首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Misfolding and aggregation of proteins are common threads linking a number of important human health problems, including various neurodegenerative disorders such as Parkinson’s disease in particular. The first and perhaps most important elements in most neurodegenerative processes are misfolding and aggregation of specific proteins. Despite the crucial importance of protein misfolding and abnormal interactions, very little is currently known about the molecular mechanism underlying these processes. Factors that lead to protein misfolding and aggregation in vitro are poorly understood, in addition to the complexities involved in the formation of protein nanoparticles with different morphologies (e.g. nanopores and other species) in vivo. A clear understanding of the molecular mechanisms of misfolding and aggregation will facilitate rational approaches to prevent protein misfolding mediated pathologies. To accomplish this goal and to elucidate the mechanism of protein misfolding, we developed a novel nanotechnology tool capable of detecting protein misfolding. We applied single molecule probing technique to characterize misfolding and self-assembly of α-synuclein dimers, which is the very first step of the aggregation process. Using AFM force spectroscopy approach, we were able to detect protein misfolding via enhanced interprotein interaction. Moreover, such an important characteristic as the lifetime of dimers formed by misfolded α-synuclein was measured. These data suggest that compared to highly dynamic monomeric forms, α-synuclein dimers are practically static and thus can play a role of aggregation nuclei for the formation of aggregates. Importantly, two different dissociation channels were detected suggesting that aggregation process can follow different pathways. The application of these findings for understanding of the aggregation phenomenon and the development of the disease is discussed.  相似文献   

2.
The etiologies of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, polyglutamine diseases, or prion diseases may be diverse; however, aberrations in protein folding, processing, and/or degradation are common features of these entities, implying a role of quality control systems, such as molecular chaperones and the ubiquitin-proteasome pathway. There is substantial evidence for a causal role of protein misfolding in the pathogenic process coming from neuropathology, genetics, animal modeling, and biophysics. The presence of protein aggregates in all neurodegenerative diseases gave rise to the hypothesis that protein aggregates, be it intracellular or extracellular deposits, may perturb the cellular homeostasis and disintegrate neuronal function (Table 1). More recently, however, an increasing number of studies have indicated that protein aggregates are not toxic per se and might even serve a protective role by sequestering misfolded proteins. Specifically, experimental models of polyglutamine diseases, Alzheimer's disease, and Parkinson's disease revealed that the appearance of aggregates can be dissociated from neuronal toxicity, while misfolded monomers or oligomeric intermediates seem to be the toxic species. The unique features of molecular chaperones to assist in the folding of nascent proteins and to prevent stress-induced misfolding was the rationale to exploit their effects in different models of neurodegenerative diseases. This chapter concentrates on two neurodegenerative diseases, Parkinson's disease and prion diseases, with a special focus on protein misfolding and a possible role of molecular chaperones.  相似文献   

3.
G protein-coupled receptors (GPCR) comprise the largest family of drug targets. This is not surprising as many signaling systems rely on this class of receptor to convert external and internal stimuli to intracellular responses. As is the case with other membrane proteins, GPCRs are subjected to a stringent quality control mechanism at the endoplasmic reticulum, which ensures that only correctly folded proteins enter the secretory pathway. Because of this quality control system, point mutations resulting in protein sequence variations may result in the production of misfolded and disease-causing proteins that are unable to reach their functional destinations in the cell. There is now a wealth of information demonstrating the functional rescue of misfolded mutant receptors by small nonpeptide molecules originally designed to serve as receptor antagonists; these small molecules ("pharmacoperones") serve as molecular templates, promoting correct folding and allowing the mutants to pass the scrutiny of the cellular quality control system and be expressed at the cell surface membrane. Two of these systems are especially well characterized: the gonadotropin-releasing hormone and the vasopressin type 2 receptors, which play important roles in regulating reproduction and water homeostasis, respectively. Mutations in these receptors can lead to well defined diseases that are recognized as being caused by receptor misfolding that may potentially be amenable to treatment with pharmacoperones. This review is focused on protein misfolding and misrouting related to various disease states, with special emphasis on these two receptors, which have proved to be of value for development of drugs potentially useful in regulating GPCR trafficking in healthy and disease states.  相似文献   

