首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the effect of sodium carboxymethylcellulose (Na-CMC) and fucidic acid on the gel characterization for the development of sodium fucidate-loaded wound dressing. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and sodium carboxymethylcellulose (Na-CMC) using the freeze-thawing method. Their gel properties such as gel fraction, swelling, water vapor transmission test, morphology, tensile strength and thermal property were investigated. In vitro protein adsorption test and release were performed. Na-CMC decreased the gel fraction and tensile strength of the hydrogels, but increased the swelling ability, water vapor transmission rate, elasticity and porosity of hydrogels. Thus, the wound dressing developed with PVA and Na-CMC was more swellable, flexible and elastic than that with only PVA because of its cross-linking interaction with PVA. However, the drug had a negative effect on the gel properties of hydrogels but there were no significant differences. In particular, the hydrogel composed of 2.5% PVA, 1.125% Na-CMC and 0.2% drug might give an adequate level of moisture and build up the exudates on the wound area. Thus, this sodium fucidate-loaded hydrogel could be a potential candidate for wound dressing with excellent forming.  相似文献   

2.
目的 制备聚乙烯醇(PVA)/海藻酸钠(SA)-聚乙烯醇(PVA)/壳聚糖(CS)双层(PAPCS)水凝胶膜伤口敷料,并进行质量评价。方法 将PVA与SA以质量比2∶1混合,配制PVA/SA混合溶液;将PVA与CS分别以质量比1∶1、2∶1、3∶1、4∶1、5∶1混合,配制不同质量比的PVA/CS混合溶液;采用涂布法制备PAPCS双层水凝胶膜伤口敷料。通过水蒸气透过率、溶胀性能、保水性、力学性能、体外凝血性能和血液相容性考察对水凝胶膜的性能进行评价、筛选PVA与CS质量比;通过傅里叶变换红外光谱检测(FTIR)和扫描电子显微镜(SEM)对PAPCS水凝胶膜的结构和形貌进行表征;通过抑菌实验比较PAPCS以及PAPCS复合载碘交联环糊精金属有机骨架(I2@COF@PAPCS)的体外抗菌性能。结果 PVA与CS质量比为2∶1时,PAPCS水凝胶膜综合性能较好。PAPCS水凝胶膜为多孔结构,具有良好的溶胀性能、保水性以及力学性能;PAPCS水凝胶膜的水蒸气透过率为(2 643.76±91.62)g·m-2·d-1,接近理想范围;与PVA/SA相比,PAPCS的凝血指数显著降低(P<0.01),为(72.93±3.58)%,溶血率小于5%,具有促进血液凝固的能力且血液相容性良好;与PVA/SA相比,PAPCS对于金黄色葡萄球菌、大肠埃希菌均有明显抑制作用,抑菌圈直径分别为(11.89±0.22)、(12.28±0.25) mm;I2@COF@PAPCS对金黄色葡萄球菌、大肠埃希菌的抑菌圈直径分别为(21.95±1.47)、(18.89±0.81)mm,抑菌效果显著优于PAPCS(P<0.001)。结论 采用涂布法可成功制备双层PAPCS水凝胶膜敷料,其各项性能指标良好,具有明显的凝血、抑菌效果,与I2@COF复合使用,抑菌作用进一步增强。  相似文献   

3.
The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze–thaw method. Response surface methodology with Box–Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze–thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12?hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze–thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.  相似文献   

