the inhibitory avoidance task. However, the VAF transections did not alter the effect of amygdaloid stimulation: in both tasks, the retention performance of stimulated rats with VAF transections did not differ from that of stimulated rats with sham transections. These findings suggest that the ST may be involved in mediating the influences of the stimulated amygdala in modulating memory storage processing in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号