首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection with the intracellular protozoan parasite Toxoplasma gondii causes serious public health problems and is of great economic importance worldwide. Microneme proteins which are responsible for adhesion and invasion have been implicated as vaccine candidates. In this study, we constructed a DNA vaccine expressing microneme protein 6 (MIC6) of T. gondii, and evaluated the immune response it induced in Kunming mice. The gene sequence encoding MIC6 was inserted into the eukaryotic expression vector pVAXI. We immunized Kunming mice intramuscularly. After immunization, we evaluated the immune response using lymphoproliferative assay, cytokine and antibody measurements, and the survival times of mice challenged lethally. The results showed that the group immunized with pVAX-MIC6 developed a high level of specific antibody responses against T. gondii lysate antigen (TLA), a strong lymphoproliferative response, and significant levels of IFN-γ, IL-2, IL-4 and IL-10 production, compared with the other groups immunized with empty plasmid or phosphate-buffered saline, respectively. These results demonstrate that pVAX-MIC6 induces significant humoral and cellular Th1 immune responses. After lethal challenge, the mice immunized with the pVAX-MIC6 showed an increased survival time (13.3 ± 1.2 days) compared with control mice died within 7 days of challenge. Our data demonstrate, for the first time, that MIC6 triggered a strong humoral and cellular response against T. gondii, and that the antigen is a potential vaccine candidate against toxoplasmosis, worth further development.  相似文献   

2.
Infections with the intracellular protozoan parasite Toxoplasma gondii pose a serious public health problem and are of great economic importance worldwide. The parasite rhoptry protein 5 (ROP5) has been implicated as a major virulence factor that reduces the accumulation of immunity-related GTPases (IRG) in parasitophorous vacuole membrane (PVM), which maintains PVM integrity and evades IFNγ-mediated killing by intracellular parasites. To study the immunoprotective value of ROP5, BALB/c mice were immunized with a recombinant form of the protein administered alone or in combination with another promising vaccine antigen, rSAG1. All mice vaccinated with the recombinant antigens developed a high level of specific antibody responses against soluble tachyzoite antigens (STAg), a statistically significant increase of the splenocyte proliferation response, and significant levels of IFN-γ and IL-2 production. In contrast to rSAG1, which only stimulated the release of IFN-γ and IL-2, rROP5 induced the specific production of IL-10, the Th2-type cytokine, in addition to IFN-γ and IL-2. These results demonstrated that rROP5 could induce significant cellular and humoral (Th1/Th2) immune responses. Moreover, mice immunized with rROP5 displayed a prolonged survival time against a lethal challenge with the T. gondii RH strain. Additionally, vaccination with the mixture of rROP5 + rSAG1 resulted in higher levels of T. gondii-specific IgG antibodies and lymphocyte proliferative responses and conferred more efficient protection against T. gondii challenge compared to immunization with rROP5 or rSAG1 alone. Our studies show that recombinant ROP5 antigen may be a promising vaccine candidate against toxoplasmosis. To our knowledge, this is the first report to evaluate the immunoprotective value of ROP5.  相似文献   

3.
Zhou H  Min J  Zhao Q  Gu Q  Cong H  Li Y  He S 《Vaccine》2012,30(10):1800-1806
Previous immunological studies from our laboratory have demonstrated the potential role of Toxoplasma gondii antigens SAG1 and GRA2 as vaccine candidates. To further evaluate the vaccine's effects, a series of recombinant DNA vaccines pVAX1-SAG1, pVAX1-GRA2 and pVAX1-SAG1-GRA2, termed pSAG1, pGRA2 and pSAG1-GRA2, respectively, were constructed. A plasmid pVAX1-S/PreS2, termed pSPreS2 encoding hepatitis B virus (HBV) surface antigen (HBsAg) S and PreS2 as a novel genetic adjuvant, was also constructed. The expression abilities of those DNA plasmids were examined in HFF cells by Western blotting. Then BALB/c mice were intramuscularly immunized with DNA plasmids and followed by challenging with the highly virulent T. gondii RH strain. The results demonstrated that the recombinant DNA vaccine pSAG1-GRA2 was capable of eliciting high levels of antibodies, a Th1 type of immune response with significant production of IFN-γ and low levels of IL-4 or IL-10 in BALB/c mice, and partial protection against the acute phase of toxoplasmosis as compared to pSAG1, pGRA2 and controls. In addition, the adjuvant pSPreS2 formulated with DNA vaccine induced a Th1 type of immune response and therefore might be a novel genetic adjuvant to DNA vaccine for further investigation.  相似文献   