4.
Amyloidosis comprises a group of diseases characterized by the deposition of insoluble protein fibrils in specific organs and includes several serious medical disorders, such as Alzheimer's disease, prion-associated transmissible spongiform encephalitis, and type II diabetes. Despite the structural dissimilarity between the soluble proteins and peptides, these fibrils exhibit similar morphologies under electron microscopy with a characteristic "cross beta-sheet" pattern examined by x-ray fiber diffraction experiments. Many studies have revealed that each of these diseases is associated to a specific protein that is partially unfolded, misfolded, and aggregated. However, the detailed structures of the causative agents and the toxicity mechanisms are less known. This review summarizes recent studies in the conformational disorders leading to aggregation; including which proteins potentially cause conformational diseases, the aggregation mechanisms of these proteins, and recent researches on the conformational changes using advanced experiments or molecular dynamics simulations. Finally, current drug designs towards these protein conformational diseases are also discussed. It is believed that the advances in basic understanding of the mechanisms of conformational changes as well as biological functions of these proteins will shed light on the development and design of potential interfering compounds against amyloid formation associated with protein conformational diseases.  相似文献   

5.
Protein misfolding diseases have been classically understood as diffuse errors in protein folding, with misfolded protein arising autonomously throughout a tissue due to a pathologic stressor. The field of prion science has provided an alternative mechanism whereby a seed of pathologically misfolded protein, arising exogenously or through a rare endogenous structural fluctuation, yields a template to catalyze misfolding of the native protein. The misfolded protein may then spread intercellularly to communicate the misfold to adjacent areas and ultimately infect a whole tissue. Mounting evidence implicates a prion-like process in the propagation of several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and the tauopathies. However, the parallels between the events observed in these conditions and those in prion disease are often incomplete. The aim of this review was to examine the current state of knowledge concerning the mechanisms of protein misfolding and aggregation for neurodegeneration-associated proteins. In addition, possible methods of intercellular spread are described that focus on the hypothesis that released microvesicles function as misfolded protein delivery vehicles, and the therapeutic options enabled by viewing these diseases from the prion perspective.  相似文献   

6.
Neurodegenerative disorders of the aging population affect over 5 million people in the US and Europe alone. The common feature is the progressive accumulation of misfolded proteins with the formation of toxic oligomers. Previous studies show that while in Alzheimer's disease (AD) misfolded amyloid-beta protein accumulates both in the intracellular and extracellular space, in Lewy body disease (LBD), Parkinson's disease (PD), Multiple System Atrophy (MSA), Fronto-Temporal dementia (FTD), prion diseases, amyotrophic lateral sclerosis (ALS) and trinucleotide repeat disorders (TNRD), the aggregated proteins accumulate in the plasma membrane and intracellularly. Protein misfolding and accumulation is the result of an altered balance between protein synthesis, aggregation rate and clearance. Based on these studies, considerable advances have been made in the past years in developing novel experimental models of neurodegenerative disorders. This has been in part driven by the identification of genetic mutations associated with familial forms of these conditions and gene polymorphisms associated with the more common sporadic variants of these diseases. Transgenic and knock out rodents and Drosophila as well as viral vector driven models of Alzheimer's disease (AD), PD, Huntington's disease (HD) and others have been developed, however the focus for this review will be on rodent models of AD, FTD, PD/LBD, and MSA. Promising therapeutic results have been obtained utilizing amyloid precursor protein (APP) transgenic (tg) models of AD to develop therapies including use of inhibitors of the APP-processing enzymes beta- and gamma-secretase as well as vaccine therapies.  相似文献   