4.
Diabetes is one of the leading causes of impaired wound healing. The objective of this study was to develop a bee venom-loaded wound dressing with an enhanced healing and anti-inflammatory effects to be examined in diabetic rats. Different preparations of polyvinyl alcohol (PVA), chitosan (Chit) hydrogel matrix-based wound dressing containing bee venom (BV) were developed using freeze–thawing method. The mechanical properties such as gel fraction, swelling ratio, tensile strength, percentage of elongation and surface pH were determined. The pharmacological activities including wound healing and anti-inflammatory effects in addition to primary skin irritation and microbial penetration tests were evaluated. Moreover, hydroxyproline, glutathione and IL-6 levels were measured in the wound tissues of diabetic rats. The bee venom-loaded wound dressing composed of 10 % PVA, 0.6 % Chit and 4 % BV was more swellable, flexible and elastic than other formulations. Pharmacologically, the bee venom-loaded wound dressing that has the same pervious composition showed accelerated healing of wounds made in diabetic rats compared to the control. Moreover, this bee venom-loaded wound dressing exhibited anti-inflammatory effect that is comparable to that of diclofenac gel, the standard anti-inflammatory drug. Simultaneously, wound tissues covered with this preparation displayed higher hydroxyproline and glutathione levels and lower IL-6 levels compared to control. Thus, the bee venom-loaded hydrogel composed of 10 % PVA, 0.6 % Chit and 4 % BV is a promising wound dressing with excellent forming and enhanced wound healing as well as anti-inflammatory activities.  相似文献   

5.
The cross-linked hydrogel films containing sodium fucidate were previously reported to be prepared polyvinyl alcohol (PVA) and sodium carboxymethylcellulose (Na-CMC) using the freeze-thawing method and their physicochemical property was investigated. For the development of novel sodium fucidate-loaded wound dressing, here its in vivo wound healing test and histopathology were performed compared with the conventional ointment product. In wound healing test, the sodium fucidate-loaded composed of 2.5% PVA, 1.125% Na-CMC and 0.2% drug showed faster healing of the wound made in rat dorsum than the hydrogel without drug, indicating the potential healing effect of sodium fucidate. Furthermore, from the histological examination, the healing effect of sodium fucidate-loaded hydrogel was greater than that of the conventional ointment product and hydrogel without drug, since it might gave an adequate level of moisture and build up the exudates on the wound area. Thus, the sodium fucidate-loaded wound dressing composed of 5% PVA, 1.125% Na-CMC and 0.2% drug is a potential wound dressing with excellent wound healing.  相似文献   

6.
Polyvinyl alcohol (PVA)/sodium alginate (SA) hydrogel matrix-based wound dressing systems containing nitrofurazone (NFZ), a topical anti-infective drug, were developed using freeze-thawing method. Aqueous solutions of nitrofurazone and PVA/SA mixtures in different weight ratios were mixed homogeneously, placed in petri dishes, freezed at -20 degrees C for 18h and thawed at room temperature for 6h, for three consecutive cycles, and evaluated for swelling ratio, tensile strength, elongation and thermal stability of the hydrogel. Furthermore, the drug release from this nitrofurazone-loaded hydrogel, in vitro protein adsorption test and in vivo wound healing observations in rats were performed. Increased SA concentration decreased the gelation%, maximum strength and break elongation, but it resulted into an increment in the swelling ability, elasticity and thermal stability of hydrogel film. However, SA had insignificant effect on the release of nitrofurazone. The amounts of proteins adsorbed on hydrogel were increased with increasing sodium alginate ratio, indicating the reduced blood compatibility. In vivo experiments showed that this hydrogel improved the healing rate of artificial wounds in rats. Thus, PVA/SA hydrogel matrix based wound dressing systems containing nitrofurazone could be a novel approach in wound care.  相似文献   

