首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several clinical trials have shown the beneficial effects of statins in the prevention of coronary heart disease. Additionally, statins promote apoptosis in vascular smooth muscle cells, in renal tubular epithelial cells and also in a variety of cell lines; yet, the effects of statins on cardiac fibroblast and myofibroblast, primarily responsible for cardiac tissue healing are almost unknown. Here, we investigated the effects of simvastatin on cardiac fibroblast and myofibroblast viability and studied the molecular cell death mechanism triggered by simvastatin in both cell types.

Methods

Rat neonatal cardiac fibroblasts and myofibroblasts were treated with simvastatin (0.1-10 μM) up to 72 h. Cell viability and apoptosis were evaluated by trypan blue exclusion method and by flow cytometry, respectively. Caspase-3 activation and Rho protein levels and activity were also determined by Western blot and pull-down assay, respectively.

Results

Simvastatin induces caspase-dependent apoptosis of cardiac fibroblasts and myofibroblasts in a concentration- and time-dependent manner, with greater effects on fibroblasts than myofibroblasts. These effects were prevented by mevalonate, farnesylpyrophosphate and geranylgeranylpyrophosphate, but not squalene. These last results suggest that apoptosis was dependent on small GTPases of the Rho family rather than Ras.

Conclusion

Simvastatin triggered apoptosis of cardiac fibroblasts and myofibroblasts by a mechanism independent of cholesterol synthesis, but dependent of isoprenilation of Rho protein. Additionally, cardiac fibroblasts were more susceptible to simvastatin-induced apoptosis than cardiac myofibroblasts. Thus simvastatin could avoid adverse cardiac remodeling leading to a less fibrotic repair of the damaged tissues.  相似文献   

2.
Exposure to the environmental toxicant arsenic is reported to produce a variety of effects including disruption of signal transduction pathways, cell proliferation, and apoptosis. This suggests that arsenite may not have specific targets but rather extremely broad effects. The present study was designed to test the hypothesis that arsenite alters signaling involved in focal adhesion structure and function in cultured myoblasts. H9C2 cells were exposed to 1, 2.5, 5, or 10 microM sodium arsenite for 48 h. MTT metabolism and staining by neutral red, trypan blue, and propidium iodide showed that sodium arsenite treatments of 5 microM or less were not overtly cytotoxic. At these doses, sodium arsenite did not affect the amount of polymerized actin in cells, rate of protein synthesis, or amounts of vinculin, talin, paxillin, and focal adhesion kinase (FAK) in cells. However, sodium arsenite-treated cells contained fewer focal adhesions with an altered distribution pattern. Sodium arsenite exposure caused a dose-dependent reduction in cell migration and cell attachment rates. The average area of substrate covered by a cell was also reduced, although the average volume of cells was not significantly affected. Sodium arsenite exposure resulted in reduced tyrosine phosphorylation of FAK, its substrate paxillin and the FAK auto- phosphorylation site, Tyr397. Our results indicate that sodium arsenite can alter focal adhesion structure and function, thus affecting cell attachment and migration and possibly other aspects of focal adhesion function such as integrin signaling. These diverse consequences may be mediated by a relatively specific inhibition of FAK tyrosine phosphorylation, modifying scaffolding proteins.  相似文献   

3.
Cell migration is a key process for the defense of pluricellular organisms against pathogens, and it involves a set of surface receptors acting in an ordered fashion to contribute directionality to the movement. Among these receptors are the integrins, which connect the cell cytoskeleton to the extracellular matrix components, thus playing a central role in cell migration. Integrin clustering at focal adhesions drives actin polymerization along the cell leading edge, resulting in polarity of cell movement. Therefore, small integrin-binding proteins such as the snake venom disintegrins that inhibit integrin-mediated cell adhesion are expected to inhibit cell migration. Here we review the current knowledge on disintegrin and disintegrin-like protein effects on cell migration and their potential use as pharmacological tools in anti-inflammatory therapy as well as in inhibition of metastatic invasion.  相似文献   

