首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regulator of G-protein signaling RGS17(Z2) is a member of the RGS-Rz subfamily of GTPase-activating proteins (GAP) that efficiently deactivate GalphazGTP subunits. We have found that in the central nervous system (CNS), the levels of RGSZ2 mRNA and protein are elevated in the hypothalamus, midbrain, and pons-medulla, and that RGSZ2 is glycosylated in synaptosomal membranes isolated from CNS tissue. In analyzing the function of RGSZ2 in the CNS, we found that when the expression of RGSZ2 was impaired, the antinociceptive response to morphine and [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO) augmented. This potentiation involved mu-opioid receptors and increased tolerance to further doses of these agonists administered 24 h later. High doses of morphine promoted agonist desensitization even within the analgesia time-course, a phenomenon that appears to be related to the great capacity of morphine to activate Gz proteins. In contrast, the knockdown of RGSZ2 proteins did not affect the activity of delta receptor agonists, [D-Pen2,5]-enkephalin (DPDPE), and [D-Ala2] deltorphin II. In membranes from periaqueductal gray matter (PAG), both RGSZ2 and the related RGS20(Z1) co-precipitated with mu-opioid receptors. While a morphine challenge reduced the association of Gi/o/z with mu receptors, it increased their association with the RGSZ2 and RGSZ1 proteins. However, only Galphaz subunits co-precipitated with RGSZ2. Doses of morphine that produced acute tolerance maintained the association of Galpha subunits with RGSZ proteins even after the analgesic effects had ceased. These results indicate that both RGSZ1 and RGSZ2 proteins influence mu receptor signaling by sequestering Galpha subunits, therefore behaving as effector antagonists.  相似文献   

2.
The Gbeta5 protein, which is similar in sequence to other G-protein beta subunits, mainly associates with the G-protein gamma-like (GGL) domains of the R7 subfamily of regulators of G-protein signalling (RGS) proteins. This paper reports the presence of the Gbeta5 protein and its mRNA in all areas of mouse CNS, and also its involvement in the cellular signals initiated at mu- and delta-opioid receptors. The expression of Gbeta5 and RGS9-2 proteins (member of the R7 subfamily of RGS) was reduced by blocking their mRNAs with antisense oligodeoxynucleotides (ODN). Knock-down of these proteins enhanced the potency and duration of antinociception promoted by morphine and [D-Ala2, N-MePhe4,Gly-ol5]-enkephalin (DAMGO), agonists at mu opioid receptors. However, the activity of the selective agonist at delta opioid receptors, [D-Pen(2,5)]-encephalin (DPDPE), appeared to be reduced. A single intracerebroventricular (i.c.v.) ED80 analgesic dose of morphine gave rise to acute tolerance in control mice, but did not promote tolerance in Gbeta5 or RGS9-2 knock-down animals. In a model of sustained morphine treatment, the impairment of Gbeta5 proteins facilitated the development of tolerance. This treatment did not alter the incidence of jumping behaviour precipitated by naloxone 3 days after commencing with chronic morphine. These results show differences in the signalling regulation of G-proteins when activated by mu or delta opioid agonists. For mu opioid receptors, acute tolerance, but probably not long-term tolerance, appears to depend on the function of Gbeta5 subunits and associated RGS proteins.  相似文献   

