首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary This study was undertaken to determine whether 1α-hydroxyvitamin D3 [1α(OH)D3] administration to chicks in vivo results in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] intestinal receptor occupancy and to compare the temporal characteristics of the physiological effects of 1α(OH)D3 and 1,25(OH)2D3 for several days after a single dose of either steroid. Occupied 1,25(OH)2D3 receptors of the chick duodenal mucosa were measured by the recently developed exchange assay procedure [J Biol Chem (1980) 255:9534–9537]. Within 2 h after 1α(OH)D3 injection in rachitic chicks, there was a significant elevation of 1,25(OH)2D3 receptor occupancy in the intestinal mucosa. This observation represents the first direct confirmation that this synthetic analog exerts biological effects through occupancy of 1,25(OH)2D3 receptors. Serum 1,25(OH)2D3 levels reached a 3-fold higher peak after 1,25(OH)2D3 injection (3.25 nmol) than after 1α(OH)D3 injection (6.5 nmol); further, after 1α(OH)D3 injection the peak was delayed by 2–4 h. However, serum 1,25(OH)2D3 levels remained elevated for only 3–6 h after 1,25(OH)2D3, compared to 48 h after 1α(OH)D3 injection. Occupied 1,25(OH)2D3 receptor levels paralleled serum 1,25(OH)2D3 levels at all times after administration of either steroid. At 24 h, duodenal vitamin D-dependent calcium binding protein (CaBP) levels were similarly elevated in both treatment groups, but by 48 and 72 h after 1α(OH)D3 administration CaBP and serum Ca2+, respectively, were more significantly elevated. These data confirm that 1α(OH)D3 induces its major biological effects via intracellular 1,25(OH)2D3 receptors and reinforce the concept that 25-hydroxylation is a prerequisite for these effects. These results also suggest that 1α(OH)D3 may become useful in the therapy for sustained treatment of vitamin D deficiency diseases.  相似文献   

2.
Summary Previous work has shown that vitamin D3 or 1,25-dihydroxy-vitamin D3 affect calcium content and fluxes in mitochondria of chick skeletal musclein situ. Studies were performed to investigate whether these effects are related to variations in the Ca2+ transport properties of mitochondrial membranes. Mitochondria isolated from skeletal muscle of vitamin D-deficient chicks and chicks dosed with 1,25(OH)2D3 for 3 or 7 days (50 ng/day) were employed. No changes in the rate and affinity for calcium of the Ruthenium Red-sensitive Ca2+ uptake system were detected after treatment with 1,25(OH)2D3. The metabolite did not cause either modifications in Ca2+ efflux from mitochondria preloaded with the cation induced by Na+ or blockage of mitochondria energy supply. Prior treatment of animals with vitamin D3 was also without effects. However, a significant stimulation of Ca2+ uptake by intact muscle preparations from the same experimental animals was observed in response to treatment with 1,25(OH)2D3 in vivo (50 ng/day, 3 days) orin vitro (10−10 M, 60 minutes). In addition, the Ca content of muscle mitochondria was markedly diminished in chicks treated with the sterol. It is suggested that the effects of 1,25(OH)2D3 on muscle mitochondrial Ca metabolism may be secondary to changes in cytoplasmic Ca2+.  相似文献   

3.
Summary This study presents measurements of serum vitamin D metabolites, calcium and phosphorus as well as measurements of the equilibrium dissociation constant for duodenal 1,25(OH)2D3 receptor in 15-, 18-, 19-, and 20-day chick embryos in comparison to that in 1- and 118-day-old chicks and to vitamin D-deficient chicks. The present results showed that: (a) serum 1,25(OH)2D and 24,25(OH)2D levels rise from 15 and 18 to days 19 and 20 of embryonic development while serum phosphate levels are stable; (b) serum calcium levels rise at hatching to adult levels; (c) the duodenal 1,25(OH)2D3 receptor is detectable in 15-day-old embryo and has a Kd similar to that of 118-day-old vitamin D-replete chicks; and (d) the activity of 1,25(OH)2D3 receptor in chick duodenal cytosol is maximal at hatching.  相似文献   