4.
Formaldehyde (FA) is an environmental pollutant and an endogenous product believed to be involved in tumorigenesis. However, the underlying mechanism of observed FA effects has not been clearly defined. Paxillin is a focal adhesion protein that may play an important role in several signaling pathways. Many paxillin-interacting proteins are involved in the regulation of actin cytoskeleton organization, which is necessary for cell motility events associated with diverse biological responses, such as embryonic development, wound repair and tumor metastasis. P53 is important in multicellular organisms, where it regulates the cell cycle and thus functions as a tumor suppressor that is involved in preventing cancer. In this study, we investigated the effects of FA on paxillin–tyrosine phosphorylation and P53 expression in Hela cells by Western blot and immunofluorescence. Western blot analysis revealed that nonlethal concentrations of FA (0.5, 1.0 and 2.0?mM, with the exposure time for 0.5, 1.0 and 2.0?h, respectively) had downregulated paxillin and wild-type p53 genes expression while upregulated paxillin–tyrosine phosphorylation significantly. At the same time, phosphotyrosine at the focal adhesion sites detected by immunofluorescence assay obviously increased in Hela cells incubated with 2.0?mM FA for 2?h. The results suggested that paxillin and p53 genes expression may be involved in FA-related adverse effects and the mechanism may be involved in paxillin–tyrosine phosphorylation.  相似文献   

5.
Statins are powerful agents for lowering plasma cholesterol levels, which act by inhibition of the 3-hydroxy-3-methylglutaryl-CoA reductase. Evidence suggests that some of the beneficial effects may depend on their anti-inflammatory properties, due to their ability to suppress the synthesis of isoprenoids. The present study analyzes the effects of short-term simvastatin exposure on monocyte migration, cell adhesion, and endothelial cytoskeleton. We demonstrate that simvastatin completely inhibited the migration of THP-1 monocytic cells after 24 h of incubation, being prevented by coincubation with mevalonate (MVA) and geranylgeranylpyrophosphate (GGPP), but not by farnesylpyrophosphate (FPP). Simvastatin decreased chemotaxis to 70% after one hour of incubation; surprisingly neither MVA, GGPP nor FPP were able to restore the effects of the drug. Simvastatin also significantly reduced the adhesion of monocytes to interleukin-1beta (IL-1beta)-activated endothelium to 80% after preincubation for 24 h. This effect was completely reversed by coincubation with MVA and GGPP, and partially with FPP. Unexpectedly, simvastatin increased adhesion molecules expression VCAM-1 and ICAM-1 on cytokine-stimulated endothelial cells. Examination of the actin cytoskeleton on IL-1beta-activated endothelial cells showed that both 4 and 24 h of incubation with simvastatin produced a complete disappearance of F-actin, being completely restored by MVA and partially by GGPP and FPP after 24 h of coincubation. We suggest that cytoskeleton disorganization in endothelial cells is important for inhibiting monocyte adhesion, altering the adhesion molecules function. Taken together, these results strongly support the beneficial anti-inflammatory properties of statins, contributing to the overall clinical effects.  相似文献   

6.
Cucurbitacins are recognised as anti-tumour agents because of their interference with STAT3 signalling, but may also affect the integrity of the actin cytoskeleton. In the present study the effect of cucurbitacin I was investigated in fibroblasts. In these cells, cucurbitacin I interfered with lysophosphatidic acid (LPA) signalling. It inhibited tyrosine phosphorylation of focal adhesion proteins and induction of connective tissue growth factor (CTGF), a potent profibrotic protein. Inhibition of Src family kinases with PP2, but not the inactive analogue PP3, also interfered with LPA-mediated tyrosine phosphorylation and induction of CTGF. Jak2-STAT3 signalling seemed to be the connecting link, because CTGF induction was sensitive to AG490, an inhibitor of Jak2, and cucurbitacin I, an inhibitor of Jak2 and STAT3. However, LPA did not activate tyrosine phosphorylation of STAT3. Furthermore, cucurbitacin I was as effective in STAT3 knock out cells as in control cells. Therefore, the inhibitory effect of cucurbitacin I was not related to inhibition of STAT3. Immunocytochemical analysis of cucurbitacin I-treated cells revealed disassembly of F-actin fibres, reorganisation into F-actin patches and resolution of focal adhesions. The phenotypic changes resembled changes observed after treatment of the cells with cytochalasin D, which has been shown to interfere with CTGF induction. Concentrations of cucurbitacin I, which have been shown to target Jak2-STAT3 signalling, thus, profoundly affect the actin cytoskeleton and may therefore modulate cell morphology, migration, adherence and gene expression also in non-tumour cells.  相似文献   