3.
In the CNS, the regulators of G-protein signaling (RGS) proteins belonging to the Rz subfamily, RGS19 (G(alpha) interacting protein (GAIP)) and RGS20 (Z1), control the activity of opioid agonists at mu but not at delta receptors. Rz proteins show high selectivity in deactivating G(alpha)z-GTP subunits. After reducing the expression of RGSZ1 with antisense oligodeoxynucleotides (ODN), the supraspinal antinociception produced by morphine, heroin, DAMGO ([D-Ala2, N-MePhe4,Gly-ol5]-enkephalin), and endomorphin-1 was notably increased. No change was observed in the effect of endomorphin-2. This agrees with the proposed existence of different mu receptors for the endomorphins. The activities of DPDPE ([D-Pen2,5]-enkephalin) and [D-Ala2] deltorphin II, agonists at delta receptors, were also unchanged. Knockdown of GAIP and of the GAIP interacting protein C-terminus (GIPC) led to changes in agonist effects at mu but not at delta receptors. The impairment of RGSZ1 extended the duration of morphine analgesia by at least 1 h beyond that observed in control animals. CTOP (Cys2, Tyr3, Orn5, Pen7-amide) antagonized morphine analgesia when given during the period in which the effect of morphine was enhanced by RGSZ1 knockdown. Thus, in naive mice, morphine tachyphylaxis originated in the presence of the opioid agonist and during the analgesia time course. The knockdown of RGSZ1 facilitated the development of tolerance to a single dose of morphine and accelerated tolerance to continuous delivery of the opioid. These results indicate that mu but not delta receptors are linked to Rz regulation. The mu receptor-mediated activation of Gz proteins is effective at recruiting the adaptive mechanisms leading to the development of opioid desensitization.  相似文献   

4.
Phosducin (Phd), a protein that in retina regulates rhodopsin desensitization by controlling the activity of Gt beta gamma-dependent G-protein-coupled receptor kinases (GRKs), is present in very low levels in the CNS of mammals. However, this tissue contains proteins of related sequence and function. This paper reports the presence of N-glycosylated phosducin-like protein long (PhLP(L)) in all structures of mouse CNS, mainly in synaptic plasma membranes and associated with G beta subunits and 14-3-3 proteins. To analyze the role PhLP(L) in opioid receptor desensitization, its expression was reduced by the use of antisense oligodeoxynucleotides (ODNs). The antinociception induced by morphine, [D-Ala(2), N-MePhe(4),Gly-ol(5)]-enkephalin (DAMGO), beta-endorphin, [D-Ala(2)]deltorphin II, [D-Pen(2,5)]-enkephalin (DPDPE) or clonidine in the tail-flick test was reduced in PhLP(L)-knock-down mice. A single intracerebroventricular (icv)-ED(80) analgesic dose of morphine gave rise to acute tolerance that lasted for 4 days, but which was prevented or reversed by icv-injection of myristoylated (myr(+)) G(i2)alpha subunits. PhLP(L) knock-down brought about a myr(+)-G(i2)alpha subunit-insensitive acute tolerance to morphine that was still present after 8 days. It also diminished the specific binding of (125)I-Tyr(27)-beta-endorphin-(1-31) (human) to mouse periaqueductal gray matter membranes. After being exposed to chronic morphine treatment, post-dependent mice required about 10 days for complete recovery of morphine antinociception. The impairment of PhLP(L) extended this period beyond 17 days. It is concluded that PhLP(L) knock-down facilitates desensitization and uncoupling of opioid receptors.  相似文献   

5.
It is not clear whether primary afferent neurons express functional cell-surface opioid receptors. We examined delta receptor coupling to Ca2+ channels in mouse dorsal root ganglion neurons under basal conditions and after receptor up-regulation. [D-Ala2,Phe4,Gly5-ol]-enkephalin (DAMGO), [D-Ala2,D-Leu5]-enkephalin (DADLE), trans-(+/-)-3,4-dichloro-N-methyl-N-(2-[1-pyrrolidinyl]cyclohexyl) benzene-acetamide methanesulfonate (U-50,488H; 1 microM), and baclofen (50 microM) inhibited Ca2+ currents, whereas the -selective ligands [D-Pen2,Pen5]-enkephalin (DPDPE) and deltorphin II (1 microM) did not. The effect of DADLE (1 microM) was blocked by the mu-antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP; 300 nM) but not by the -antagonist Tyr-1,2,3,4-tetrahydroisoquinoline-Phe-Phe-OH (300 nM), implicating mu receptors. Despite a lack of functional delta receptors, flow cytometry revealed cell-surface receptors. We used this approach to identify conditions that up-regulate receptors, including mu receptor gene deletion in dorsal root ganglion neurons of mu-/- mice and 18-h incubation of mu+/+ neurons with CTAP followed by brief (10-min) DPDPE exposure. Under these conditions, the expression of cell-surface delta receptors was up-regulated to 149 +/- 9 and 139 +/- 5%, respectively; furthermore, DPDPE and deltorphin II (1 microM) inhibited Ca2+ currents in both cases. Viral replacement of mu receptors in mu-/- neurons reduced delta receptor expression to mu+/+ levels, restored the inhibition of Ca2+ currents by DAMGO, and abolished receptor coupling. Our observations suggest that receptor-Ca2+ channel coupling in primary afferent fibers may have little functional significance under basal conditions in which mu receptors predominate. However, up-regulation of cell-surface delta receptors induces their coupling to Ca2+ channels. Pharmacological approaches that increase functional delta receptor expression may reveal a novel target for analgesic therapy.  相似文献   

