首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alteration of glutathione (GSH) homeostasis represents one of the earliest events during the commitment of stress-induced apoptosis. Extrusion of GSH into the extracellular milieu, in response to several oxidative stimuli, has been suggested as a molecular switch triggering apoptosis. However, chemical depletion of GSH does not induce cell death even though cytochrome c release from mitochondria has been observed. Here we report that U937 cells treated with buthionine sulfoximine (BSO) are able to survive and to inhibit the apoptotic program downstream of cytochrome c release. BSO treatment induces a highly significant decrease of GSH in both the cytosolic and mitochondrial fractions. The concomitant release of cytochrome c into the cytosol was associated with nuclear translocation of apoptosis-inducing factor. GSH depletion also resulted in reactive oxygen species production and in a specific increase of mitochondrial protein carbonyls. However, all these events were transiently present inside cells and efficiently counteracted by cell-repairing systems. We observed an increase in the proteasome activity and in the expression levels of heat shock protein 27 (Hsp27) and Hsp70. Moreover, nuclear factor-kappaB (NF-kappaB) was activated in our system as a survival cell response against the oxidative injury. Overall results suggest that activation of NF-kappaB and Hsp could allow cell adaptation and survival under exhaustive GSH depletion.  相似文献   

2.
3.
4.
HSF-1 is regulated at multiple molecular levels through intra- and intermolecular protein-protein interactions as well as by post-translational modification through phosphorylation. We have found that elevating intracellular calcium ion levels by exposure to the ionophore A23187 or thapsigargin inhibits the conversion of HSF-1 from a latent cytoplasmic form to its nuclear/DNA binding form. To examine a role for calcium/calmodulin regulated enzymes in this process, we examined the ability of specific inhibitors to abrogate the effects of calcium elevation. While the inhibitor of calmodulin dependent kinase II, KCN62 enhanced activation of HSF-1 during heat shock, it failed to block the inhibitory effects of calcium increase. By contrast, the immunosuppresant drugs cyclosporin A and FK506 abolished the effects of calcium elevation on HSF-1 activation. As the biological effects of the drugs are effected through inhibition of the calcium/calmodulin regulated phosphatase calcineurin, this suggests a role for calcineurin in antagonizing HSF-1 activity. The experiments suggest the existence of phosphorylated residue(s) in HSF-1 important in one or more of the processes that lead to activation (trimerization, nuclear localization, DNA binding) and which becomes dephosphorylated due to the activation of a calcium/calmodulin/calcineurin complex.  相似文献   

5.
6.
7.
The heat shock response of Borrelia burgdorferi B31 cells was characterized with regard to the heat shock proteins (Hsps) produced. Five to seven Hsps were detected by sodium dodecyl sulfate-gel electrophoresis and fluorography of proteins from cells labeled with [35S]methionine after shifts from 33 degrees C to 37 or 40 degrees C or from 20 degrees C to 33, 37, or 40 degrees C. Analysis of [35S]methionine-labeled Hsps by two-dimensional electrophoresis and autoradiography revealed 12 Hsps. Western immunoblot analysis with antisera to highly conserved Escherichia coli and Mycobacterium tuberculosis Hsps revealed a single 72-kilodalton (kDa) protein band that reacted with antibodies to E. coli DnaK and with antibodies to the M. tuberculosis 71-kDa Hsp homolog of E. coli DnaK. Two proteins with apparent molecular masses of 66 and 60 kDa reacted with antibodies against the M. tuberculosis 65-kDa Hsp homolog of E. coli GroEL. Human immune sera collected from patients with Lyme disease reacted with both the 66-kDa Hsp and the 60-kDa Hsp but failed to react with the 72-kDa Hsp. These data are discussed with regard to the possibility that host recognition of highly conserved epitopes of GroEL homologs of B. burgdorferi may result in autoimmune reactions causing arthritis and other pathologies.  相似文献   