4.
The ideal vaccine to protect against toxoplasmosis in humans would include antigens that elicit a protective T helper cell type 1 immune response, and generate long-lived IFN-γ-producing CD8+ T cells. Herein, we utilized a predictive algorithm to identify candidate HLA-A02 supertype epitopes from Toxoplasma gondii proteins. Thirteen peptides elicited production of IFN-γ from PBMC of HLA-A02 supertype persons seropositive for T. gondii infection but not from seronegative controls. These peptides displayed high-affinity binding to HLA-A02 proteins. Immunization of HLA-A*0201 transgenic mice with these pooled peptides, with a universal CD4+ epitope peptide called PADRE, formulated with adjuvant GLA-SE, induced CD8+ T cell IFN-γ production and protected against parasite challenge. Peptides identified in this study provide candidates for inclusion in immunosense epitope-based vaccines.  相似文献   

5.
Toxoplasma gondii is an obligate intracellular protozoan parasite infecting mammals and birds including humans. Rhoptry protein 18 has been implicated as an important virulence factor. In this study, we constructed a DNA vaccine expressing rhoptry protein 18 (ROP18) of T. gondii, and evaluated the immune response and protective immunity in Kunming mice. The gene sequence encoding ROP18 was inserted into the eukaryotic expression vector pVAX I. Intramuscular immunization of mice with pVAX-ROP18 elicited specific humoral responses and stimulated lymphoproliferation (P < 0.05). The cellular immune response was associated with the production of IFN-γ, indicating that a Th1 type response was elicited, which was confirmed by the production of large amounts of IgG2a (P < 0.05). By the expression of the CD69, an activation marker of CD4+ and CD8+ T cells, we found that pVAX-ROP18 enhanced the activation of CD4+ and CD8+ T cells in lymphoid in mice. After lethal challenge, the mice immunized with the pVAX-ROP18 showed a significantly increased survival time (27.9 ± 15.1 days) compared with control mice which died within 7 days of challenge (P < 0.05). Our results show for the first time, that a ROP18 vaccine construct can enhance the T. gondii-specific CTL. Th1 responses and increased survival suggested that ROP18 is a promising vaccine candidate against infection with T. gondii.  相似文献   

6.
J Min  D Qu  C Li  X Song  Q Zhao  XA Li  Y Yang  Q Liu  S He  H Zhou 《Vaccine》2012,30(38):5631-5636
Effective vaccines against Toxoplasma gondii may contribute to preventing and controlling the spread of toxoplasmosis, which is important for improving outcomes of infections in humans and livestock animals. The dense granule antigen 7 (GRA7) of T. gondii might be an immunodominant antigen for a vaccine candidate. In the present study, a further exploration of its vaccine effect, a heterologous prime-boost vaccination strategy with a recombinant eukaryotic plasmid pEGFP-GRA7 and a recombinant protein GRA7 expressed from a prokaryotic plasmid pET30-GRA7, was performed in BALB/c mice. The data reveal that a DNA prime-protein boost vaccination induces both humoral and cellular immune responses against T. gondii associated with high levels of total IgG, IgG2a isotype and gamma interferon (IFN-γ). Challenge experiments further show that the DNA prime-protein boost vaccination significantly increases survival rate (60%), compared with controls in which all died within 8 days of challenge. Therefore, the DNA prime-protein boost vaccination based on GRA7 might be a promising regimen for further development of an effective vaccine against T. gondii.  相似文献   