6.
In the CNS, several regulators of G-protein signalling (RGS) modulate the activity of mu-opioid receptors. In pull-down assays performed on membranes from mouse periaqueductal gray matter (PAG), mu-opioid receptors co-precipitated with delta-opioid receptors, Gi/o/z/q proteins, and the regulators of G-protein signalling RGS4, RGS9-2, RGS14, RGSZ1 and RGSZ2. No RGS2, RGS7, RGS10 and RGS11 proteins were associated with the mu receptors in these PAG membranes. In mice, an intracerebroventricular dose of 10 nmol morphine produced acute tolerance at mu receptors but did not disrupt the co-precipitation of mu-delta receptor complexes. However, this opioid reduced by more than 50% the co-precipitation of G alpha i/o/z subunits with mu receptors, and altered their association with some of the RGS proteins at 30 min, 3 h and 24 h after its administration. The association of RGS9-2 with mu receptors diminished by 30-40% 24 h after the administration of morphine, while that of RGSZ2 and of RGSZ1 increased. Morphine treatment recruited RGS4 to the PAG membranes, and 30 min and 3 h after the opioid challenge its association with mu receptors had increased. However, 24 h after morphine administration, the co-precipitation of RGS4 had decreased by about 30%. The opioid produced no change in the membrane levels of RGS9-2, RGS14, RGSZ1 and RGSZ2. Thus, in PAG synaptosomal membranes, a dynamic and selective link exists between, mu-opioid receptors, Gi/o/z proteins and certain RGS proteins.  相似文献   

7.
The adaptor protein R7 family binding protein (R7BP) modulates G protein coupled receptor (GPCR) signaling and desensitization by controlling the function of regulator of G protein signaling (RGS) proteins. R7BP is expressed throughout the brain and appears to modulate the membrane localization and stability of three proteins that belong to R7 RGS family: RGS6, RGS7, and RGS9-2. RGS9-2 is a potent negative modulator of opiate and psychostimulant addiction and promotes the development of analgesic tolerance to morphine, whereas the role of RGS6 and RGS7 in addiction remains unknown. Recent studies revealed that functional deletion of R7BP reduces R7 protein activity by preventing their anchoring to the cell membrane and enhances GPCR responsiveness in the basal ganglia. Here, we take advantage of R7BP knockout mice in order to examine the way interventions in R7 proteins function throughout the brain affect opiate actions. Our results suggest that R7BP is a negative modulator of the analgesic and locomotor activating actions of morphine. We also report that R7BP contributes to the development of morphine tolerance. Finally, our data suggest that although prevention of R7BP actions enhances the analgesic responses to morphine, it does not affect the severity of somatic withdrawal signs. Our data suggest that interventions in R7BP actions enhance the analgesic effect of morphine and prevent tolerance, without affecting withdrawal, pointing to R7BP complexes as potential new targets for analgesic drugs.  相似文献   