7.
Introduction: Conformational diseases are caused by structurally abnormal proteins that cannot fold properly and achieve their native conformation. Misfolded proteins frequently originate from genetic mutations that may lead to loss-of-function diseases involving a variety of structurally diverse proteins including enzymes, ion channels, and membrane receptors. Pharmacoperones are small molecules that cross the cell surface plasma membrane and reach their target proteins within the cell, serving as molecular scaffolds to stabilize the native conformation of misfolded or well-folded but destabilized proteins, to prevent their degradation and promote correct trafficking to their functional site of action. Because of their high specificity toward the target protein, pharmacoperones are currently the focus of intense investigation as therapy for several conformational diseases.

Areas covered: This review summarizes data on the mechanisms leading to protein misfolding and the use of pharmacoperone drugs as an experimental approach to rescue function of distinct misfolded/misrouted proteins associated with a variety of diseases, such as lysosomal storage diseases, channelopathies, and G protein-coupled receptor misfolding diseases.

Expert commentary: The fact that many misfolded proteins may retain function, offers a unique therapeutic opportunity to cure disease by directly correcting misrouting through administering pharmacoperone drugs thereby rescuing function of disease-causing, conformationally abnormal proteins.  相似文献   


8.
Protein misfolding is at the root of several genetic human diseases. These diseases do not stem from mutations within the active domain of the proteins, but from mutations that disrupt their three-dimensional conformation, which leads to their intracellular retention by the quality control apparatus of the cell. Facilitating the escape of the mutant proteins from the quality control system by lowering the temperature of the cells or by adding chemicals that assist folding (chemical chaperones) can result in proteins that are fully functional despite their mutation. The discovery that ligands with pharmacological selectivity (pharmacological chaperones) can rescue the proper targeting and function of misfolded proteins, including receptors, might help to develop new treatments for ‘conformational diseases’.  相似文献   

9.
Impairment of the ubiquitin-proteasome system (UPS) results in the failure to remove and degrade misfolded proteins and consequently causes the accumulation of misfolded proteins in the cell. The aberrant interactions between misfolded proteins and normal intracellular proteins are thought to underlie the pathogenesis in many neurodegenerative diseases. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an important component of the UPS. Its major function is related to mono-ubiquitin recycling and thereby, sustaining protein degradation. Mutations of the UCH-L1 gene and alterations of its proteins' activity have been found to associate with several neurodegenerative disorders. In this review, we will discuss a link between UCH-L1 and Parkinson's, Huntington's and Alzheimer's diseases. We will also present a potential strategy for the treatment of Alzheimer's disease by boosting endogenous UCH-L1 activity.  相似文献   

10.
The ability of proteins to fold into a defined and functional conformation is one of the most fundamental processes in biology. Certain conditions, however, initiate misfolding or unfolding of proteins. This leads to the loss of functional protein or it can result in a wide range of diseases. One group of diseases, which includes Alzheimer's, Parkinson's, Huntington's disease, and the transmissible spongiform encephalopathies (prion diseases), involves deposition of aggregated proteins. Normally, such protein aggregates are not found in properly functioning biological systems, because a variety of mechanisms inhibit their formation. Understanding the nature of these protective mechanisms together with the understanding of factors reducing or deactivating the natural protection machinery will be crucial for developing strategies to prevent and treat these disastrous diseases.  相似文献   

11.
Alzheimer's, Parkinson's, and Huntington's disease are complex neurodegenerative conditions with high prevalence characterized by protein misfolding and deposition in the brain. Considerable progress has been made in the last two decades in identifying the genes and proteins responsible for several human 'proteinopathies'. A wide variety of wild type and mutant proteins associated with neurodegenerative conditions are structurally unstable, misfolded, and acquire conformations rich in ?-sheets (?-state). These conformers form highly toxic self-assemblies that kill the neurons in stereotypical patterns. Unfortunately, the detailed understanding of the molecular and cellular perturbations caused by these proteins has not produced a single disease-modifying therapy. More than a decade ago, several groups demonstrated that human proteinopathies reproduce critical features of the disease in transgenic flies, including protein mis-folding, aggregation, and neurotoxicity. These initial reports led to an explosion of research that has contributed to a better understanding of the molecular mechanisms regulating conformational dynamics and neurotoxic cascades. To remain relevant in this competitive environment, Drosophila models will need to expand their flexible, innovative, and multidisciplinary approaches to find new discoveries and translational applications.  相似文献   