7.
The Toxoplasma gondii serin protease inhibitor-1 (TgPI-1) is a dense granule antigen that showed to specifically inhibit trypsin, chymotrypsin and neutrophil elastase, suggesting a possible modulatory role during the parasite invasion process and on the development of the innate immune response. To study the immune-protective value of TgPI-1, C3H/HeN mice were immunized with a recombinant form of the antigen rTgPI-1 combined with alum. All immunized mice produced specific anti-rTgPI-1 immunoglobulins, with high IgG antibody titers and a mixed IgG(1)/IgG(2a) response, with predominance of IgG(1) production. The cellular immune response was associated with the production of IFN-gamma and IL-10 cytokines. Vaccinated mice displayed significant protection against an oral challenge either after a lethal infection with Me49 cysts (90% survival vs. 50%) and also after a non-lethal infection (58% reduction in brain parasite load) compared to the non-vaccinated control group. In conclusion, rTgPI-1 elicits a strong specific immune response providing partial protection against both T. gondii acute and chronic infection, so it would be a good candidate in a vaccine against toxoplasmosis, which could be combined with other relevant parasite antigens.  相似文献   

8.
Toxoplasma gondii, the pathogen of toxoplasmosis, can infect most mammals and birds. The high incidence and severe or lethal damages of toxoplasmosis clearly indicate the need for the development of a more effective vaccine. We constructed a DNA cocktail, containing plasmids encoding the full-length SAG1 and ROP2 genes of T. gondii and evaluated its immune response and protective efficacy in comparison with single-gene vaccines and control groups. We immunized BALB/c mice intramuscularly three times. DNA cocktail elicited IgG and IFN-γ, TNF-α and IL-2 greater than single-gene plasmids and increased survival time against a lethal challenge with the highly virulent T. gondii RH strain. The current study shows that pc-SAG1+ pc-ROP2 as a cocktail DNA vaccine produces higher Th1 immune response than single-gene plasmids and cocktail DNA is effective to prime an enhanced and balanced specific immunity.  相似文献   

9.
The development of an effective vaccine against Toxoplasma gondii infection is an important issue due to the seriousness of the related public health problems, and the economic importance of this parasitic disease worldwide. Rhoptry neck proteins (RONs) are components of the moving junction macromolecular complex formed during invasion. The aim of this study was to evaluate the vaccine potential of RON4 using two vaccination strategies: DNA vaccination by the intramuscular route, and recombinant protein vaccination by the nasal route. We produced recombinant RON4 protein (RON4S2) using the Schneider insect cells expression system, and validated its antigenicity and immunogenicity. We also constructed optimized plasmids encoding full length RON4 (pRON4), or only the N-terminal (pNRON4), or the C-terminal part (pCRON4) of RON4. CBA/J mice immunized with pRON4, pNRON4 or pCRON4 plus a plasmid encoding the granulocyte-macrophage-colony-stimulating factor showed high IgG titers against rRON4S2. Mice immunized by the nasal route with rRON4S2 plus cholera toxin exhibited low levels of anti-RON4S2 IgG antibodies, and no intestinal IgA antibodies specific to RON4 were detected. Both DNA and protein vaccination generated a mixed Th1/Th2 response polarized towards the IgG1 antibody isotype. Both DNA and protein vaccination primed CD4+ T cells in vivo. In addition to the production of IFN-γ, and IL-2, Il-10 and IL-5 were also produced by the spleen cells of the immunized mice stimulated with RON4S2, suggesting that a mixed Th1/Th2 type immune response occurred in all the immunized groups. No cytokine was detectable in stimulated mesenteric lymph nodes from mice immunized by the nasal route. Immune responses were induced by both DNA and protein vaccination, but failed to protect the mice against a subsequent oral challenge with T. gondii cysts. In conclusion, strategies designed to enhance the immunogenicity and to redirect the cellular response towards a Th1 type response against RON4 could lead to more encouraging results.  相似文献   

10.
Tan F  Hu X  Luo FJ  Pan CW  Chen XG 《Vaccine》2011,29(15):2742-2748
The Toxoplasma gondii nucleoside triphosphate hydrolase (TgNTPase) has apyrase activity, degrading ATP to the di- and mono-phosphate forms and may be used by the parasite to salvage purines from the host cell for survival and replication. To study the immune-protective value of TgNTPase-II, BALB/c mice were immunized with a recombinant form of the antigen rTgNTPase-II combined with alum. All immunized mice produced specific anti-rTgNTPase-II immunoglobulins, with high IgG antibody titers and a mixed IgG1/IgG2a response, with predominance of IgG2a production. The cellular immune response was associated with the production of IFN-γ and IL-2 cytokines and the increase of the percentage of CD8+ T cells. Vaccinated mice displayed significant protection against acute infection with the virulent RH strain (P < 0.05 in survival rate) and also chronic infection with PRU cyst (62.9% and 57.6% reduction in brain parasite load for rTgNTPase-II + alum and rTgNTPase-II alone vaccinated groups) compared to the non-vaccinated control group. In conclusion, rTgNTPase-II elicits a strong specific Th1 immune response providing partial protection against both T. gondii acute and chronic infection.  相似文献   