7.
Inhibition of adipogenesis by RGD-dependent disintegrin   总被引:1,自引:0,他引:1  
Adipogenesis plays a central role in obesity development. The processes of adipogenesis include migration, adhesion, proliferation and survival of preadipocytes and differentiation to mature adipocytes. Many of these biological functions are related to integrins. Here, we found that snake venom-derived arginine-glycine-aspartic acid (RGD)-containing disintegrin inhibited adipogenesis. Rhodostomin but not rhodostomin RGD mutants (RGE-Rn and AKGDWN-Rn) caused the detachment of primary cultured preadipocyte. Furthermore, rhodostomin also inhibited focal adhesion of preadipocyte, including the inhibition of the expression of focal adhesion kinase (FAK) and FAK phosphorylation, assembly of vinculin and reorganization of actin cytoskeleton. Cell viability of preadipocytes was decreased after rhodostomin treatment in a concentration-dependent manner. The results of flow cytometric analysis showed that rhodostomin induced cell apoptosis. In addition, chromatin condensation was observed in DAPI staining. The increase of Bax expression and activation of capsase-3 was detected following rhodostomin treatment. Addition of dexamethasone, IBMX and insulin induced differentiation of preadipocytes into mature adipocytes and treatment of cells with rhodostomin during the initial 3 days showed less mature adipocytes following 9-10 days of differentiating period. The triglyceride content and gene expression of peroxisome proliferators-activated receptor gamma (PPARgamma) and leptin also decreased in response to the treatment of rhodostomin. These results suggest that disintegrin inhibits processes of adipogenesis and may be developed to treat obesity.  相似文献   

8.
Lysophosphatidic acid (LPA) acts as a potent stimulator of tumorigenesis. Cell-cell adhesion disassembly, actin cytoskeletal alterations, and increased migratory potential are initial steps of colorectal cancer progression. However, the role that LPA plays in these events in this cancer type is still unknown. We explored this question by using Caco-2 cells, as colon cancer model, and treatment with LPA or pretreatment with different cell signalling inhibitors. Changes in the location of adherent junction proteins were examined by immunofluorescence and immunoblotting. The actin cytoskeleton organisation and focal adhesion were analysed by confocal microscopy. Rho-GTPase activation was analysed by the pull-down assay, FAK and Src activation by immunoblotting, and cell migration by the wound healing technique. We show that LPA induced adherent junction disassembly, perijunctional actin cytoskeletal reorganisation, and increased cell migration. These events were dependent on Src, Rho and Rock because their chemical inhibitors PP2, toxin A and Y27632, respectively, abrogated the effects of LPA. Moreover, we showed that Src acts upstream of RhoA in this signalling cascade and that LPA induces focal adhesion formation and FAK redistribution and activation in confluent monolayers. Focal adhesion formation was also observed in the front of migrating cells in response to LPA, and Rock inhibitor abolished this effect. In conclusion, our findings show that LPA modulates adherent junction disassembly, actin cytoskeletal disorganisation, and focal adhesion formation, conferring a migratory phenotype in colon tumour cells. We suggest a functional regulatory cascade that integrates RhoA-Rock and Src-FAK signalling to control these events during colorectal cancer progression.  相似文献   

9.
RGD-peptides can inhibit the binding of ligands to certain β3 integrins, αIIbβ3 and αvβ3, both of which are involved in neointimal hyperplasia that contributes to atherosclerosis and restenosis of arterial walls. Saxatilin, a disintegrin from a Korean snake (Gloydius saxatilis), interacts with integrins αIIbβ3 and αvβ3. It suppressed the adhesion of human coronary artery smooth muscle cells (HCASMCs) to vitronectin with an IC50 of 2.5 μM, and growth factor (PDGF-BB or bFGF)-induced proliferation was inhibited at an IC50 of 25 μM. Saxatilin disassembled the actin cytoskeleton of focal adhesion and induced cell detachment. This disassembly of focal adhesion in saxatilin-treated HCASMCs involved caspase-induced paxillin degradation. Saxatilin temporally phosphorylated FAK and ERKs and affected the cell cycle of HCASMCs by increasing CDK inhibitors (p21 and p27) and reducing cyclins (D1/2 and E). These results may have significant implications for integrin antagonistic therapy used for the treatment of atherosclerosis and restenosis.  相似文献   

