首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate monoaminergic synaptic mechanisms in taste buds, we examined taste buds of mice, rats, rabbits, and mudpuppies for the presence of the neurotransmitter candidate, serotonin. Immunocytochemistry revealed serotonin-like immunostaining in cells in mammalian taste buds and Merkel-like basal cells in taste buds of mudpuppies. In untreated mudpuppies and in mammals injected with the precursor to serotonin, L-tryptophan, certain taste cells showed serotonin-like immunoreactivity, although in mammalian taste buds the immunostaining was relatively weak. After pretreating mammals with 5-hydroxytryptophan (5-HTP), the intermediate precursor between L-tryptophan and serotonin, several taste cells showed strong immunoreactivity for serotonin. These findings indicate that mammalian taste cells normally contain serotonin and that taste cells can take up 5-HTP and convert it to serotonin. Immunocytochemistry on wholemount preparations demonstrated that serotonergic cells of mudpuppies (i.e., Merkel-like basal cells) were disposed in a ring at the periphery of taste buds. Similarly, serotonergic cells in mammalian taste buds tended to be located at the periphery of taste buds. Based on the position of serotonergic cells in the taste bud and on recent physiological studies on the actions of serotonin in taste buds, we postulate that serotonin functions as a neuromodulator or neurotransmitter in vertebrate taste buds. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Several types of cells have been identified in vertebrate taste buds, including dark cells, light cells, intermediate cells, type III cells, and basal cells. The physiological roles of these cell types are not well understood, especially those of basal cells. In this paper we show that there are two types of basal cells in taste buds from Necturus maculosus. One type of basal cell is an undifferentiated cell, presumably a stem cell. By combining light microscopic immunocytochemistry with electron microscopy, we show that the other type of basal cell is positive for serotonin-like immunoreactivity and that these cells have ultrastructural features similar to those found in cutaneous Merkel cells. Based on these findings, and the fact that the Merkel-like taste cells have been shown to make synaptic contacts with adjacent taste cells and with innervating nerve fibers, we conclude that these Merkel-like basal taste cells are serotonergic interneurons. © 1993 Wiley-Liss, Inc.  相似文献   

3.
To investigate synaptic mechanisms in taste buds and collect information about synaptic transmission in these sensory organs, we have examined taste buds of the mudpuppy, Necturus maculosus for the presence of neurotransmitters and neuromodulators. Immunocytochemical staining at the light microscopic level revealed the presence of serotonin-like and cholecystokinin-like (CCK) immunoreactivity in basal cells in the taste bud. Nerve fibers innervating taste buds were immunoreactive for vasoactive intestinal peptide-like (VIP), substance P-like, and calcitonin gene-related peptide-like (CGRP) or compounds closely related to these substances. Immunoreactivity for tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT) in the taste cells and nerve fibers was absent. These data suggest that serotonin, CCK, VIP, substance P, and CGRP are involved in synaptic transmission or neuromodulation in the peripheral organs of taste. No evidence was found for cholinergic or adrenergic mechanisms on the basis of the absence of immunocytochemical staining for key enzymes involved in these two transmitter systems.  相似文献   

4.
The ultrastructural features of murine vallate taste bud cells and their associated synapses have been examined in thin and thick sections with conventional transmission electron microscopy and high-voltage electron microscopy. Computer-assisted reconstructions from serial sections were utilized to aid in visualization of taste bud cell-nerve fiber synapses. We have classified taste bud cells on the basis of previously established criteria-namely, size of the nucleus, shape and density of chromatin, density of cytoplasm, and presence or absence of dense-cored or clear vesicles, other cytoplasmic organelles, and synaptic foci. Both dark cells and light cells are present, as well as cells with intermediate morphological characteristics. Synapses were observed from taste bud cells onto nerve fiber processes. In virtually all instances, synapses are associated with the nuclear region of the taste cell. These synapses are characterized by the presence of 40-70 nm clear vesicles embedded in a thickened presynaptic membrane separated from the postsynaptic membrane by a 16-30 nm cleft. Synapses are not unique to any particular cell type. Dark, intermediate, and light cells all synapse onto nerve fibers. Two general types of synapses exist: spot (or macular) and fingerlike. In the latter, the postsynaptic region of the neuronal process protrudes into an invagination of the taste cell membrane. Differences in synaptic morphology are not correlated with taste cell type. In some cases a single taste cell was observed to possess both macular and fingerlike synapses adjacent to one another, forming a synaptic complex onto a single neuronal process. On the basis of the presence of synaptic contacts, we conclude that both "dark" and "light" cells are gustatory receptors.  相似文献   