8.
We examined the effects of [D-Pen(2),D-Pen(5)]enkephalin (DPDPE), [D-Ala(2),Glu(4)]deltorphin (DELT), and (+)-4-[(alphaR)-alpha((2S, 5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide (SNC80) on [35S]GTPgammaS binding in brain membranes prepared from micro-opioid receptor knockout (-/-) mice. The potency and maximal response (E(max)) of these agonists were unchanged compared to control mice. In contrast, while the potency of [D-Pen(2),pCl-Phe(4),D-Pen(5)]enkephalin (pCl-DPDPE) was not significantly different, the E(max) was reduced as compared to controls. In the tail-flick test, intracerebroventricular (i.c.v.) or intrathecal (i.th.) DELT produced antinociceptive effects in -/- mice with potency that did not differ significantly from controls. In contrast, the antinociceptive potency of i.c.v. and i.th. DPDPE was displaced to the right by 4- and 9-fold in -/- compared to control mice, respectively. Reduced DPDPE antinociceptive potency in -/- mice, taken together with reduced DPDPE- and pCl-DPDPE- stimulated G protein activity in membranes prepared from -/- mice, demonstrate that these agonists require mu-opioid receptors for full activity. However, because DELT mediated G protein activation and antinociception were both comparable between -/- and wild type mice, we conclude that the mu-opioid receptor is not a critical component of delta-opioid receptor function.  相似文献   

9.
1. There is evidence from in vivo studies for an interaction of mu- and delta-opioid ligands. In the present work this concept has been investigated using the mouse vas deferens and guinea-pig ileum myenteric plexus-longitudinal preparations. 2. In field stimulated vasa deferentia of the mouse, co-administration of sub-effective concentrations of the delta-opioid agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) and [Met5]- or [Leu5]enkephalin had no effect on the dose-response curves of the mu-agonists [D-Ala2,MePhe4, Gly-ol5]enkephalin (DAMGO) and morphine. Similarly, the delta-opioid agonists did not alter the potency of morphine and DAMGO when added at different times prior to the mu-opioid agonists, or when EC50 concentrations of delta-opioid ligands were co-administered. Compounds with preferred activity for the putative delta 1-(DPDPE) or delta 2-([D-Ala2,Glu4]deltorphin II (Delt II)) opioid receptors were ineffective in this respect. 3. The guinea-pig ileum contains delta-opioid receptors. No function of these receptors in mediating blockage of field-stimulated contractions was observed with ligands having affinity for the putative delta 1 or delta 2 subtypes nor were the agonists able to modulate responses to mu-opioid ligands in this tissue. 4. The results demonstrate the modulation of mu-opioid agonists by delta-opioid agonists does not occur in the isolated peripheral tissues examined. Thus the findings do not support the concept of a functional coupling of opioid receptors, though the results may be explained by differences between opioid systems in the brain and peripheral tissues examined.  相似文献   

10.
1. The effects of MK-801, a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) receptor and LY 235959, a competitive antagonists of the NMDA receptor on the analgesic actions of [D-Pen2,D-Pen5]enkephalin (DPDPE) and [D-Ala2, Glu4] deltorphin II (deltorphin II), the putative delta 1- and delta 2-opioid receptor agonists, respectively, were determined in the male Swiss-Webster mice. 2. Intracerebroventricular administration of DPDPE or deltorphin II produced analgesia. MK-801 administered intraperitoneally 10 min before the injection of DPDPE or deltorphin II, dose-dependently antagonized the analgesic actions of both drugs. 3. LY 235959 also dose-dependently antagonized the analgesic actions of DPDPE and deltorphin II. 4. The effects of MK-801 and LY 235959 on the binding of [3H]-DPDPE to mouse brain membranes were also determined. Neither of the NMDA receptor antagonists had any effect on the binding of [3H]-DPDPE. 5. It is concluded that competitive and noncompetitive antagonists of the NMDA receptor antagonize the analgesic action of delta 1- and delta 2-opioid receptor agonists and that such effects are not mediated via a direct interaction with brain delta-opioid receptors.  相似文献   