10.
11.
胰岛素对心脏细胞增殖的影响及其在心肌肥厚中的作用   总被引:1,自引:1,他引:0  
目的 研究胰岛素对心肌细胞和心肌成纤维细胞增殖的影响 ,探讨其在心肌肥厚中的作用。方法 ①乳鼠心肌细胞和心肌成纤维细胞的培养及光镜、电镜和免疫细胞化学染色的鉴定。②两种细胞在不同浓度胰岛素作用下细胞数量、代谢活性与DNA合成 (WST 1、BrdUELISA法 )的测定及细胞周期分析 (流式细胞仪 )。结果 ①培养的心脏细胞分别为心肌细胞和成纤维细胞。②胰岛素作用下 ,心肌细胞的数量、WST 1与BrdU的OD值及S +G2 +M期细胞百分比无变化 (P >0 0 5 ) ;而心肌成纤维细胞的数量、WST 1与BrdU的OD值及S +G2 +M期细胞百分比均升高 (P <0 0 1或P <0 0 5 )。结论 胰岛素可促进培养的心肌成纤维细胞增殖 ,可能在心肌肥厚中起重要作用  相似文献   

12.
The 5,8-quinolinediones are precursors for producing multiple types of bioactive products. In this study, we investigated a new compound derived from 5,8-quinolinediones, 7-chloro-6-piperidin-1-yl-quinoline-5,8-dione (designated as PT-262), which markedly induced cytoskeleton remodeling and migration inhibition in lung carcinoma cells. Comparison with various cytoskeleton inhibitors, including paclitaxel, colchicine and phallacidin, the cell morphology following treatment with PT-262 was similar to phallacidin on the cell elongation and abnormal actin polymerization. However, PT-262 did not directly bind to actin filaments. ROCK (Rho-associated coiled-coil forming protein kinase) is a downstream effector of RhoA to mediate the phosphorylation of myosin light chain (MLC) and cytoskeleton reorganization. The RhoA–ROCK–MLC pathway has been shown to promote cancer cell migration and metastasis. Interestingly, PT-262 was more effective on inhibiting ROCK kinase activities than specific ROCK inhibitors Y-27632 and H-1152. PT-262 induced cytoskeleton remodeling and migration inhibition in A549 lung carcinoma cells. The total MLC and phosphorylated MLC proteins and stress fibers were blocked after treatment with PT-262. Nonetheless, the RhoA protein and GTPase activity were not altered by PT-262. A computational model suggests that PT-262 interacts with the ATP-binding site of ROCK protein. Together, these findings demonstrate that PT-262 is a new ROCK inhibitor.  相似文献   

13.
目的 探讨缺氧/复氧诱导心肌细胞所分泌的外泌体能否通过miR-208b调控心肌成纤维细胞的生物学功能。方法 心肌细胞进行缺氧/复氧处理后,收集所分泌外泌体与心肌成纤维细胞进行共培养,然后用荧光定量PCR、Western blot或酶联免疫吸附试验(ELISA)检测miR-208b、α-平滑肌肌动蛋白(α-SMA)、Collagen Ⅰ、Collagen Ⅲ和谷胱甘肽过氧化物酶4(GPX4)的表达,细胞计数试剂盒-8(CCK-8)检测细胞存活力,Transwell检测细胞迁移,商用试剂盒检测活性氧(ROS)、丙二醛(MDA)和Fe2+的累积。采用单因素方差分析(ANOVA)。结果 缺氧/复氧诱导心肌细胞和其分泌的外泌体高表达miR-208b,将此类外泌体加入到心肌成纤维细胞进行共培养时发现,心肌成纤维细胞可以摄入外泌体,从而上调自身miR-208b的表达,进而促进心肌成纤维细胞的存活力和迁移,增强α-SMA、Collagen Ⅰ和Collagen Ⅲ的表达,不过miR-208b的抑制物能显著减弱上述外泌体对心肌成纤维细胞生物学功能的调控作用。同时,缺氧/复氧心肌细胞源性外泌体能进一步增强铁死亡主要指标ROS、MDA和Fe2+的累积,抑制铁死亡关键调控因子GPX4的表达,不过miR-208b的抑制物能明显减弱Erastin和缺氧/复氧心肌细胞源性外泌体对铁死亡的影响作用。结论 缺氧/复氧心肌细胞源性外泌体能通过高表达的miR-208b而调控心肌成纤维细胞的生物学功能,表明miR-208b是介导心肌细胞和心肌成纤维细胞间通讯的关键分子。  相似文献   