8.
A defining characteristic of human ageing is the reduced ability to maintain homeostasis in the face of adverse environmental stresses. This progressive impairment may be a major cause for the increased incidence of infections, and general morbidity and mortality in the elderly. Heat shock proteins (hsps) or stress proteins, induced in response to hyperthermia and to various other physical, chemical and biological stressors, are often also expressed constitutively at a lower level and perform many essential functions in the cell. Here we investigate age-related changes in the heat induced expression of a comprehensive range of hsps at the translational level using primary human peripheral lymphocytes in short term culture. Our study reveals age-related attenuation in the response of the well characterised up-regulated molecular chaperone system hsp 70, the steroid-receptor binding hsp 90 and the chaperonin hsp 60. A diminution with age is also demonstrated in the heat induced response of hsps 105, 56, 47, 40, 27, and 16. Differentially down-regulated proteins at 100, 38, and 18 kDa were also noted.  相似文献   

9.
Bioincompatibility of peritoneal dialysis fluids (PDF) limits their use in renal replacement therapy. PDF exposure harms mesothelial cells but induces heat shock proteins (HSP), which are essential for repair and cytoprotection. We searched for cellular pathways that impair the heat shock response in mesothelial cells after PDF-exposure. In a dose-response experiment, increasing PDF-exposure times resulted in rapidly increasing mesothelial cell damage but decreasing HSP expression, confirming impaired heat shock response. Using proteomics and bioinformatics, simultaneously activated apoptosis-related and inflammation-related pathways were identified as candidate mechanisms. Testing the role of sterile inflammation, addition of necrotic cell material to mesothelial cells increased, whereas addition of the interleukin-1 receptor (IL-1R) antagonist anakinra to PDF decreased release of inflammatory cytokines. Addition of anakinra during PDF exposure resulted in cytoprotection and increased chaperone expression. Thus, activation of the IL-1R plays a pivotal role in impairment of the heat shock response of mesothelial cells to PDF. Danger signals from injured cells lead to an elevated level of cytokine release associated with sterile inflammation, which reduces expression of HSP and other cytoprotective chaperones and exacerbates PDF damage. Blocking the IL-1R pathway might be useful in limiting damage during peritoneal dialysis.  相似文献   

10.
11.
J Lin  L G Adams    T A Ficht 《Infection and immunity》1992,60(6):2425-2431
In an effort to define the heat shock response in the bovine intracellular pathogen Brucella abortus, a rough variant lacking extensive lipopolysaccharide was pulse-labeled with [35S]methionine following exposure to elevated temperatures. The major heat shock proteins observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography migrate at 70, 62, 18, and 10 kDa. The maximum response was observed between 42 and 46 degrees C and within 2 to 3 h of the shif in temperature and varied slightly for the different proteins. Accumulation of the 62-kDa heat shock protein (62-kDa Hsp) was observed to continue for up to 5 h following the shift in temperature. In an effort to better define the heat shock response and its potential relationship with protective immunity, genes encoding the major heat shock proteins were isolated from recombinant libraries constructed from B. abortus S19 and S2308 and sequenced. The 62-kDa Hsp shares more than 60% amino acid homology with members of the GroEL family and is immunoprecipitated with polyclonal antibodies to Escherichia coli GroEL and monoclonal antibodies to mycobacterial Hsp 65. Western blot (immunoblot) analysis with pooled sera from vaccinated and infected cattle revealed that the 62-kDa Hsp is a predominantly recognized antigen. The roles of these gene products during environmental stress and in protective immunity against brucellosis are under investigation.  相似文献   

12.
It is widely accepted that the heat shock response is critical for quality control of mature proteins. This function is carried out mainly by chaperones and proteases. Recently, a new group of conserved heat shock proteins essential for growth at high temperature has been characterized. These proteins are involved in regulating and maintaining efficient translation under heat shock.  相似文献   