11.
1. Mice lacking the mu-opioid receptor have been recently generated. Centrally mediated responses of mu-opioid agonists are suppressed whereas some of the delta-opioid responses are preserved in these mutant mice. 2. The vas deferens bioassay has been used in this study to investigate the functional activity at a peripheral level of mu- and delta-opioid agonists in mice lacking mu-opioid receptors. 3. The different mu-opioid agonists evaluated, morphine, DAMGO, dermorphin and [Lys(7)]-dermorphin produced an inhibitory response in vas deferens from wild-type mice but had no relevant activity on vas deferens from mutant mice. 4. The selective delta-opioid agonists DPDPE, BUBU, deltorphin I, deltorphin II and [D-Met(2)]-deltorphin induced inhibitory effects in vas deferens from both wild-type and mutant mice. However, the biological activities of these ligands were slightly reduced in preparations from mutant mice. The inhibitory responses of all these delta-opioid agonists were prevented by the administration of the selective delta-opioid antagonist naltrindole. 5. These data indicate that delta-opioid agonists, but not mu-opioid agonists, are biologically active in vas deferens from mice lacking mu-opioid receptors. The decreased response of delta-agonists in mutant mice suggests that some cooperativity may exist between mu- and delta-opioid receptors in these vas deferens preparations.  相似文献   

12.
Two consecutive i.c.v. administrations of analgesic doses of mu-opioid receptor agonists lead to a profound desensitisation of the latter receptors; a third dose produced less than 20% of the effect obtained with the first administration. Desensitisation was still effective 24h later. Impairing the activity of Galphaz but not Galphai2 subunits prevented tolerance developing after the administration of three consecutive doses of morphine. Further, the i.c.v. injection of Galphai2 subunits potentiated morphine analgesia and abolished acute tolerance, whereas i.c.v.-administered Galphaz subunits produced a rapid and robust loss of the response to morphine. The RGSZ1 and RGSZ2 proteins selectively deactivate GalphazGTP subunits, and their knockdown increased the effects produced by the first dose of morphine. However, impairing their activity also accelerated tachyphylaxis following successive doses of morphine, and facilitated the development of acute morphine tolerance. In contrast, inhibiting the RGS9-2 proteins, which bind to GalphaoGTP and GalphaiGTP but only weakly deactivates them, preserved the effects of consecutive morphine doses and abolished the generation of acute tolerance. Therefore, desensitisation of mu-opioid receptors can be achieved by reducing the responsiveness of post-receptor elements (via the possible action of activated Galphaz subunits) and/or by depleting the pool of receptor-regulated G proteins that agonists need to propagate their effects, e.g., through the activity of RGS9-2 proteins.  相似文献   

13.
Opioid receptor agonists produce analgesia through multiple systems activated by stimulation of mu(1), mu(2), delta(1), delta(2) and kappa(1) opioid receptors. Morphine analgesia is modulated by stimulation of alpha(2) adrenoceptors. To understand how multiple opioid analgesic systems interact with alpha(2)-adrenoceptor systems, analgesic cross-tolerance between the alpha(2) adrenoceptor agonist xylazine and opioid receptor agonists was studied using the mouse tail-flick assay. Mice received either xylazine (20 mg/kg, s.c.) or saline (1 ml/kg) for five days. On day six, mice received a dose of s.c. xylazine, i.c.v. [D-Ala(2),MePhe(4),Gly(ol)(5)]enkephalin (DAMGO), i.t. Tyr-Pro-Trp-Gly-NH(2) (Tyr-W-MIF-1), i.c.v. or i.t. [D-Pen(2),D-Pen(5)]enkephalin (DPDPE), i.t. [D-Ala(2)]deltorphin II (deltorphin II), or s.c. trans-(+/-)-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl-cyclohexyl] benzeneacetamide (U50,488). Xylazine tolerant mice required 4. 57-fold more xylazine to elicit the same response as saline treated animals and showed a 2.55-fold shift in i.c.v. DAMGO and a 3.37-fold shift in i.c.v. DPDPE antinociception. No cross-tolerance was seen with i.c.v. deltorphin II, i.t.Tyr-W-MIF-1, i.t. DPDPE, i.t. Tyr-W-MIF-1 or s.c. U50,488. These results implicate alpha(2) adrenoceptor systems in the modulation of supraspinal mu(1), and delta(1) opioid analgesic circuitry and raise the possibility that mu(2), delta(2) or kappa(1) opioid receptor agonists may be alternated with alpha(2) adrenoceptor agonists to minimize tolerance or treat opioid-tolerant patients.  相似文献   