14.
BACKGROUND AND PURPOSE: Endothelial cell proliferation, migration and adhesion are necessary for the formation of new blood vessels. We reported previously that baicalein strongly inhibited proliferation of rat heart endothelial cells and here we assess effects on migration and adhesion of these cells. EXPERIMENTAL APPROACH: Effects of baicalein on endothelial migration and adhesion were determined by in vitro wound assays and in modified Boyden chambers. Protein expression and subcellular distribution in rat heart endothelial cells were analysed by immunoblots and immunofluorescence staining. RESULTS: Pretreatment with baicalein for 48 h resulted in a concentration-dependent inhibition of endothelial migration, with an IC(50) of approximately 20 microM. Adhesion assays revealed that baicalein stimulated endothelial cell adhesion to fibronectin and vitronectin, effects blocked by the synthetic peptide Arg-Gly-Asp (RGD). Moreover, treatment with a blocking antibody against integrin alpha5beta1 drastically attenuated baicalein-mediated endothelial adhesion to fibronectin, but not to vitronectin. Furthermore, baicalein-mediated anti-migration effect and adhesion promotion could be partially reversed by the addition of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE). Western blot analysis indicated that baicalein increased expression levels of integrin-alpha5beta1, -alphavbeta3 and vinculin proteins. Immunofluorescence staining showed that baicalein induced a marked reorganization of actin stress fibres and the recruitment of vinculin and integrins to focal adhesion plaques, with consequently increased formation of focal adhesion contacts. CONCLUSIONS AND IMPLICATIONS: Baicalein markedly inhibited the migration and enhanced the adhesion of rat heart endothelial cells, possibly by up-regulation of the integrins (alpha5beta1 and alphavbeta3) and vinculin and by promotion of actin reorganization and focal adhesion contact formation.  相似文献   

15.
Scorpion venom may injure the lung either by direct toxic effects on alveolar cells or by indirect effects mediated by inflammatory response to the lung. We aimed at investigating the effect of Androctonus australis hector (Aah) venom on the cell adhesion, migration and actin shape on human alveolar epithelial cells (A549). We showed that Aah venom affects the cell integrity of A549 cells. This cytotoxicity is associated with enhanced cell spreading and a decrease of cell motility. Furthermore, the actin distribution is altered. These results bring new insights into the direct effect of Aah, linking lung injury to actin dynamics  相似文献   

16.
Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to “French Paradox”. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratory effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion.  相似文献   

17.
Yessotoxin (YTX) is a marine algal toxin previously shown to induce apoptosis in L6 and BC3H1 myoblast cell lines. Disassembly of the F-actin cytoskeleton and cleavage of tensin, a cytoskeletal protein localised at the focal adhesion contacts, appear during this apoptotic process. Tensin binds to actin filaments at the focal adhesion contacts and it links the actin cytoskeleton to the extracellular matrix (ECM). This binding occurs via integrin receptors and it makes tensin a potential link between the actin cytoskeleton and signal transduction. This study evaluates disruption in the F-actin cytoskeleton and change of tensin in myoblast cell lines exposed to 100 nM YTX up to 72 h. YTX treatment cleaves tensin and makes it translocate to the cell centre. Tensin has normally a role in the maintenance of cell shape and YTX-treatment may therefore alter the shape of the cells. YTX exposure also induces formation of lamellas associated with pseudopodia. Alternative linkages and cytoskeletal proteins anchoring the actin filaments to focal contacts remain to be identified.  相似文献   