5.
6.
We have studied the distribution of choline acetyltransferase (ChAT), gamma-aminobutyric acid (GABA), histamine, octopamine and serotonin in the larval chemosensory system of Drosophila melanogaster. Colocalization at the confocal level with green fluorescent protein (GFP) or Tau-GFP reporters, expressed in selected P[GAL4] enhancer trap lines, was used to identify the cells making up these neurotransmitters. As in the adult fly, larval olfactory afferents project into the (larval) antennal lobe (LAL), where they synapse onto local interneurons and projection neurons, whereas gustatory afferents terminate essentially in the tritocerebral-subesophageal (TR-SOG) region. We demonstrate that the neuropils of the LAL and the TR-SOG are immunoreactive to ChAT and GABA. In addition, serotonin- and octopamine-immunoreactive fibers are present in the LAL. ChAT immunostaining is localized in subsets of olfactory and gustatory afferents and in many of the projection neurons. In contrast, GABA is expressed in most, and perhaps all, of the local interneurons. Serotonin immunoreactivity in the LAL derives from a single neuron that is situated close to the LAL and projects to additional neuropil regions. Taken together, these findings resemble the situation in the adult fly. Hence, given the highly reduced numbers of odorant receptor neurons in the larva, as shown in a previous study (Python and Stocker [2002] J. Comp. Neurol. 445:374-387), the larval system may become an attractive model system for studying the roles of neurotransmitters in olfactory processing.  相似文献   

7.
Taste buds in the mudpuppy Necturus maculosus were examined with electron microscopy. Three cell types (dark, light, and basal) were identified and reconstructed from serial thick sections. Dark and light cells extend from the basal lamina to the surface of the tongue. The apical process of the dark cells was usually quite lamellar when viewed in cross section, in contrast to light cells, whose apical process appeared more cylindrical. Basal cells are situated at the base of the bud and do not extend processes to the surface of the tongue. The cytoplasm of basal cells contains numerous clear and dense-cored vesicles. Small, spinelike processes (2-3 microns in length) project outward from the basal cells into the cytoplasm of the surrounding tast receptor cells. Morphologically, basal cells in mudpuppy taste buds resemble Merkel cells. Unmyelinated afferent nerve fibers enter the taste bud at the base and course through the lower portion of the bud. Synapses were found between taste receptor cells and nerve fibers, between basal cells and nerve fibers, and between basal cells and taste receptor cells. Over 65% of the synapses observed in the mudpuppy taste bud involved the basal cell. These findings suggest that basal cells play some role in chemosensory signal processing or integration of the taste response.  相似文献   