14.
The R7 subfamily of regulators of G-protein signaling (RGS) proteins (RGS6, RGS7, RGS9-2, and RGS11), and its binding protein Gbeta5, are found in neural structures of mouse brain. A single intracerebroventricular priming dose of 10 nmol morphine gave rise to acute tolerance to the analgesic effects of successive identical test doses of the opioid. At 2 h after administering the acute opioid, RGS7 mRNA levels in the striatum plus those of RGS9-2 in the striatum and thalamus were increased, whereas RGS9-2 and RGS11 mRNA were reduced in the cortex. Similar but attenuated RGS-R7 mRNA changes persisted 24 h after acute morphine administration. No changes in Gbeta5 mRNA levels were observed. At 2 days after commencing sustained morphine treatment, the levels of mRNA for RGS7, RGS9-2, RGS11, and Gbeta5 increased in most of the brain structures studied (striatum, thalamus, periaqueductal gray matter (PAG), and cortex). In these morphine tolerant-dependent mice, the greater changes were found for RGS9-2 in the thalamus (>500%) and PAG (>200%). In post-dependent mice, the increases in RGS-R7 and Gbeta5 mRNA still persisted in the PAG and striatum at 8 and 16 days after starting the chronic opioid treatment. The raised mRNA levels promoted by chronic, but not by acute, morphine, were accompanied by increases in the encoded proteins. This is probably a result of the costabilization of the RGS-R7 and Gbeta5 proteins forming heterodimers. Opioid-induced adaptations of RGS-R7 and Gbeta5 genes may regulate the severity of morphine-induced tolerance/dependence and the duration of the post-dependent period, helping to recover the normal response.  相似文献   

15.
The role of mu-, delta1- and delta2-opioid receptors in the nucleus accumbens in pivoting was investigated in freely moving rats. Unilateral injections of the mu-opioid receptor agonist, [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO, 1 and 2 microg) and the delta2-opioid receptor agonist, deltorphin II (1 and 2 microg), but not the delta1-opioid receptor agonist, [D-Pen(2,5)]-enkephalin (DPDPE, 1-4 microg), into the shell or the core of the nucleus accumbens significantly induced contraversive pivoting. The pivoting induced by DAMGO (2 microg) and deltorphin II (2 microg) was inhibited significantly by the mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 (CTOP, 0.1 and 1 microg), and the delta2-opioid receptor antagonist, naltriben (NTB, 0.1 and 1 mg/kg, i.p.), respectively. The DAMGO (2 microg)- or deltorphin II (2 microg)-induced pivoting was also inhibited significantly by co-administration of the dopamine D1/D2 receptor antagonist, cis(Z)-flupentixol (1 and 10 microg). The pivoting induced by unilateral injections of a mixture of dopamine D1 (SKF 38393, 5 microg) and D2 (quinpirole, 10 microg) receptor agonists into the shell was significantly inhibited by cis(Z)-flupentixol (1 and 10 microg) or NTB (1 and 3 mg/kg, i.p.), but not CTOP (1 microg) or delta1-opioid receptor antagonist, (E)-7-benzylidenenaltrexone (1 mg/kg, i.p.). The contraversive pivoting elicited by the cholinergic agonist, carbachol (5 microg), into the core was inhibited by co-administration of the muscarinic M1 antagonist, pirenzepine (1 microg), but not cis(Z)-flupentixol (1 microg). The results suggest that unilateral activation of mu- or delta2-opioid, but not delta1-opioid, receptors in the core and/or shell of the nucleus accumbens elicits contraversive pivoting that requires intact dopamine D1/D2 receptors in the shell, but not intact muscarinic M1 mechanism in the core. The study also shows that delta2-opioid, but not mu- and delta1-opioid, receptors in the core and/or shell modulate the shell-specific, dopamine D1/D2 receptor mechanisms involved in the production of pivoting.  相似文献   