7.
The Graphene Oxide (GO) incorporated polyvinyl alcohol/sodium alginate (PVA-SA) composites with curcumin were prepared by the solvent casting and electro-spinning techniques. The GO was incorporated into PVA-SA nano-fiber and film matrixes, and the performance of these nano-composites as drug carriers was investigated. The effects of production method (film or mat) and GO amount on the water absorption properties and delivery of curcumin behaviors were investigated. The swelling and releasing were studied at the specific interval times in deionized water and phosphate buffer solution (pH = 7.4), respectively. The release kinetics was evaluated to find a suitable mechanism of the release. Finally, the anticancer activity of composite nano-fibers on the cancer cells was investigated. The XRD and FTIR analyses confirmed nanocomposites structures, and the successful incorporation was shown by scanning electron microscopy (SEM). The results showed that addition of the GO to PVA/SA decreased swelling ratio of the films (up to 31%) and increased the swelling ratio of the mats (up to 37.5%). However, for both film and mat, increasing of the GO amount reduced the curcumin release. Drug release decreasing up to 22.5% was observed for film, while a very high release decreasing up to about 70% was seen for mat. Also, both film and mat structures showed significant anti-cancer activity on MCF-7 cells. The lower cell viability was about 40 and 30% for film and mat, respectively. The kinetics evaluations suggested a Korsmeyer-Peppas model and Fickian controlled drug release.  相似文献   

8.
目的 探讨创伤涂膜剂成膜溶液的优化处方.方法 选择聚乙烯醇(PVA)为成膜材料,采用正交试验设计方法,以PVA聚合度(A)、PVA浓度(B)和甘油含量(C)为考察因素,通过对成膜时间、黏度、水蒸汽透过率、抗张强度和断裂伸长率等指标的综合评价,筛选出最优成膜溶液组成.结果 正交试验极差分析和方差分析结果表明,三个因素对成膜性能的影响次序由大到小为:A>B>C.结论 最优水平搭配为A1B2C2,即由8%高黏度PVA和2%甘油组成的涂膜剂基质成膜性能最优.  相似文献   

9.
Ulmus davidiana var. japonica (UD) has widely been used in Korean traditional medicine for the treatment of various types of diseases including inflammation and skin wounds. The UD root bark powders possess gelling activity with an excellent capacity for absorbing water. This distinct property could make the UD root bark powders to be a great material for manufacturing a gel film specifically for the healing of large and highly exudating wounds (e.g., pressure sores and diabetic ulcers). In this research, we separated the UD root bark powder into 4 different samples based on their sizes and then tested their water absorption capacity and flowability. Based on these results, 75–150 μm sized and below 75 μm sized samples of UD root bark powders were chosen, and UD gel films were prepared. The UD gel films showed good thermal stability and mechanically improved properties compared with pullulan only gel film with excellent swelling capacity and favorable skin adhesiveness. Further, in the animal studies with the skin wound mice model, the UD gel films exhibited significant therapeutic effects on accelerating wound closure and dermal regeneration. Overall, this study demonstrated the applicability of UD root bark powders for hydrogel wound dressing materials, and the potential of UD gel films to be superior wound dressings to currently available ones.  相似文献   

10.
The aim of this study was to assess some permeability and swelling characteristics of free films prepared by combination of inulin as a bacterially degradable system and time- or pH-dependent polymers as a coating formulation for colonic drug delivery. Different free films were prepared by casting and solvent evaporation method. Formulations containing inulin with Eudragit RS, Eudragit RL, Eudragit RS-Eudragit RL, Eudragit FS and Eudragit RS-Eudragit S with different ratios of inulin were prepared. After preparation, free films were evaluated by water vapor transmission test, swelling experiment and permeability to indomethacin and theophylline in different media. Formulations containing Eudragit FS had high resistance to water vapor permeation; but were unable to protect premature swelling and drug release in simulated small intestine media. Also, combination of Eudragit RS and Eudragit S had no suitable characteristics for colon delivery. However, Eudragit RS and Eudragit RL in combination with inulin made free films which had more swelling and permeation of drug in the colonic medium rather than the other media. It was shown that formulations containing sustained release polymethacrylates in combination with inulin have more potential as a coating system for specific colon delivery compared with pH-dependent polymers.  相似文献   