8.
Neurotransmitters in vertebrate taste buds have not yet been identified with confidence. Serotonin, glutamate, and γ-aminobutyric acid (GABA) have been postulated, but the evidence is incomplete. We undertook an autoradiographic study of [3H]serotonin, [3H]glutamate, and [3H]GABA uptake in lingual epithelium from the amphibian, Necturus maculosus, to determine whether taste bud cells would accumulate and release these substances. Lingual epithelium containing taste buds was incubated in low concentrations (0.4–6 μM) of these tritiated transmitter candidates and the tissue was processed for light microscopic autoradiography. Merkel-like basal taste cells accumulated [3H]serotonin. When the tissue was treated with 40 mM K+ after incubating the tissue in [3H]serotonin, cells released the radiolabelled transmitter. Furthermore, depolarization (KCl)-induced release of [3H]serotonin was Ca-dependent: if Ca2+ was reduced to 0.4 mM and 20 mM Mg2+ added to the high K+ bathing solution, Merkel-like basal cells did not release [3H]serotonin. In contrast, [3H]glutamate was taken up by several cell types, including non-sensory epithelial cells, Schwann cells, and some taste bud cells. [3H]glutamate was not released by depolarizing the tissue with 40 mM K+. [3H]GABA uptake was also widespread, but did not occur in taste bud cells. [3H]GABA accumulated in non-sensory epithelial cells and Schwann cells. These data support the hypothesis that serotonin is a neurotransmitter or neuromodulator released by Merkel-like basal cells in Necturus taste buds. The data do not support (nor rule out) a neurotransmitter role for glutamate or GABA in taste buds. J. Comp. Neurol. 392:199–208, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Isolated Necturus taste receptor cells were studied by giga-seal whole-cell recording and electron microscopy to correlate electrophysiological properties with taste cell structural features. Dark (type I) cells were identified by the presence of dense granular packets in the supranuclear and apical regions of the cytoplasm. In response to a series of depolarizing voltage commands from a holding potential of ?80 mV, these cells exhibited a transient, TTX-sensitive inward Na+ current, a sustained outward K+ current, and a slowly inactivating inward Ca++ current. Light (type II) cells were identified by a lack of granular packets and by an abundance of smooth endoplasmic reticulum distributed throughout the cell. In addition, isolated light cells had clear vesicular inclusions in the cytoplasm and blebs on the plasma membrane. Light cells were divided into two functional populations based upon electrophysiological criteria: cells with inward and outward currents, and cells with outward currents only. Light cells with inward and outward currents had voltage-activated Na+, K+, and Ca++ currents with properties similar to those of dark cells. In contrast, the second group of light cells had only voltageactivated outward K+ currents in response to depolarizing voltage commands. These data suggest that dark cells and light cells with inward and outward currents are capable of generating action potentials and releasing neurotransmitters onto gustatory afferent neurons in response to taste stimulation. In contrast, light cells with outward currents only likely serve a different function in the taste bud. © 1994 Wiley-Liss, Inc.  相似文献   

10.
The presence of the calcium-binding protein calretinin in taste buds of a teleost, the thick-lipped grey mullet, was investigated using immunohistochemical techniques. Taste bud sensory cells had calretinin immunoreactivity. The nerve fiber plexus innervating taste buds, the ganglia and the viscerosensory roots projecting to the vagal lobe, also showed calretinin immunoreactivity. These results demonstrate for the first time the occurrence of calretinin in the taste buds and the taste afferent system of a teleost.  相似文献   

11.
12.
Ultrastructure of mouse vallate taste buds: II. Cell types and cell lineage   总被引:7,自引:0,他引:7  
The lifespan of cells in the mouse taste bud was examined with high-voltage electron microscopic (HVEM) autoradiography (ARG) after giving a single injection of 3H-thymidine. Animals were killed at 1 hour, 6 hours, 12 hours, 24 hours, and then daily up through 10 days postinjection. Lingual tissues were prepared for HVEM ARG so that we could identify and characterize labeled cells. Four categories of taste cells were identified: basal, dark, intermediate, and light cells. Basal cells were polygonal cells located near the basolateral sides of the taste buds and were characterized primarily by the presence of filaments attached to the nuclear envelope. Dark and light cells had the typical features described by previous authors. Intermediate cells had features in between those of dark and light cells. Over 90% of the cells labeled in the first 2 days following injection of 3H-thymidine were basal cells. Labeled dark cells appeared 6 hours after injection, reached their peak incidence at the fourth day postinjection, and then gradually decreased. Labeled intermediate cells were identified after the appearance of dark cells (12 hours) and reached a peak incidence at the fifth day after injection of 3H-thymidine. Lastly, labeled light cells were first observed on the fourth day postinjection and continued to increase until the tenth day, when they constituted 45% of the labeled cells. These data support the hypothesis that there is one cell line in the mouse vallate taste bud that undergoes morphological changes in its lifespan.  相似文献   