4.
Summary The ability of 1,25(OH)2D3 and of 24,25(OH)2D3 to prevent or to heal rickets in chicks was evaluated by studies of plasma biochemistry, growth plate histology, bone morphometry and microradiography, and bone mineralization. 1,25(OH)2D3 at a dose of 100 ng/day produced fewest abnormalities compared with vitamin D3-treated control chicks. Bone growth was slightly greater than vitamin D3-treated controls in chicks given a lower dose of this metabolite; the reverse was observed in chicks given a higher dose. 24,25(OH)2D3 was less effective than 1,25(OH)2D3 in preventing rickets even at doses as high as 400 ng/day. Treatment of rachitic chicks with doses of 24,25(OH)2D3 up to 300 ng/day produced no healing effect on the bone lesions, in marked contrast to the beneficial effects observed with 1,25(OH)2D3.  相似文献   

5.
We have reported that physiological dose (30pM-650pM) of 1,25-dihydroxyvitamin D3[1,25(OH)2D3] increased the unidirectional movement of45Ca2+ from the lumen to the venous effluent within a few minutes in perfused duodena from normal chicks, and hypercalcemia inhibited this rapid stimulatory effect on calcium transport mediated by 1,25(OH)2 D3. The purpose of the present study was to determine the effect of somatostatin on calcium transport in chicks. The basal Ca2+ transport, in the absence of 1,25(OH)2 D3, did not change when 10−8M to 10−6M of somatostatin was added to the perfusate. The effect of 1,25(OH)2D3 on calcium transport, however, was completely abolished on addtion of 10−6M somatostatin in the perfusate, and partially blocked on addition of 10−7M somatostatin and 10−8M somatostatin had no effect on 1,25(OH)2 D3 mediated calcium transport. These results suggest that somatostatin may decrease intestinal calcium transport mediated by the rapid direct action of 1,25(OH)2 D3.  相似文献   

6.
Summary Vitamin D-deficient chicken embryos were obtained by feeding laying hens a diet in which 5 μg 1,25(OH)2D3/kg feed were substituted for the vitamin D3 supplement in the control diet. Hatchability, total Ca and inorganic P concentration in blood, and tibial ash/dry weight ratio were determined in the vitamin D-deficient embryos and in embryos obtained from hens fed the control diet supplemented with 1100 IU vitamin D3/kg feed. After 5 weeks on the substituted diet the hens laid eggs that showed decreased hatchability in spite of excellent shell quality. All determinations in blood and bones were made on embryos of eggs laid after 6–12 weeks on the diets. On the 17th day of incubation the embryos derived from hens fed the substituted diet showed significant hypocalcemia and hyperphosphatemia and a low tibial ash/dry weight ratio. Injection of 1,25(OH)2D3 3 days before killing corrected the hypocalcemia of the deficient embryos. Those chicks that managed to hatch had normal levels of calcium and inorganic phosphate 1 day after hatching. These findings support previous suggestions by us and other authors that vitamin D metabolites are required by the embryo in order to mobilize calcium from the shell, and decreased hatchability in vitamin D-deficient embryos is related to a defect in calcium mobilization from the shell. While in previous studies a decrease in hatchability was the only parameter used to judge D deficiency of the embryos in our present studies, the deficiency is confirmed by demonstrating a deficit in mineral metabolism which is a more specific sign of D deficiency.  相似文献   

7.
We determined the quantitative relationships between graded oral dosing with vitamin D3, 25(OH)D3, and 1,25(OH)2D3 for short treatment periods and changes in circulating levels of these substances. The subjects were 116 healthy men (mean age, 28 + 4 years, with usual milk consumption of 40.47 l/day and mean serum 25(OH)D of 67 + 25 nmol/l). They were distributed among nine open-label treatment groups: vitamin D3 (25, 250 or 1250 mg/day for 8 weeks), 25(OH)D3 (10, 20 or 50 mg/day for 4 weeks) and 1,25(OH)2D3 (0.5, 1.0 or 1.0 mg/day for 2 weeks). All treatment occurred between January 3 and April 3. We measured fasting serum calcium, parathyroid hormone, vitamin D3, 25(OH)D and 1,25(OH)2D immediately before and after treatment. In the three groups treated with vitamin D3, mean values for circulating vitamin D3 increased by 13, 137 and 883 nmol/l and serum 25(OH)D increased by 29, 146 and 643 nmol/l for the three dosage groups, respectively. Treatment with 25(OH)D3 increased circulating 25(OH)D by 40, 76 and 206 nmol/l, respectively. Neither compound changed serum 1,25(OH)2D levels. However, treatment with 1,25(OH)2D3 increased circulating 1,25(OH)2D by 10, 46 and 60 pmol/l, respectively. Slopes calculated from these data allow the following estimates of mean treatment effects for typical dosage units in healthy 70-kg adults: an 8-week course of vitamin D3 at 10 mg/day (400 IU/day) would raise serum vitamin D by 9 nmol/l and serum 25(OH)D by 11 nmol/l; a 4-week course of 25(OH)D3 at 20 mg/day would raise serum 25(OH)D by 94 nmol/l; and a 2-week course of 1,25(OH)2D3 at 0.5 mg/day would raise serum 1,25(OH)2D by 17 pmol/l. Received: 4 August 1997 / Accepted: 14 October 1997  相似文献   