11.
In this study, poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) blended with polyvinyl alcohol (PVA) was electrospun and then subjected to thermal crosslinking to produce PSSA-MA/PVA ion exchange nanofiber mats. The cationic drug neomycin (0.001, 0.01, and 0.1%, w/v) was loaded onto the cationic exchange fibers. The amount of neomycin loaded and released and the cytotoxicity of the fiber mats were analyzed. In vivo wound healing tests were also performed in Wistar rats. The results indicated that the diameters of the fibers were on the nanoscale (250 ± 21 nm). The ion exchange capacity (IEC) value and the percentage of water uptake were 2.19 ± 0.1 mequiv./g-dry fibers and 268 ± 15%, respectively. The loading capacity was increased upon increasing the neomycin concentration. An initial concentration of 0.1% (w/v) neomycin (F3) showed the highest loading capacity (65.7 mg/g-dry fibers). The neomycin-loaded nanofiber mats demonstrated satisfactory antibacterial activity against both Gram-positive and Gram-negative bacteria, and an in vivo wound healing test revealed that these mats performed better than gauze and blank nanofiber mats in decreasing acute wound size during the first week after tissue damage. In conclusion, the antibacterial neomycin-loaded PSSA-MA/PVA cationic exchange nanofiber mats have the potential for use as wound dressing materials.  相似文献   

12.
This study reports on the use of electrospun polyvinyl alcohol (PVA) nanofiber mats loaded with meloxicam (MX) as a transdermal drug delivery system. The amounts of MX loaded in the base PVA solution (10% w/v solution) were 2.5, 5, 10 and 20% weight, based on the dry weight of PVA (% wt). The average diameters of these fibers ranged from 121–185 nm. In all concentrations of MX loaded in spun PVA fiber mats, an amorphous nanodispersion of MX with PVA was obtained. Both the degree of swelling and the weight loss of the electrospun PVA mats were greater than those of the as-cast PVA films. The tensile strength of the as-spun fiber mats was lower than that of the as-cast PVA films, but the strain at the maximum of the as-spun fiber mats was about six times higher than that of the as-cast PVA films. The skin permeation flux of the MX permeated from MX-loaded as-spun PVA were significantly higher than from MX-loaded as-cast PVA films, and increased when the MX content in both MX-loaded as-spun PVA and MX-loaded as-cast PVA films was increased. Our research suggests a potential use for MX-loaded electrospun PVA mats as a transdermal drug delivery system.  相似文献   

13.
This study reports on the use of electrospun polyvinyl alcohol (PVA) nanofiber mats loaded with meloxicam (MX) as a transdermal drug delivery system. The amounts of MX loaded in the base PVA solution (10% w/v solution) were 2.5, 5, 10 and 20% weight, based on the dry weight of PVA (% wt). The average diameters of these fibers ranged from 121-185 nm. In all concentrations of MX loaded in spun PVA fiber mats, an amorphous nanodispersion of MX with PVA was obtained. Both the degree of swelling and the weight loss of the electrospun PVA mats were greater than those of the as-cast PVA films. The tensile strength of the as-spun fiber mats was lower than that of the as-cast PVA films, but the strain at the maximum of the as-spun fiber mats was about six times higher than that of the as-cast PVA films. The skin permeation flux of the MX permeated from MX-loaded as-spun PVA were significantly higher than from MX-loaded as-cast PVA films, and increased when the MX content in both MX-loaded as-spun PVA and MX-loaded as-cast PVA films was increased. Our research suggests a potential use for MX-loaded electrospun PVA mats as a transdermal drug delivery system.  相似文献   

14.
Acute injuries or wound is required the fast delivery of drug to control infections without any side effect. In this direction in the present investigation, antibiotic ciprofloxacin loaded hydrophilic biodegradable poly vinyl alcohol (PVA) and sodium alginate (NaAlg) electrospun composite nanofiber based transdermal patch was developed for local delivery of antibiotic drug. The antibiotic drug ciprofloxacin was loaded in it by active loading. The drug entrapped in the composite nanofibers was confirmed by the scanning electron microscopy and swelling behavior. The in vivo studies were carried on male rabbits by using the drug loaded and unloaded composite nanofibers transdermal patch and marketed one. It is observed that, in vitro activity provides a sustained and controlled release pattern of the drug from transdermal patch. The mechanism of drug release was also studied using different models. The nanofiber transdermal patch follows the Higuchi and Korsmeyer–Peppas model for drug release. The in vivo studies demonstrate that, wound healing takes place in less time as compared drug unloaded patch. Hydroxyproline produced in wound bed with time shows that it content is maximum in case drug loaded PAV-NaAlg patch. This demonstrates that wound healing rate is higher in case drug loaded PVA-NaAlg transdermal patch.  相似文献   