11.
Toxoplasma gondii is an obligate intracellular protozoan parasite infecting humans, mammals and birds. Eukaryotic translation initiation factor (eIF4A) is a newly identified protein associated with tachyzoite virulence. To evaluate the protective efficacy of T. gondii eIF4A, a DNA vaccine (pVAX-eIF4A) encoding T. gondii eIF4A (Tg-eIF4A) gene was constructed. The expression ability of this recombinant DNA plasmid was examined in Marc145 cells by IFA. Then, Kunming mice were intramuscularly immunized with pVAX-eIF4A and followed by challenge infection with the highly virulent T. gondii RH strain. The results showed that vaccination with pVAX-eIF4A elicited specific humoral responses, with high IgG antibody titers and specific lymphocyte proliferative responses. The cellular immune response was associated with significant production of IFN-γ, IL-2 in Kunming mice, and a mixed IgG1/IgG2a response with predominance of IgG2a production, indicating that a Th1 type response was elicited after immunization with pVAX-eIF4A. In addition, the increase of the percentage of CD8+ T cells in lymphoid in mice suggested the activation of MHC class I restricted antigen presentation pathways. After lethal challenge, the mice vaccinated with the pVAX-eIF4A showed a significantly prolonged survival time (23.0 ± 5.5 days) compared with control mice which died within 7 days of challenge (P < 0.05). These results demonstrate that pVAX-eIF4A could elicit strong humoral, Th1-type cellular immune responses and increase survival time of immunized mice, suggesting that eIF4A is a promising vaccine candidate against acute T. gondii infection in mice.  相似文献   

12.
We created and produced a novel self-assembling nanoparticle platform for delivery of peptide epitopes that induces CD8+ and CD4+T cells that are protective against Toxoplasma gondii infection. These self-assembling polypeptide nanoparticles (SAPNs) are composed of linear peptide (LP) monomers which contain two coiled-coil oligomerization domains, the dense granule 7 (GRA720–28 LPQFATAAT) peptide and a universal CD4+T cell epitope (derived from PADRE). Purified LPs assemble into nanoparticles with icosahedral symmetry, similar to the capsids of small viruses. These particles were evaluated for their efficacy in eliciting IFN-γ by splenocytes of HLA-B*0702 transgenic mice and for their ability to protect against subsequent T. gondii challenge. This work demonstrates the feasibility of using this platform approach with a CD8+ epitope that binds HLA-B7 and tests the biological activity of potentially protective peptides restricted by human major histocompatibility complex (HLA) class I molecules in HLA transgenic mice.  相似文献   

13.

Background

The assays currently available for the detection of specific anti-Toxoplasma antibodies may vary in their abilities to detect serum immunoglobulins, due to the Lack of a purified standardized antigen. The aim of this study was evaluation the recombinant Toxoplasma gondii SAG1 antigen for the serodiagnosis of acute and chronic toxoplasmosis.

Methods

This study describes an ELISA using recombinant SAG1 for detection of IgM and IgG antibodies against Toxoplasma gondii in human sera. Genomic DNA of T. gondii (RH Strain) was isolated and PCR reaction was performed. Recovered DNA was cloned into PTZ57R cloning vector. The recombinant plasmid was detected by restriction analysis. The SAG1 gene was subcloned in the pET- 28a expression vector. Protein production was then induced with 1 mM isopropyl-D – thiogalactopyranoside (IPTG). A total of 204 sera were tested using a commercial IgG and IgM ELISA kit (Trinity, USA) as gold standard prior to testing them with the recombinant antigen.

Results

Tested sera were divided into the following groups:(a) The 74 T. gondii IgG positive (b) 70 T.gondii IgM positive (c) 60 sera who had no serological evidence of toxoplasmosis as negative sera.To determine the specificity of the test, we used other parasitic diseases including echinococusis (N=5), malaria (N=14), leishmaniasis (N=7),fasciolasis (N=4), sterengyloidiasis (N=1). Sensitivity and specificity of the generated recombinant IgG ELISA in comparison with commercial ELISA (Com ELISA) were 93% and 95%, and the sensitivity and specificity of the generated recombinant IgM ELISA were 87% and 95% respectively.