13.
Cells of mammalian taste buds have been classified into morphological types based on ultrastructural criteria, but investigators have disagreed as to whether these are distinct cell types or the extremes of a continuum. To address this issue, we examined taste buds from rat vallate papillae that had been sectioned transversely, rather than longitudinally, to their longest axis. In these transverse sections, dark (Type I) and light (Type II) cells were easily distinguished by their relative electron density, shape and topological relationships. Cells with electron-lucent cytoplasm (light cells) were circular or oval in outline, while those with electron-dense cytoplasm (dark cells) had an irregular outline with sheetlike cytoplasmic projections that separated adjacent light cells. A hierarchical cluster analysis of 314 cells across five morphological parameters (cell shape and area, and nuclear ellipticity, electron density and invagination) revealed two distinct groups of cells, which largely corresponded to the dark and light cells identified visually. These cells were not continuously distributed within a principal components factor solution. Differences in the means for dark and light cells were highly significant for each morphological parameter, but within either cell type, changes in one parameter correlated little with changes in any other. These analyses all failed to reveal cells with a consistent set of intermediate characteristics, suggesting that dark and light cells of rat vallate taste buds are distinct cell types rather than extremes of a continuum. Sections of taste buds were stained with antibodies to several carbohydrates, then observed by indirect immunofluorescence. Optical sections taken with a confocal laser-scanning microscope showed that the Lewisb antigen was present only on spindle-shaped cells with circular or oval outlines and lacking transverse projections; these characteristic shapes matched those of light cells seen by electron microscopy. The H blood group antigen and the 2B8 epitope appeared at most cell-cell interfaces in the bud and are present on dark cells and possibly on some light cells. These findings relate molecular markers to morphological phenotypes and should facilitate future studies of taste cell turnover, development and regeneration. J. Comp. Neurol. 378:389–410, 1997. © 1997 Wiley Liss, Inc.  相似文献   

14.
We used an immunocytochemical approach to study the localization of serotonin and its termination system, serotonin transporter (SET), in the taste buds of rats using specific antibodies against serotonin and SET. Under confocal laser scanning microscopy, both serotonin and SET immunoreactivity were detected in the taste buds of rat vallate papillae. Serotonin immunoreactivity was seen in the spindle-shaped cells with apical processes that seemed to be light (Type II) taste cells. SET-immunoreactivity was mainly localized in the periphery or interfaces between the taste cells. Double staining studies revealed that all serotonin-containing taste cells were immunoreactive for SET, while a subclass of SET-positive cells showed serotonin immunoreactivity. These data support the hypothesis that serotonin plays a transmitter role in taste receptor cells and suggest that the serotonin-induced sensation of taste is terminated by serotonin uptake through serotonin transporter.  相似文献   

15.
To determine whether the innervation of taste buds changes during postnatal development, the number of geniculate ganglion cells that innervated single fungiform taste buds were quantified in the tip- and midregions of the tongue of adult and developing rats. There was substantial variation in both the size of individual taste buds and number of geniculate ganglion cells that innervated them. Importantly, taste bud morphology and innervation were highly related. Namely, the number of labeled geniculate ganglion cells that innervated a taste bud was highly correlated with the size of the taste bud (r = 0.91, P < .0003): The larger the taste bud, the more geniculate ganglion cells that innervated it. The relationship between ganglion cell number and taste bud volume emerged during the first 40 days postnatal. Whereas there was no difference in the average number of ganglion cells that innervated individual taste buds in rats aged 10 days postnatal through adulthood, taste bud volumes increased progressively between 10 and 40 days postnatal, at which age taste bud volumes were similar to adults. The maturation of taste bud size was accompanied by the emergence of the relationship between taste bud volume and number of innervating neurons. Specifically, there was no correlation between taste bud size and number of innervating geniculate ganglion cells in 10-, 20-, or 30-day-old rats, whereas taste bud size and the number of innervating ganglion cells in 40-day-old rats were positively correlated (r = .80, P < .002). Therefore, the relationship between taste bud size and number of innervating ganglion cells develops over a prolonged postnatal period and is established when taste buds grow to their adult size. J. Comp. Neurol. 398:13–24, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