16.
The N-methyl-D-aspartate (NMDA) and metabotropic glutamate (mGlu) receptors are involved in nociceptive transmission in the central nervous system. The present study was designed to study the effects of NMDA and group I mGlu receptor agents on delta- and mu-opioid receptor agonist-induced antinociception in the mouse brain. Intracerebroventricular (i.c.v.) treatment with the non-competitive NMDA receptor antagonist dizocilpine and the group I mGlu receptor antagonist (S)-4-carboxyphenylglycine ((S)-4CPG) significantly attenuated the antinociception induced by the delta-opioid receptor agonists [D-Pen(2), Pen(5)]enkephalin (DPDPE), (-)-TAN 67 and [D-Ala(2)]deltorphin II. On the contrary, i.c.v. administration of dizocilpine and (S)-4CPG slightly but significantly enhanced the antinociception induced by the mu-opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkephalin (DAMGO). Under these conditions, i.c.v. administration of NMDA and the group I mGlu receptor agonist 3,5-dihydrophenylglycine (DHPG) significantly enhanced the antinociception induced by delta-opioid receptor agonists, whereas both reduced DAMGO-induced antinociception. These findings suggest that the supraspinal antinociceptive actions of mu- and delta-opioid receptor agonists appear to be modulated differently by NMDA and group I mGlu receptors in the mouse.  相似文献   

17.
beta-Endorphin-(1-27), administered intraventricularly has been previously reported to block the analgesia induced by beta-endorphin injected intraventricularly. The present study was to determine if the blocking effect of beta-endorphin-(1-27) was specific to beta-endorphin which stimulates epsilon receptors, but not to other opioids with activity at different opioid receptors. The antagonistic effects of beta-endorphin-(1-27) on the analgesia induced by beta-endorphin (epsilon-opioid receptor agonist), D-Ala2-NMePhe4-Gly-ol-enkephalin(DAGO) and morphine, (mu-opioid receptor agonists), D-Pen2-D-Pen5-enkephalin(DPDPE) and D-Ala2-D-Leu5-enkephalin(DADLE) (delta-opioid receptor agonists) and U-50, 488H (kappa-opioid receptor agonist) were studied. beta-Endorphin-(1-27) injected intraventricularly, at doses which, when injected alone did not produce analgesia, antagonized the analgesia induced by beta-endorphin given intraventricularly. However, the analgesia induced by DAGO, morphine, DPDPE, DADLE and U-50, 488H given intraventricularly was not antagonized by beta-endorphin-(1-27). The data suggest that beta-endorphin-(1-27) selectively blocks the analgesia induced by the stimulation of epsilon receptors but not by the stimulation of mu, delta, and kappa receptors. The results support the previously proposed hypothesis that beta-endorphin produces its analgesia by stimulating specific epsilon receptors.  相似文献   