15.
双氯芬酸贴剂控释膜的研究   总被引:1,自引:0,他引:1  
用溶剂法制备了乙烯-醋酸乙烯共聚物(EVA),聚氨酯(PE)和聚乙烯醇-124(PVA-124)3种高分子膜,试验了双氯酸从卡波谱,海藻酸两种贮库凝胶经这3种高分子膜的扩散特性。结果表明,EVA膜具有良好的控释效果,PE膜的控释效果因贮库不同而有所不同,PVA-124膜的控释效果则料差;  相似文献   

16.
This study was designed to establish the composition of wound bandages based on Cerium nanoparticle (CeNP)-loaded polyvinyl alcohol (PVA) nanogels. The CeNP nanogel (Ce-nGel) was fabricated by the fructose-mediated reduction of Cerium oxide solutions within the PVA matrix. The influences of different experimental limitations on PVA nanogel formations were examined. The nanogel particle sizes were evaluated by transmission electron microscopy and determined to range from ∼10 to 50 nm. Additionally, glycerol was added to the Ce-nGels, and the resulting compositions (Ce-nGel-Glu) were coated on cotton fabrics to generate the wound bandaging composite. The cumulative drug release profile of the Cerium from the bandage was found to be ∼38% of the total loading after two days. Additionally, antibacterial efficacy was developed for Gam positive and negative microorganisms. Moreover, we examined in vivo healing of skin wounds formed in mouse models over 24 days. In contrast to the untreated wounds, rapid healing was perceived in the Ce-nGel-Glu-treated wound with less damage. These findings indicate that Ce-nGel-Glu-based bandaging materials could be a potential candidate for wound healing applications in the future.  相似文献   

17.
The objective of this study was to investigate the influence of various grades of fumed silicon dioxide on the drug release rate and physical aging of theophylline pellets coated with Eudragit RS 30 D and RL 30 D. Free films were assessed for both physicomechanical properties and water vapor permeability with respect to time and storage conditions. The release rate of theophylline was influenced by the physical properties of the silicon dioxide employed. As the particle size of the silica dioxide decreased, there was an increase in dispersion viscosity, as well as a decrease in the theophylline release rate from the coated pellets. Films prepared from formulas containing Aeroperl 300 had twice the water vapor transmission rate of films prepared from formulas containing Aerosil 200 VV and Cab-O-Sil M-5P and showed consistent moisture permeability values during storage for up to 1 month at 25 degrees C/0% relative humidity (RH). Scanning electron microscopy (SEM) imaging of pellets coated with a formulation containing Aerosil 200 VV or Cab-O-Sil M-5P demonstrated film structures that were homogenous, while those coated with a formulation containing Aeroperl 300 produced heterogeneous films with large particles of the excipient present within the polymeric matrix of the film. Stability in the drug release rate exhibited by pellets coated with a formulation containing Eudragit RS 30 D, 15% triethyl citrate (TEC), and 30% Aeroperl 300 was attributed to the stabilization of the moisture vapor transmission rate of the acrylic films. Increasing the concentration of Aeroperl 300 in the coating formulation increased the theophylline release rate from coated pellets.  相似文献   