12.
Annexin A2 (AnxA2) was originally identified as a substrate of the pp60v-src oncoprotein in transformed chicken embryonic fibroblasts. It is an abundant protein that associates with biological membranes as well as the actin cytoskeleton, and has been implicated in intracellular vesicle fusion, the organization of membrane domains, lipid rafts and membrane-cytoskeleton contacts. In addition to an intracellular role, AnxA2 has been reported to participate in processes localized to the cell surface including extracellular protease regulation and cell-cell interactions. There are many reports showing that AnxA2 is differentially expressed between normal and malignant tissue and potentially involved in tumour progression. An important aspect of AnxA2 function relates to its interaction with small Ca2+-dependent adaptor proteins called S100 proteins, which is the topic of this review. The interaction between AnxA2 and S100A10 has been very well characterized historically; more recently, other S100 proteins have been shown to interact with AnxA2 as well. The biochemical evidence for the occurrence of these protein interactions will be discussed, as well as their function. Recent studies aiming to generate inhibitors of S100 protein interactions will be described and the potential of these inhibitors to further our understanding of AnxA2 S100 protein interactions will be discussed.  相似文献   

13.
The 512 protein kinases encoded by the human genome are a prime example of nature's ability to create diversity by introducing variations to a highly conserved theme. The activity of each kinase domain is controlled by layers of regulatory mechanisms involving different combinations of post‐translational modifications, intramolecular contacts, and intermolecular interactions. Ultimately, they all achieve their effect by favoring particular conformations that promote or prevent the kinase domain from catalyzing protein phosphorylation. The central role of kinases in various diseases has encouraged extensive investigations of their biological function and three‐dimensional structures, yielding a more detailed understanding of the mechanisms that regulate protein kinase activity by conformational changes. In the present review, we discuss these regulatory mechanisms and show how conformational changes can be exploited for the design of specific inhibitors that lock protein kinases in inactive conformations. In addition, we highlight recent developments to monitor ligand‐induced structural changes in protein kinases and for screening and identifying inhibitors that stabilize enzymatically incompetent kinase conformations.  相似文献   

14.
Accumulation of misfolded proteins and protein assemblies is associated with neuronal dysfunction and death in several neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease (HD). It is therefore critical to understand the molecular mechanisms of drugs that act on pathways that modulate misfolding and/or aggregation. It is noteworthy that the mammalian target of rapamycin inhibitor rapamycin or its analogs have been proposed as promising therapeutic compounds clearing toxic protein assemblies in these diseases via activation of autophagy. However, using a cellular model of HD, we found that rapamycin significantly decreased aggregation-prone polyglutamine (polyQ) and expanded huntingtin and its inclusion bodies (IB) in both autophagy-proficient and autophagy-deficient cells (by genetic knockout of the atg5 gene in mouse embryonic fibroblasts). This result suggests that rapamycin modulates the levels of misfolded polyQ proteins via pathways other than autophagy. We show that rapamycin reduces the amount of soluble polyQ protein via a modest inhibition of protein synthesis that in turn significantly reduces the formation of insoluble polyQ protein and IB formation. Hence, a modest reduction in huntingtin synthesis by rapamycin may lead to a substantial decrease in the probability of reaching the critical concentration required for a nucleation event and subsequent toxic polyQ aggregation. Thus, in addition to its beneficial effect proposed previously of reducing polyQ aggregation/toxicity via autophagic pathways, rapamycin may alleviate polyQ disease pathology via its effect on global protein synthesis. This finding may have important therapeutic implications.  相似文献   