Conclusion

The results acquired here show that this antigen is useful for diagnostic purposes and could be replaced by lysed, whole cell antigens for diagnosis of chronic toxoplasmosis.  相似文献   

14.
Toxoplasma gondii is a significant zoonotic parasite which can cause congenital infection and abortion in warm-blooded animals and humans. Microneme protein 13 (MIC13) plays an important role in attachment and penetration of the host cell by T. gondii. In this study, a DNA vaccine expressing mic13 of T. gondii was constructed and its protective efficacy was evaluated in Kunming L615H2k mice. Immunization with pVAX-TgMIC13 induced a strong immune responses demonstrated by significant lymphocyte proliferation, cytokine production and antibody responses. Immunized mice showed increased survival time (21.3 ± 11.3 days) and reduced number of cysts in brain of mice (57.14%) after challenge with tachyzoites of the virulent T. gondii RH strain and cysts of the T. gondii PRU strain, respectively, demonstrating that T. gondii MIC13 is a potential vaccine candidate, worth being included in future vaccine development against acute and chronic T. gondii infection.  相似文献   

15.
The risk of blindness caused by ocular toxoplasmosis supports efforts to improve our understanding for control of this disease. In this study, the involvement of CD8+, CD4+, B cell, and IL-10 gene in the immune response of primary ocular infection with the temperature-sensitive mutant (ts-4) of the RH Toxoplasma gondii strain, and in the protective immunity of ocular ts-4 vaccination and challenge with RH strain was investigated in murine models utilizing inbred C57BL/6 mice-deficient in CD4+, CD8+, B cells (μMT), or IL-10 gene. Compared to naive mice, all WT and mutant mice had different degree of ocular pathological changes after ts-4 ocular infection, in which both CD8 KO and IL-10 KO mice showed the most severe ocular lesions. Immunized by ts-4 intracameral (i.c.) inoculation, all mutant mice had partially decreased vaccine-induced resistance associated with increased ocular parasite burdens after RH strain challenge. A significant increase of the percentages of B cells and CD8+ T cells in the draining lymph nodes were observed in WT and IL-10 KO mice after either infection or challenge. The levels of specific anti-toxoplasma IgG in both eye fluid and serum from all the mice were significantly increased after ts-4 i.c. immunization, except μMT mice. These results suggest that the avirulent ts-4 of T. gondii inoculated intracamerally can induce both ocular pathology and ocular protective immunity; CD4+, CD8+, B cell, and IL-10 gene are all necessary to the vaccine-induced resistance to ocular challenge by virulent RH strain, in which CD8+ T cells are the most important component.  相似文献   

16.

Background

Although some serological tests for the detection of Toxoplasma gondii-specific immunoglobulin are commercially available, better diagnostic tools are needed. The aim of present study was to evaluate the usefulness of the recombinant Toxoplasma gondii SAG1 antigen for the recognition of toxoplasmosis by ELISA.

Methods

This study was conducted in Cellular and Molecular Biology Research Centers, Shahid Beheshti University, M.C., Tehran, Iran in 2008-2009. Surface antigen 1 (SAG1), a tachyzoite stage-specific protein, was subcloned into an expression vector and was subsequently transformed into BL21 (DE3) pLysS competent bacterial cells. After inducing expression of the recombinant antigen, the protein product was purified using Ni-affinity chromatography. The immunoreactivity of recombinant SAG1 (rSAG1) was analyzed by SDS-PAGE and western blotting. The reactivity of the rec-SAG1 protein was evaluated using an ELISA.

Result

Sensitivity and specificity of the generated recombinant-ELISA (rec-ELISA) compared to a commercially available ELISA (com-ELISA) were 88.4% and 88%, respectively.