18.
The different film thicknesses of the sodium alginate-magnesium aluminum silicate (SA-MAS) microcomposite films were prepared by varying volumes of the composite dispersion for casting. Effect of film thickness on thermal behavior, solid-state crystallinity, mechanical properties, water uptake and erosion, and water vapor and drug permeability of the microcomposite films were investigated. The film thickness caused a small change in thermal behavior of the films when tested using DSC and TGA. The crystallinity of the thin films seemed to increase when compared with the thick films. The thin films gave higher tensile strength than the thick films, whereas % elongation of the films was on the contrary resulted in the lower Young's modulus of the films when the film thickness was increased. This was due to the weaker of the film bulk, suggesting that the microscopic matrix structure of the thick films was looser than that of the thin films. Consequently, water uptake and erosion, water vapor permeation and drug diffusion coefficient of the thick films were higher than those of the thin films. The different types of drug on permeability of the films also showed that a positive charge and large molecule of drug, propranolol HCl, had higher lag time and lower diffusion coefficient that acetaminophen, a non-electrolyte and small molecule. This was because of a higher affinity of positive charge drug on MAS in the films. The findings suggest that the evaporation rate of solvent in different volumes of the composite dispersion used in the preparation method could affect crystallinity and strength of the film surface and film bulk of the microcomposite films. This led to a change in water vapor and drug permeability of the films.  相似文献   

19.
The objective of this study was to investigate the influence of various grades of fumed silicon dioxide on the drug release rate and physical aging of theophylline pellets coated with Eudragit® RS 30 D and RL 30 D. Free films were assessed for both physicomechanical properties and water vapor permeability with respect to time and storage conditions. The release rate of theophylline was influenced by the physical properties of the silicon dioxide employed. As the particle size of the silica dioxide decreased, there was an increase in dispersion viscosity, as well as a decrease in the theophylline release rate from the coated pellets. Films prepared from formulas containing Aeroperl® 300 had twice the water vapor transmission rate of films prepared from formulas containing Aerosil® 200 VV and Cab-O-Sil® M-5P and showed consistent moisture permeability values during storage for up to 1 month at 25°C/0% relative humidity (RH). Scanning electron microscopy (SEM) imaging of pellets coated with a formulation containing Aerosil® 200 VV or Cab-O-Sil® M-5P demonstrated film structures that were homogenous, while those coated with a formulation containing Aeroperl® 300 produced heterogeneous films with large particles of the excipient present within the polymeric matrix of the film. Stability in the drug release rate exhibited by pellets coated with a formulation containing Eudragit® RS 30 D, 15% triethyl citrate (TEC), and 30% Aeroperl® 300 was attributed to the stabilization of the moisture vapor transmission rate of the acrylic films. Increasing the concentration of Aeroperl® 300 in the coating formulation increased the theophylline release rate from coated pellets.  相似文献   

20.
BACKGROUND AND THE PURPOSE OF THE STUDY: The potential of pectin as a bacterially degradable polysaccharide for colon drug delivery has been demonstrated. Due to the high solubility and swelling properties of pectin in aqueous media, it is frequently used in combination with water insoluble polymers for targeting drugs to the colon. The aim of this study was to evaluate free films containing pectin as a bacterially-degradable polysaccharide in combination with Eudragit RL (ERL) and/or RS (ERS) as a coating formulation for colonic drug delivery. METHODS: Isolated free films comprising 20% pectin and 80% ERL or ERS and their combination in 1:1 ratio were prepared by casting method. Then, free films were evaluated by water vapor transmission (WVT), swelling and permeability experiments for theophylline and indomethacin in different media. RESULTS: Formulations containing ERL exhibited higher WVT, swelling and permeability compared with formulations containing ERS. The permeability of theophylline through free films composed of pectin and eudragit polymers in simulated colonic media was not significantly different from those obtained in other media. However indomethacin free films containing pectin and ERL showed higher permeation in simulated colonic fluid (SCF) compared to the other media. MAJOR CONCLUSION: Formulation containing pectin and ERL may be suitable as a coating formulation for colon targeted delivery of drugs of low solubility such as indomethacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号