8.
Summary 1,25 Dihydroxyvitamin D3 has been shown to stimulate calcium fluxes across skeletal muscle membranes. The involvement of calmodulin in the effects of the metabolite was investigated. Primary cultures of chick embryo skeletal muscle myoblasts and soleus muscles from vitamin D-deficient or 1,25 (OH)2D3-treated chicks were used. Culture of myoblasts and vitamin D-deficient soleus with 1,25 (OH)2D3 (0.05 ng/ml) for 24 and 1 hour, respectively, significantly increased45Ca uptake by the preparations. In the presence of the calmodulin antagonists flufenazine or compound 48/80 in the uptake medium, no differences between control and treated cultures were observed. The calmodulin content of myoblasts and soleus homogenates and subcellular fractions derived therefrom was estimated by measuring their capacity to stimulate calmodulin-depleted cAMP phosphodiesterase. No changes in total calmodulin cellular content could be detected in response to 1,25(OH)2D3. However, the sterol produced an increase in calmodulin levels of microsomes, mitochondria, and crude myofibrillar fraction and a proportional decrease in cytosolic calmodulin concentration. The 1,25(OH)2D3-dependent changes in calmodulin distribution among subcellular fractions of soleus muscle were observed eitherin vivo orin vitro. The effectsin vitro were already detectable after 5 minutes of treatment with the sterol and parallel 1,25(OH)2D3-dependent changes in tissue Ca uptake. The results suggest that changes in calmodulin intracellular distribution may underly part of the mechanism by which 1,25(OH)2D3 affects muscle calcium transport.  相似文献   

9.
Summary The active vitamin D metabolite 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] causes marked suppression of both pre-proparathyroid hormone messenger RNA (pre-proPTH mRNA) and parathyroid hormone (PTH) secretion. These effects are dose dependent and reversible when tested in anin vitro primary tissue culture cell system using normal bovine parathyroid cells. In the current studies, the precursors of 1,25(OH)2D3 and the related metabolite 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], were used in the same culture system to test for possible regulatory effects. The results were compared with identically prepared cells exposed to 1,25(OH)2D3. In short-term studies (30–120 minutes), none of the vitamin D-related compounds produced any effect on PTH secretion. In long-term studies (24–48 hours, using primary tissue culture in the presence of test agents), neither vitamin D3 nor 25(OH)D3 affected PTH secretion or pre-proPTH mRNA over the concentration range 10−11–10−7M. On the other hand, 24,25(OH)2D3 produced significant suppression of both pre-proPTH mRNA (77% of control,P<.01) and PTH secretion (75% of control,P<.005) at 10−7 M. By comparison, 10−11 M 1,25(OH)2D3 produced levels of suppression (25–30%) of both pre-proPTH mRNA and PTH secretion comparable to 10−7 M 24,25(OH)2D3, while even greater suppression (40–50%) occurred at 10−9-10−7 M 1,25(OH)2D3. From these studies, we conclude that vitamin D3 and 25(OH)D3 do not have significant effects on PTH synthesis and secretion over the range of doses tested. Compared with 1,25(OH)2D3, 24,25(OH)2D3 exhibits mild suppression at pharmacologic concentrations. The effect of 24,25(OH)2D3 prabably occurs through weak interaction of 24,25(OH)2D3 with the 1,25(OH)2D3 receptor.  相似文献   