Conclusion

Recombinant SAG1 produced in E. coli is a promising antigen that can be used in diagnostic assays for the detection of specific antibodies against T. gondii.  相似文献   

17.
Chen N  Yuan ZG  Xu MJ  Zhou DH  Zhang XX  Zhang YZ  Wang XW  Yan C  Lin RQ  Zhu XQ 《Vaccine》2012,30(23):3478-3482
Ascariasis caused by Ascaris is the most common parasite problem in humans and pigs worldwide. No vaccines are available for the prevention of Ascaris infections. In the present study, the gene encoding Ascaris suum enolase (As-enol-1) was amplified, cloned and sequenced. Amino acid sequence alignment indicated that As-enol-1 was highly conserved between different nematodes and shared the highest identity (87%) with enolase from Anisakis simplex s.l. The recombinant pVAX-Enol was successfully expressed in Marc-145 cells. The ability of the pVAX-Enol for inducing immune protective responses against challenge infection with A. suum L3 was evaluated in Kunming mice. The immune response was evaluated by lymphoproliferative assay, cytokine and antibody measurements, and the reduction rate of recovery larvae. The results showed that the mice immunized with pVAX-Enol developed a high level of specific antibody responses against A. suum, a strong lymphoproliferative response, and significant levels of IFN-γ, IL-2, IL-4 and IL-10 production, compared with the other groups immunized with empty plasmid or blank controls, respectively. There was a 61.13% reduction (P<0.05) in larvae recovery compared with that in the blank control group. Our data indicated that A. suum enolase is a potential vaccine candidate against A. suum infection.  相似文献   

18.
Wang Y  Wang M  Wang G  Pang A  Fu B  Yin H  Zhang D 《Vaccine》2011,29(47):8619-8623
To develop a multiple antigenic peptide (MAP) vaccine against toxoplasmosis, tri-epitope MAP constructs were made in dimeric fashion. The constructs included one B-cell and two T-cell epitopes derived from Toxoplasma gondii antigens (SAG1, GRA4 and GRA1) situated in tandem through the GGG spacer sequence, with the latter positioned adjacent to a polylysine core. Immunization of BALB/c and Kunming mice with the MAP construct in Freund's adjuvant induced not only humoral immunes response but cellular responses. These responses were accompanied by significant levels of splenocyte proliferation and interferon gamma (IFN-γ) in vitro. After lethal challenge, vaccinated mice had increased survival time in comparison to unvaccinated controls. Our data demonstrate that a MAP construct could trigger strong humoral and cellular responses against T. gondii, and that this MAP is a vaccine candidate worth further development.  相似文献   

19.
Eko FO  Ekong E  He Q  Black CM  Igietseme JU 《Vaccine》2011,29(7):1472-1480
We tested the hypothesis that intramuscular immunization with a multisubunit chlamydial vaccine candidate will induce long lasting immune responses in mice. Accordingly, groups of female C57BL/6 mice were immunized intramuscularly with Vibrio cholerae ghosts (VCG) expressing the Poring B and polymorphic membrane protein-D proteins of Chlamydia trachomatis or a control antigen. Humoral and cell-mediated immune responses were evaluated following immunization and after live chlamydial infection. Immunization induced an anamnestic response characterized by chlamydial-specific IgG2a and IgA antibodies in sera and vaginal lavage as well as specific genital and splenic T cell responses. The results also revealed that the local mucosal and systemic cellular and humoral immune effectors induced in mice following immunization with the vaccine candidate are long lasting. Vaccinated mice cleared intravaginal challenge with 105 chlamydial inclusion forming units within 12 days compared to control mice, which shed up to 2 × 103 IFUs at this time point. Moreover, rechallenge of mice 98 days after resolution of the primary infection resulted in the recall and retention of a relatively high frequency of chlamydial-specific Th1 cells and IgG2a in the genital mucosa. These results provide the first evidence that a VCG-based multisubunit chlamydial vaccine is capable of effectively stimulating anamnestic systemic and mucosal immune responses in mice. The data support further vaccine evaluation and testing for induction of long-term protective immunity.  相似文献   

20.
The polymerase chain reaction amplification of a fragment of the B1 gene of Toxoplasma gondii coupled to hybridization was performed in 42 patients from Rio de Janeiro, Brazil. The results showed 50% of positivity in the IgM positive toxoplasmosis group, and 12.5% in the positive IgG and negative IgM individuals. The data presented here revealed a lack of specificity of the molecular approach, clearly indicating that the primers used may co-amplify human sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号