18.
The aim of this study was to investigate the effects of a single exposure to whole cigarette smoke on human gingival fibroblast behavior. Normal oral mucosa fibroblasts were exposed once to whole cigarette smoke for 5, 15, or 30 min, and then were used to analyze cell adhesion, β1-integrin expression, cell growth and viability, cell capacity to contract collagen gel, and cell migration following wound infliction. Our findings showed that when gingival fibroblasts were exposed once to whole cigarette smoke, this resulted in a significant inhibition of cell adhesion, a decrease in the number of β1-integrin-positive cells, increased LDH activity in the target cells, and reduced growth. The smoke-exposed fibroblasts were also not able to contract collagen gel matrix and migrate following insult. Overall results demonstrate that a single exposure to whole cigarette smoke produced significant morphological and functional deregulation in gingival fibroblasts. This may explain the higher predisposition of tobacco users to oral infections and diseases such as cancer.  相似文献   

19.
Objectives Increasing evidence suggests that cardiomyocyte apoptosis has an important role in the transition from compensatory cardiac remodelling to heart failure. The synergistic effect of statins (3‐hydroxy‐3‐methylglutaryl‐coenzyme A reductase inhibitors) and angiotensin II (Ang II) type 1 receptor antagonists reduces the incidence of cardiovascular events. However, the anti‐apoptotic potential of the synergism between losartan and simvastatin in heart failure remains unexplored. Here, we demonstrate that Ang II‐induced apoptosis is prevented by losartan and simvastatin in neonatal cardiomyocytes. Methods The in‐vitro cardiomyocyte apoptosis model was established by co‐culturing neonate rat cardiomyocytes with Ang II. Cell viability was analysed by the MTT assay. Cell apoptosis was evaluated using fluorescence microscopy and flow cytometry. Apoptosis‐related proteins Bax and Bcl‐2 expressions were measured by flow cytometry detection. Key findings Incubation with 10?7 m Ang II for 48 h increased cardiomyocyte apoptosis and decreased cell viability. Losartan (10?5 m ) and simvastatin (10?5 m ), either alone or in combination, significantly decreased Ang II‐induced cardiomyocyte apoptosis and increased cell viability. The q values calculated by the probability sum test were 1.31 for cardiomyocyte apoptosis and 1.21 for cell viability. Ang II induced a significant increase in Bax protein expression, whereas Bcl‐2 protein expression was decreased. Losartan alone or in combination with simvastatin blocked the increased Bax expression and increased Bcl‐2 expression. However, simvastatin had no such effect. Conclusions Our data provide the first evidence that synergism of simvastatin with losartan prevents angiotensin II‐induced cardiomyocyte apoptosis in vitro. Synergism between simvastatin and losartan may provide a new therapeutic approach to the prevention of cardiac remodelling.  相似文献   

20.
Hepatotoxicity is the major complaint during therapy with lipid-lowering agents such as statins, although the cellular mechanisms underlying the statin-induced liver injury are not fully understood. Using cultured human hepatocytes, we investigated the effects of lipophilic as well as hydrophilic statins on the cell viability. Lipophilic statins, including simvastatin, lovastatin, cerivastatin, fluvastatin and atorvastatin, reduced the viability of hepatocytes as assessed by the mitochondrial enzyme activity to reduce WST-8, however, a hydrophilic pravastatin did not cause cell injury. The simvastatin-induced loss of cell viability was attenuated by mevalonate or geranylgeranyl pyrophosphate. Simvastatin-induced DNA fragmentation and increased the number of cells stained with annexin V and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, both of which were reversed by caspase inhibitors such as zDEVD-fmk, zLEHD-fmk and zIETD-fmk. Consistent with these data, the activities of caspase-3, caspase-9 and caspase-8 were elevated by simvastatin. Simvastatin reduced the protein content and mRNA expression for bcl-2 without affecting bax mRNA expression. On the other hand, both lipophilic and hydrophilic statins significantly reduced the content of endogenous cholesterol. These findings suggest that lipophilic statins cause an apoptotic injury in human hepatocytes by stimulating caspase-3 subsequent to the activation of caspase-9 and caspase-8, in which the inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号