10.
11.
Summary Calcitriol (1,25(OH)2D3) has been shown, under certain conditions, to elicit anin vitro response in adult avian calvarium which may be interpreted as calcium uptake by the bone. The present investigation was undertaken to study the specificity of this response. Calvaria were removed from 6-week-old female Japanese quail and cultured for periods of up to 96 hours at 37°C in 5% CO2/95% air. 1,25(OH)2D3 induced a fall in the medium total and ionic calcium concentrations at both 48 hours and 96 hours of incubation; these responses were not blocked by the presence of 10−4 M acetazolamide. Bovine parathyroid hormone (bPTH (1–34)) at 10−7 M, and dibutyryl cyclic AMP (DBcAMP) at 10−4M, had no effect on the medium calcium. In contrast, forskolin at 10−4 M induced a marked fall in medium calcium concentrations, particularly at 48 hours. The specificity was also studied with respect to vitamin D3 and its two major metabolites. 1,25(OH)2D3 exhibited a bellshaped dose-response relationship with the maximal effect at 10−7 M. In contrast, the other two compounds elicited no effects at 10−7 M or 10−6 M; significant responses were observed at 10−5 M with both agents. In general, 25-dihydroxyvitamin D3 (25OHD3) was more potent than vitamin D3. These findings suggest that the medium calcium response to 1,25(OH)2D3, interpreted as calcium uptake by the cultured adult avian bone, is relatively specific among calcemic agents; the response was elicited by forskolin but not by bPTH(1–34) or DBcAMP. The potency ratio exhibited by the vitamin D3 analogs (1,25(OH)2D3>25OHD3>vitamin D3) reinforces the specificity claim.  相似文献   

12.
Summary The interrelation of glucocorticoids and 1,25 dihydroxycholecalciferol (1,25(OH)2D3) on intestinal calcium and phosphate absorption was investigated. The active and passive transport of calcium and phosphate was evaluated by thein situ intestinal loop technique. Administration of cortisone resulted in a decrease of the luminal fluid and an increase of the luminal calcium and phosphate concentration. Under active transport conditions, administration of cortisone resulted in a decrease of net calcium absorption through two mechanisms: (1) depressed vitamin D-dependent calcium absorption, (2) increased vitamin D-independent calcium backflux. The enhancement of bidirectional phosphate flux by cortisone was independent of 1,25(OH)2D3. An enhancement of water movement by cortisone resulted in an increase of luminal calcium and phosphate concentration which favors the passive diffusion of these ions. Enhanced calcium diffusion by cortisone compensates for the inhibitory effect of cortisone on vitamin D-dependent calcium transport. However, enhanced phosphate diffusion by cortisone is additive to the effect of 1,25(OH)2D3.  相似文献   

13.
Summary The effect of vitamin D metabolites on parathyroid hormone secretion was studied using rat parathyroid gland cultured in basal medium Eagle containing 5% serum obtained from thyroparathyroidectomized rat, 1 mM magnesium, and calcium concentration varying from 0.75–2.25 mM, and radioimmunoassay for rat parathyroid hormone (rPTH). 1,25 dihydroxycholecalciferol (1,25(OH)2D3), 5×10−10−2.5×10−8M, consistently decreased rPTH secretion in dose-related manner; the effect reached steady state after 24 hin vitro addition of 1,25(OH)2D3 and was also observed at different medium calcium concentrations (0.75, 1.25, 1.75 mM). Comparison of dose-responses for inhibitory activity of some vitamin D metabolites on rPTH secretion showed: 1,25(OH)2D3=1,24,25(OH)3D3>1α OHD3>25 OHD3. Cholecalciferol (10−5M), 24,25-dihydroxycholecalciferol (10−8−10−6M) and 25,26-dihydroxycholecalciferol (5×10−9−5×10−7M) did not inhibit rPTH secretion. Analysis of structural activity relation of vitamin D metabolites studied indicated that 1α or pseudo-1α hydroxylated metabolites or analogs were active in inhibiting rPTH secretion, while, non-1α hydroxylated metabolites were without or were weakly inhibitory only at very high concentrations. This study provides further evidence for a direct role of 1,25(OH)2D3 on a negative feedback loop for regulation of parathyroid gland function.  相似文献   

14.
22-Oxa-1α, 25-dihydroxyvitamin D3 (OCT) and 2β-(3-Hydroxypropoxy)-1α, 25-dihydroxyvitamin D3 (ED-71) are novel synthetic vitamin D3 analogues. In order to examine their calcemic actions on intestine and bone, we have investigated the effects of OCT and ED-71 on intestinal Ca transport, bone mobilization and plasma parathyroid hormone (PTH) level in vitamin D-deficient rats. The vitamin D-deficient rats were intravenously given either 6.25μg/kg or 0.2μg/kg of 1,25-D3, OCT or ED-71 and theirplasma Ca levels and intestinal Ca transport were measured periodically. At a high dose, 1,25(OH)2D3 and ED-71 showed a strong biphasic stimulation of intestinal Ca transport and bone mobilization, and reduced the plasma PTH levels to the normal level completely. On the other hand, OCT failed to suppress the PTH secretion although it exerted first phase action on the both intestinal Ca transport and bone mobilization in vitamin D-deficient rats. The reason why OCT failed to suppress the PTH secretion even at a high dose, has not yet been clarified, but it may be at least in part due to its weak calcemic action and short half-life in plasma.  相似文献   