15.
The transmissible spongiform encephalopathies could represent a new mode of transmission for infectious diseases--a process more akin to crystallization than to microbial replication. The prion hypothesis proposes that the normal isoform of the prion protein is converted to a disease-specific species by template-directed misfolding. Therapeutic and prophylactic strategies to combat these diseases have emerged from immunological and chemotherapeutic approaches. The lessons learned in treating prion disease will almost certainly have an impact on other diseases that are characterized by the pathological accumulation of misfolded proteins.  相似文献   

16.
17.
18.
Several human diseases are associated with the presence of toxic fibrillar protein deposits. These diseases called protein misfolding disorders, are characterized by the accumulation of misfolded protein aggregates in diverse tissues. Strong evidence indicates that the conversion of a normal soluble protein into a beta-sheet-rich oligomeric structure and further fibrillar aggregation are the key events in the disease pathogenesis. Therefore, a promising therapeutic target consists of the prevention and dissolution of misfolded protein aggregates. Peptides designed to specifically bind to the pathogenic protein and block and/or reverse its abnormal conformational change constitute a new class of drugs. This article reviews this approach, describing diverse compounds reported to have this activity.  相似文献   

19.
Transition of a physiological folded prion (PrPC) into a pathogenic misfolded prion (PrPSc) causes lethal neurodegenerative disorders and prion diseases. Antiprion compounds have been developed to prevent this conversion; however, their mechanism of action remains unclear. Recently, we reported two antiprion compounds, BMD29 and BMD35, identified by in silico and in vitro screening. In this study, we used extensive explicit‐solvent molecular dynamics simulations to investigate ligand‐binding inhibition by antiprion compounds in prion folding over misfolding behavior at acidic pH. The two antiprion compounds and the previously reported GN8 compound resulted in a remarkably stabilized intermediate by binding to the hotspot region of PrPC, whereas free PrPC and the inactive compound BMD01 destabilized the structure of PrPC leading to the misfolded form. The results uncovered a secondary structural transition of free PrPC and transition suppression by the antiprion compounds. One of the major misfolding processes in PrPC, alternation of hydrophobic core residues, disruption of intramolecular interactions, and the increase in residue solvent exposure were significantly inhibited by both antiprion compounds. These findings provide insights into prion misfolding and inhibition by antiprion compounds.  相似文献   

20.
Cadmium (Cd2+) is a heavy metal ion known to have a long biological half-life in humans. Accumulating evidence shows that exposure to Cd2+ is associated with neurodegenerative diseases characterized by the retention of ubiquitinated and misfolded proteins in the lesions. Here, we report that Cd2+ directly induces the formation of protein inclusion bodies in cells. The protein inclusion body is an aggresome, a major organelle for collecting ubiquitinated or misfolded proteins. Our results show that aggresomes are enriched in the detergent-insoluble fraction of Cd2+-treated cell lysates. Proteomic analysis identified 145 proteins in the aggresome-enriched fractions. One of the proteins is the highly conserved valosin-containing protein (VCP), which has been shown to colocalize with aggresomes and bind ubiquitinated proteins through its N domain (#1-200). Our subsequent examination of VCP's role in the formation of aggresomes induced by Cd2+ indicates that the C-terminal tail (#780-806) of VCP interacts with histone deacetylase HDAC6, a mediator for aggresome formation, suggesting that VCP participates in transporting ubiquitinated proteins to aggresomes. This function of VCP is impaired by inhibition of the deacetylase activity of HDAC6 or by over-expression of VCP mutants that do not bind ubiquitinated proteins or HDAC6. Our results indicate that Cd2+ induces the formation of protein inclusion bodies by promoting the accumulation of ubiquitinated proteins in aggresomes through VCP and HDAC6. Our delineation of the role of VCP in regulating cell responses to ubiquitinated proteins has important implications for understanding Cd2+ toxicity and associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号