18.
The peripheral δ opioid receptor (DOR) is an attractive target for analgesic drug development. There is evidence that DOR can form heteromers with the κ-opioid receptor (KOR). As drug targets, heteromeric receptors offer an additional level of selectivity and, because of allosteric interactions between protomers, functionality. Here we report that selective KOR antagonists differentially altered the potency and/or efficacy of DOR agonists in primary cultures of adult rat peripheral sensory neurons and in a rat behavioral model of thermal allodynia. In vitro, the KOR antagonist nor-binaltorphimine (nor-BNI) enhanced the potency of [D-Pen(2,5)]-enkephalin (DPDPE), decreased the potency of [D-Ala(2),D-Leu(5)]-enkephalin (DADLE), and decreased the potency and efficacy of 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethylpiperazin-1-yl](3-methoxyphenyl)methyl]-N,N-diethylbenzamide (SNC80) to inhibit prostaglandin E(2) (PGE(2))-stimulated adenylyl cyclase activity. In vivo, nor-BNI enhanced the effect of DPDPE and decreased the effect of SNC80 to inhibit PGE(2)-stimulated thermal allodynia. In contrast to nor-BNI, the KOR antagonist 5'-guanidinonaltrindole (5'-GNTI) reduced the response of DPDPE both in cultured neurons and in vivo. Evidence for DOR-KOR heteromers in peripheral sensory neurons included coimmunoprecipitation of DOR with KOR, a DOR-KOR heteromer selective antibody augmented the antinociceptive effect of DPDPE in vivo, and the DOR-KOR heteromer agonist 6'-GNTI inhibited adenylyl cyclase activity in vitro as well as PGE(2)-stimulated thermal allodynia in vivo. Taken together, these data suggest that DOR-KOR heteromers exist in rat primary sensory neurons and that KOR antagonists can act as modulators of DOR agonist responses most likely through allosteric interactions between the protomers of the DOR-KOR heteromer.  相似文献   

19.
Ohmefentanyl is a very potent and highly selective agonist for mu-opioid receptors. We now study analgesia, in vitro activity and opioid receptor affinity of the stereoisomers of ohmefentanyl isothiocyanate. We found that some isomers of ohmefentanyl isothiocyanate had a potent analgesic effect and that all isomers except (3R,4S,2'S)-ohmefentanyl isothiocyanate had a more potent inhibitory action on the electrically evoked contractions of mouse vas deferens than of guinea pig ileum. The inhibitory actions could be antagonized by naloxone. However, compared with the activity of the corresponding stereoisomers of ohmefentanyl, these ohmefentanyl isothiocyanates had significantly reduced analgesia and in vitro activity. They also inhibited the binding of [3H]DPDPE ([D-Pen(2),D-Pen(5)]enkephalin) and [3H]DAGO ([D-Ala(2),Mephe(4),Gly-ol(5)]enkephalin) to opioid receptors in mouse brain membranes. The inhibitory effect of stereoisomers of ohmefentanyl isothiocyanate at mu-opioid receptors was markedly lower than that of their parent compounds. The affinity of stereoisomers of ohmefentanyl isothiocyanate for delta-opioid receptors was, however, greater than or equal to that of their corresponding stereoisomers of ohmefentanyl. The results showed that the introduction of an isothiocyanato group into the phenyl ring in position-1 of ohmefentanyl reduced bioactivity and affinity to mu-opioid receptors but that the selectivity of these compounds for delta-opioid receptors was enhanced. Isomer (3R,4S,2'R)-ohmefentanyl isothiocyanate showed highest selectivity for delta-opioid receptors (K(i)(mu)/K(i)(delta)=13.6) and potent analgesic activity (ED(50)=0.25 mg/kg).  相似文献   

20.
The antinociceptive efficacy of [D-Pen2,D-Pen5]enkephalin (DPDPE) (delta 1 agonist) and [D-Ala2,Glu4]deltorphin (delta 2 agonist) was evaluated following intracerebroventricular (i.c.v.) or intrathecal (i.t.) administration in CD-1 and CXBK strains of mice using the radiant heat tail-flick test. Following i.c.v. administration, [D-Ala2,Glu4]deltorphin was effective in CD-1, but not CXBK, mice; DPDPE was approximately equiactive in both strains. While i.c.v. [D-Ala2,Glu4]deltorphin did not produce antinociception in the CXBK mouse, it effectively antagonized the antinociceptive actions of i.c.v. DPDPE. [D-Ala2,Glu4]deltorphin was effective following i.t. administration in both strains. These data suggest possible differences in the supraspinal populations of opioid delta receptor subtypes in the CXBK strain. On the basis of previously established selectivity of these agonists, the CXBK mouse may have a predominate population of supraspinal opioid delta 1, rather than delta 2, receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号