15.
Summary Interaction among vitamin D3 metabolites on bone receptor sites is not known. Therefore, interaction between the most potent vitamin D3 metabolite, 1,25(OH)2D3, and the most abundant dihydroxymetabolite, 24R,25(OH)2D3, was studied on isolated rat fetal bone by measuring45Ca release from prelabeled bones. 24R,25(OH)2D3 at concentrations of 10–50 ng/ml caused marked inhibition of the bone-resorbing activity of 1,25 (OH)2D3 at concentrations of 10–50 pg/ml. 24S,25-(OH)2 (unnatural enantiometer), on the other hand, at a concentration of 100 ng/ml did not inhibit the bone-resorbing effect of 10 pg/ml 1,25(OH)2D3. 24R,25(OH)2D3 at a concentration of 20 ng/ml did not inhibit the45Ca-releasing effect of a submaximal concentration of PTH (500 ng/ml). Therefore, the inhibitory effect of 24R,25(OH)2D3 on the bone response to 1,25(OH)2D3 appeared to be specific and probably due to a competitive inhibitory effect. In addition, the inhibitory effect of 24R,25(OH)2D3 was weak, since it could be partially overcome by increasing the concentration of 1,25 (OH)2D3.  相似文献   

16.
Summary 25-hydroxycholecalciferol (25OHD3) and 1,25-dihydroxycholecalciferol (1,25(OH)2D3) at physiological concentrations exerted direct effects on Ca fluxes in cultured vitamin D-deficient chick soleus muscle and myoblasts. Isotopic desaturation curves of soleus muscle prelabeled with45Ca indicated that the action of 25OHD3 is localized in a slow-exchangeable Ca pool where it stimulates net Ca uptake. On the other hand, the predominant effects of 1,25(OH)2D3 consist in an increase of the rate constant of Ca efflux of this pool and in an increase of net Ca uptake in a fast-exchangeable pool. 24,25-dihydroxycholecalciferal proved to be inactive on both Ca uptake and efflux. In addition, 1,25(OH)2D3 significantly increased45Ca labeling of cultured chick myoblasts. These effects were accompanied by changes in the growth and differentiation of the cultures. The results suggest a direct involvementin vivo of 25OHD3 and 1,25(OH)2D3 on muscle cellular calcium.  相似文献   

17.
Summary The timed sequence of events following the oral administration of 1α-hydroxy vitamin D3 (1αOHD3) to rachitic chicks was compared to that following a comparable dose of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). RNA polymerase activity was maximally increased 20% by 1αOHD3 within 1 to 2 h and returned to control values after 8 h. Alkaline phosphatase activity was stimulated by 4 h and was maximal (3- to 5-fold increase) at 24 h. Calcium binding protein (CaBP) was detected initially within epithelial cells at the proximal end of the villus (just above the crypt) 6 to 8 h after 1αOHD3 administration, in epithelial cells lining the proximal half of the villus by 24 h, and in epithelial cells along nearly the entire villus by 48 h. At no time did goblet cells contain CaBP. Serum calcium concentrations were significantly elevated in 2 h and maximal by 12 h (an increase of 3.6 mg/dl). Calcium accumulation by the intestinal mucosa in vitro was increased by 6 to 8 h and maximal (60% increase over controls) at 24 h. Phosphate accumulation by the intestinal mucosa in vitro was increased by 6 h and maximal (105% increase over controls) between 8 and 24 h. 1,25(OH)2D3 increased CaBP and calcium accumulation by 4 h, 2 h sooner than did 1αOHD3. 1,25(OH)2D3 decreased serum calcium levels and increased serum phosphate levels at 2 h unlike 1αOHD3. No difference in the effects of these compounds on alkaline phosphatase activity, RNA polymerase activity, and phosphate accumulation could be demonstrated. These results are consistent with the possibility that 1αOHD3 may not require conversion to 1,25(OH)2D3 for all of its biological effects. The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. In conducting the research described in this report, the investigators adhered to the Guide for Laboratory Animal Facilities and Care, as promulgated by the Committee on the Guide for Laboratory Animal Facilities and Care, of the Institute of Laboratory Animal Resources, National Academy of Sciences-National Research Council.  相似文献   