13.
14.
Exposure of prokaryotic and eukaryotic cells to heat shock (hyperthermia) or to a number of diverse environmental stresses such as teratogens, anoxia, and inhibitors of oxidative phosphorylation results in the enhanced synthesis of a number of proteins which have been previously referred to as heat shock proteins (hsps). More recently, in view of the diverse types of agents that can induce these proteins, they have also been referred to as stress proteins. This phenomenon is one of the most basic regulatory mechanisms in living organisms. Exposure of Drosophila embryos, larvae, or pupae to these types of stresses also results in a variety of developmental abnormalities in the ensuing adult. Although the function(s) of these heat shock proteins has yet to be determined, they are widely thought to play an important role in cell survival and protection following some types of environmental stress. In our laboratory, we have developed an in vitro assay for detecting agents that act as teratogens, utilizing Drosophila embryonic cultures. Drosophila embryonic cells differentiate in vitro to a number of functional cell types including myotubes and ganglia. A number of drugs that have been shown to act as teratogens in mammals have also been found to inhibit muscle and/or neuron differentiation in Drosophila embryonic cultures. We have examined, by two-dimensional gel electrophoresis, the effects of such teratogens on protein synthesis in Drosophila embryonic cells. Inhibition of muscle and/or neuron differentiation correlates well with the induction of two proteins of about 20 kilodaltons. These are identical to two of the heat shock proteins (hsp 23, 22) as shown by electrophoretic mobilities and peptide mapping by partial proteolysis. Heat shock and other treatments such as exposure to some of the metal ions and ether induces the entire set of seven major heat shock proteins in the Drosophila embryonic cells. Dose-response studies of several teratogens show a correlation between the degree of inhibition of differentiation and the level of induction of hsps. Since heat shock proteins have been suggested as possibly serving a protecting role, our present studies are aimed at identifying the role of hsps in teratogenesis and investigating the differential regulation of heat shock genes in response to different external stimuli.  相似文献   

15.
16.
17.

Objectives

We looked at early pregnancy and parenthood as an opportunity to broaden our understanding of the reproductive health education needs met by adolescent girls.

Methods

We conducted an in-depth interview study with 12 adolescent mothers.

Results

To become a mother at a young age was perceived as meaningful to all the participants. The participants expressed a need to be addressed as adult parents, who want the best for their child. A variety of psychosocial and health needs emerged over a time span ranging from starting to be sexually active to after the child was born. Social isolation was found to be an important factor of vulnerability.

Conclusion

The health needs of adolescent mothers extend well beyond counselling around the decision to continue or terminate pregnancy, and subsequent information on contraception methods to avoid further pregnancies. Adolescent mothers need to be supported in their transition to parenthood, and special care should be provided to girls who are socially isolated.

Practice implications

We identified several avenues for health education and counselling to adolescent mothers, from primary prevention to reduce incidence of early pregnancies to tertiary prevention to reduce negative health outcomes for both mother and child.  相似文献   

18.
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multimolecular complex that plays a fundamental role in inflammation. Optimal activation of NLRP3 inflammasome is crucial for host defense against pathogens and the maintenance of immune homeostasis. Aberrant NLRP3 inflammasome activity has been implicated in various inflammatory diseases. Posttranslational modifications (PTMs) of NLRP3, a key inflammasome sensor, play critical roles in directing inflammasome activation and controlling the severity of inflammation and inflammatory diseases, such as arthritis, peritonitis, inflammatory bowel disease, atherosclerosis, and Parkinson's disease. Various NLRP3 PTMs, including phosphorylation, ubiquitination, and SUMOylation, could direct inflammasome activation and control inflammation severity by affecting the protein stability, ATPase activity, subcellular localization, and oligomerization of NLRP3 as well as the association between NLRP3 and other inflammasome components. Here, we provide an overview of the PTMs of NLRP3 and their roles in controlling inflammation and summarize potential anti-inflammatory drugs targeting NLRP3 PTMs.  相似文献   

19.
20.
Type I IFN are cytokines which play a central role in host resistance to viral or microbial infections and are important components linking innate and adaptive immunity. We and others have previously demonstrated that the production of IFN-beta by DC following bacterial infections or TLR triggering influences, in an autocrine manner, their maturation. In this study, we investigated whether IFN-beta release modulates the phenotype of the immature DC and their response to a subsequent TLR stimulation. The induction of CD86, HLA-DR, CD38 and B7H1 and the absence of CCR7 and CD83 expression upon IFN-beta treatment suggest that IFN-beta-primed DC remain at the site of infection acquiring an activated phenotype. These results prompted us to investigate the response of IFN-beta-primed DC to TLR stimulation. While IFN-beta pretreatment increases slightly the expression of maturation markers in TLR2- or TLR4-stimulated DC, it is able to modulate selectively the secretion of inflammatory and immuno-regulating cytokines. Interestingly, IL-27p28 subunit was induced by IFN-beta alone or during LPS-induced maturation of DC in a type I IFN-dependent manner through IFN regulatory factor-1 (IRF-1) activation. Taken together, our results shed light on the capacity of IFN-beta to finely tune DC response to invading pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号