16.
Innervation of the axolotl lingual epithelium by the glossopharyngeal nerve was examined to reveal its sensory target cells. The carbocyanine dye diI was applied to the nerve stump in the tongue fixed with paraformaldehyde. After a diffusion period of several months, the tongues were examined with a conventional epifluorescence microscope and a confocal laser scanning microscope (LSM) in wholemounts or preparations sectioned with a vibratome. Beneath the epithelium the labeled nerve fibers spread horizontally to form a meshwork of fibers, from which fascicles of fibers extended upward perpendicularly to the epithelium to innervate taste buds. Numerous taste buds were labeled by possible transcellular diffusion of diI. At the base of the taste bud, the nerve fibers branched and formed a basal plexus of fine fibers, on which numerous varicosities were seen. One or at most several taste cells were labeled in a taste bud. In the basal part of taste buds, the cell without an apical process, the basal cell, was also labeled. In the epithelium, between the taste buds, a few solitary cells were labeled. In some cases, a single fascicle of fibers innervating these cells was clearly shown by the LSM. In addition, fine fibers apparently formed free nerve endings in the epithelial cell layer. The results showed that the IX nerve innervated not only taste cells, but also presumed mechanosensory basal cells in the taste bud and the solitary cells of unknown function in the non-taste lingual epithelium. Afferent nerve responses to mechanical stimulation of the tongue may be explained by these non-taste cellular elements in the epithelium. © 1993 Wiley-Liss, Inc.  相似文献   

17.
The taste system of catfish, having distinct taste receptor sites for L-alanine and L-arginine, is highly sensitive to amino acids. A previously described monoclonal antibody (G-10), which inhibits L-alanine binding to a partial membrane fraction (P2) derived from catfish (Ictalurus punctatus) taste epithelium, was found in Western blots to recognize a single band, at apparent MW of 113,000 D. This MW differs from the apparent MW for the presumed arginine receptor identified previously by PHA-E lectin affinity. In order to test whether PHA-E lectin actually reacts with the arginine-receptor, reconstituted membrane proteins partially purified by PHA-E affinity were used in artificial lipid bilayers. These reconstituted channels exhibited L-arginine-activated activity similar to that found in taste cell membranes. Accordingly, we utilized the PHA-E lectin and G-10 antibody as probes to differentially localize the L-alanine and L-arginine binding sites on the apical surface of catfish taste buds. Each probe labels numerous, small (0.5–1.0 μm) patches within the taste pore of each taste bud. This observation suggests that each bud is not tuned to a single taste substance, but contains putative receptor sites for both L-arginine and L-alanine. Further, analysis of double-labeled tissue reveals that the PHA-E and G-10 sites tend to be separate within each taste pore. These findings imply that in catfish, individual taste cells preferentially express receptors to either L-arginine or L-alanine. In addition, PHA-E binds to the apices of solitary chemoreceptor cells in the epithelium, indicating that this independent chemoreceptor system may utilize some receptor sites similar to those in taste buds. © 1996 Wiley-Liss, Inc.  相似文献   

18.
A light microscope study using postembedding immunocytochemistry techniques to demonstrate the common neurotransmitter candidates gamma-aminobutyric acid (GABA), glycine, glutamate, and tyrosine hydroxylase for dopamine has been done on human retina. By using an antiserum to GABA, we found GABA-immunoreactivity (GABA-IR) to be primarily in amacrine cells lying in the inner nuclear layer (INL) or displaced to the ganglion cell layer (GCL). A few stained cells in the INL, which are probably interplexiform cells, were observed to project thin processes towards the outer plexiform layer (OPL). There were heavily stained bands of immunoreactivity in strata 1, 3 and 5 of the inner plexiform layer (IPL). An occasional ganglion cell was also GABA-IR. By using an antiserum to glycine, stained cells were observed at all levels of the INL. Most of these were amacrines, but a few bipolar cells were also glycine-IR. Displaced amacrine cells and large-bodied cells, which are probably ganglion cells, stained in the GCL. The bipolar cells that stained appeared to include both diffuse and midget varieties. The AII amacrine cell of the rod pathway was clearly stained in our material but at a lower intensity than two other amacrine cell types tentatively identified as A8 and A3 or A4. Again, there was stratified staining in the IPL, with strata 2 and 4 being most immunoreactive. An antiserum to glutamate revealed that most of the neurons of the vertical pathways in the human retina were glutamate-IR. Rod and cone photoreceptor synaptic endings labeled as did the majority of bipolar and ganglion cells. The rod photoreceptor stained more heavily than the cone photoreceptor in our material. While both midget and diffuse cone bipolar cell types were clearly glutamate-IR, rod bipolars were not noticeably stained. The most strongly staining glutamate-IR processes of the IPL lay in the outer half, in sublamina a. The antiserum to tyrosine hydroxylase (TOH) revealed two different amacrine cell types. Strongly immunoreactive cells (TOH1) had their cell bodies in the INL and their dendrites ramified in a dense plexus in stratum 1 of the IPL. Fine processes arising from their cell bodies or from the stratum 1 plexus passed through the INL to reach the OPL but did not produce long-ranging ramifications therein. The less immunoreactive amacrines (TOH2) lay in the INL, the center of the IPL or the GCL and emitted thick dendrites that were monostratified in stratum 3 of the IPL.  相似文献   