18.
Summary Results from in vitro works suggest that 1,25- and 24,25-dihydroxyvitamin D3 (1,25-(OH)2D3 and 24,25-(OH)2D3) act on bone via different mechanisms. The present investigation was performed to study the effect of these two metabolites and of their precursor 25-hyxdroxyvitamin D3 (25-(OH)D3) on bone cAMP content in vitro. Rats' paired half calvaria were incubated under sterile conditions with one vitamin D3 derivative (10−13 to 10−9 M) or with ethanol (0.005 ml for 15 min to 24 h in 1 ml medium containing 0, 0.2, 1, 2, or 3 mM calcium. In some experiments: (a) cycloheximide (10−5M) was added simultaneously with the vitamin D3 metabolites; (b) 1–84 bPTH (5 × 10−8 M) was added for 5 or 15 min at the end of the 24 h incubation. Calvaria were immersed in 1 ml TCA 5% 4°C and homogenized. The cAMP was extracted with diethylether and measured by a competitive protein binding assay. Results bring further evidence for a particular effect of low doses of 24,25-(OH)2D3 (10−9 to 10−12M) and of 25-(OH)D3 (10−9 to 10−11M) on bone, different from that of 1,25-(OH)2D3: cAMP content was higher in 24,25-(OH)2D3- or 25-(OH)D3-treated and lower in 1,25-(OH)2D3-treated calvaria than in ethanol-treated ones with 1 mM calcium. The 1,25-(OH)2D3 effect persisted in calcium-free medium whereas 25-(OH)D3 and 24,25-(OH)2D3 effects could not be observed with 0 mM nor with 3 mM calcium. The required duration of the preincubation (over 1 h) as well as the inhibitory action of cycloheximide may suggest an involvement of protein synthesis in the vitamin D3 metabolites effects. Neither 1,25-(OH)2D3 nor 24,25-(OH)2D3 affected the PTH-induced increase in bone cAMP content.  相似文献   

19.
Summary The metabolism of vitamin D3 was studied in 3-week-old, vitamin D deficient chicks, fed since hatching with a diet containing 3% ammonium chloride, 1% calcium, and 0.7% phosphorus. When kidney homogenates were incubated in vitro with [3H]25-(OH)D3, the production of 1,25-(OH)2D3 was reduced by 40% in acidotic birds. During in vivo experiments, after injection of [3H]D3 (1220 pM/bird), the level of 1,25-(OH)2D3 was also reduced in blood plasma, intestine, and tibiae in acidotic chicks as compared with the controls. As a large increase in plasma phosphate was found during acidosis, these results are discussed in relation to the possible role of phosphorus in the control of 1,25-(OH)2D3 synthesis.  相似文献   

20.
Summary The effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) and its interaction with glucocorticoids to regulate bone cell growth were studied in osteoblast-like (OB) cell cultures. Owing to our earlier findings that species difference and cell density at the time of treatment modified hormonal responses, comparisons were made between rat and mouse cells and sparse and dense cultures. 1,25(OH)2D3 inhibited cell proliferation in both species regardless of cell density. The magnitude of inhibition was larger in mouse cells, but the sensitivity to 1,25(OH)2D3 was the same for both species. Other metabolites, 25(OH)D3 and 24R,25(OH)2D3, were >100-fold less potent than 1,25(OH)2D3 even in serum-free medium, which is similar to their ratio of affinity for the 1,25(OH)2D3 receptor. Dexamethasone, as previously shown, inhibited sparse and dense mouse cell cultures and sparse rat cell cultures while stimulating dense rat cell cultures to grow. The inhibitory actions of 1,25(OH)2D3 were not additive to the inhibitory dexamethasone effects. However, 1,25(OH)2D3 addition resulted in attenuation of the stimulatory effect of dexamethasone. These responses to 1,25(OH)2D3 and dexamethasone were dependent on cell density and not selective attachment of certain cell types at either plating density. In conclusion, the findings demonstrated that 1,25(OH)2D3 exerts an inhibiting action on both mouse and rat bone cell proliferation. This effect must be reconciled with thein vivo beneficial actions of 1,25(OH)2D3 on bone metabolism. Also, the likelihood of decreased cell number must be considered when biochemical activities are assessed after vitamin D treatmentin vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号