19.
An analysis of Nissl stained sections of the spinal cord taken from four species of elasmobranch showed that seven distinct cytoarchitectonic laminae are present. These laminae are compared with laminae described previously in the spinal cord of other vertebrates. The distribution of immunoreactivity to serotonin, substance P, somatostatin, calcitonin gene-related peptide, neuropeptide Y, and bombesin was determined in the brown stringray (Dasyatis fluviorum), the eagle ray (Aetobatis narinari), the shovelnose ray (Rhinobatis battilum), and the black-tip shark (Carcharhinus melanopterus). In all species, dense immunoreactivity to most substances tested was found in the outer part of the substantia gelatinosa. Many fibres and varicosities immunoreactive to substance P, calcitonin gene-related peptide, and bombesin were found in this region and smaller numbers of fibres were found in the nucleus proprius. Immunoreactivity to somatostatin consisted of coarse fibre bundles that entered the dorsal horn at the nucleus proprius and radiated dorsally to the substantia gelatinosa. Axons and varicosities immunoreactive to serotonin and neuropeptide Y were found in all regions of the dorsal horn but were concentrated in the outer part of the substantia gelatinosa. The distribution of immunoreactivity to met-enkephalin in the shovelnose ray was concentrated in the lateral third of the substantia gelatinosa and to a lesser extent in the nucleus proprius. The distribution of these substances is compared with that described in other vertebrates. Although the sensory information reaching the elasmobranch spinal cord is limited, compared with that of mammalian species, the distribution of these neuroactive factors in the dorsal horn of the two groups is strikingly similar.  相似文献   

20.
Serotoninlike immunoreactivity was examined by the fluorescein-isothiocyanate-labeled secondary antibody technique in the lateral eye and brain of Limulus. Endogenous serotonin was measured with high-performance liquid chromatography and electrochemical detection. The synthesis of [3H]serotonin from [3H]tryptophan was measured in the presence and absence of reserpine. Fibers with serotoninlike immunoreactivity were found in the proximal stalks of the corpora pedunculata, in the neuropil of the central body, in the neuropils of the visual centers (lamina, medulla, and ocellar ganglion), in the optic tract that connects the ocellar ganglion with the posterior medial medulla, and in the central neuropil of the brain. Immunoreactive somata were found in four groups in the brain. Up to 50 somata were scattered through each side of the dorsal medial group that lies centered on the dorsal surface within the curve of the central body. These neurons innervate the central body neuropil and send processes into the central neuropil. Three or four reactive somata formed the ventral pole of each medullar group. These may provide the innervation of the proximal stalk of the corpora pedunculata. Five to ten reactive neurons were observed anteriorly in the ventral posterior lateral group #2 on each side that send processes into the central neuropil. Ten to 15 reactive somata were found on either side of the midline in the dorsal anterior part of the ventral medial group that contribute processes to the central neuropil. The remainder of the brain was not immunoreactive. No immunoreactive fibers or somata were found in the lateral eye or in the lateral optic nerve. Serotoninlike and substance P-like immunoreactivities were not found to be colocalized anywhere in the brain. Significant amounts of endogenous serotonin were detected in the lamina and medulla whose neuropils are rich in immunoreactive fibers and in the central body and dorsal medial group that are also rich in immunoreactive somata and fibers. No endogenous serotonin was detected in either the lateral eye or the lateral optic nerve. The lamina, medulla, and central body and dorsal medial group also synthesized and stored [3H]serotonin from [3H]tryptophan. It is likely that serotonin is a neurotransmitter in the brain, but not in the lateral eye of the horseshoe crab. In particular, it appears that serotoninergic neurons may play a role in central visual processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号