首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Dey DD  Landrum O  Oaklander AL 《Pain》2005,113(1-2):233-237
Cavernous hemangiomas (cavernomas) of the spinal cord are rare congenital malformations that comprise less than 5% of all intramedullary lesions. Despite this rarity, we describe the third case of central neuropathic itch associated with intramedullary cavernoma. Since fewer than 10 cases of central spinal itch from all causes have been published, this concurrence suggests the possibility of a specific association. A middle-aged man developed chronic disabling neuropathic itch and pain affecting his left shoulder and arm after frank hemorrhage of a midcervical cavernoma. We hypothesize that the relatively rostro-dorsal location of his lesion increased its likelihood of causing itch as well as pain. The microscopic pathology of cavernomas, specifically their gliotic rim containing hemosiderin-laden phagocytes, fosters ectopic firing of nearby neurons and makes cranial cavernomas highly epileptogenic. We hypothesize that these pathological features predispose cavernomas to cause central itch if they are located near, but spare, the central itch projection neurons in lamina I of the dorsal horn. Quisqualate injections into the deeper layers (neck) of the dorsal horns of rats produce pathologically similar lesions. Such rats develop unilateral dermatomal hyperalgesia and self-injurious scratching and biting (autotomy). Although this pathological grooming is currently interpreted as a response to chronic pain, we propose that it more likely models scratching provoked by central neuropathic itch, as seen in our patient and others. Study of quisqualate-injected rats may provide leads towards new treatments for neuropathic itch.  相似文献   

2.
3.
At-level and above-level hypersensitivity was assessed in patients with chronic complete thoracic spinal cord injury (SCI). Patients were classified using somatosensory mapping (brush, cold, pinprick) and assigned into 2 groups (ie, patients with at-level hypersensitivity [SCIHs, n = 8] and without at-level hypersensitivity [SCINHs, n = 7]). Gender and age-matched healthy subjects served as controls. Quantitative sensory testing (QST), electrically- and histamine-induced pain and itch, laser Doppler imaging, and laser-evoked potentials (LEP) were recorded at-level and above-level in SCI-patients. Six of 8 SCIHs, but 0 of 7 SCINHs patients suffered from neuropathic below-level pain. Clinical sensory mapping revealed spreading of hypersensitivity to more cranial areas (above-level) in 3 SCIHs. Cold pain threshold measures confirmed clinical hypersensitivity at-level in SCIHs. At-level and above-level hypersensitivity to electrical stimulation did not differ significantly between SCIHs and SCINHs. Mechanical allodynia, cold, and pin-prick hypersensitivity did not relate to impaired sensory function (QST), axon reflex flare, or LEPs. Clinically assessed at-level hypersensitivity was linked to below-level neuropathic pain, suggesting neuronal hyperexcitability contributes to the development of neuropathic pain. However, electrically evoked pain was not significantly different between SCI patients. Thus, SCI-induced enhanced excitability of nociceptive processing does not necessarily lead to neuropathic pain. QST and LEP revealed no crucial role of deafferentation for hypersensitivity development after SCI.

Perspective

At-level hypersensitivity after complete thoracic SCI is associated with neuropathic below-level pain if evoked by clinical sensory stimuli. QST, LEP, and electrically-induced axon reflex flare sizes did not indicate somatosensory deafferentation in SCIHs.  相似文献   

4.
Wasner G  Naleschinski D  Baron R 《Pain》2007,131(1-2):219-225
At-level neuropathic pain is a frequent symptom following spinal cord injury, but the underlying pathophysiology is not completely understood. We report a patient suffering from treatment-resistant at-level pain characterized by ongoing pain and mechanical allodynia for three years after an incomplete spinal lesion. Quantitative sensory testing revealed severe thermosensory deficits in the neuropathic pain area. However, topical application of capsaicin in the neuropathic pain area induced a burning pain sensation, a marked decrease in heat pain threshold and an increase in mechanical allodynia. Treatment with topical lidocaine patches (5%) led to considerable pain relief. These results indicate a functional connection between peripheral, spinal and supraspinal nociceptive pathways and that peripheral afferents may contribute to at-level neuropathic pain after spinal cord injury in this patient. Lesioned peripheral afferents in combination with central neuronal hyperexcitability are discussed as a likely underlying pain mechanism.  相似文献   

5.
6.
7.
Spinal cord injury (SCI) is a major cause of persistent neuropathic pain of central origin. Recent evidence suggests neuropathic pain in clinically complete SCI patients correlates with limited sensory function below the lesion (sensory discomplete). On this basis we examined if the onset of mechanical hyperalgesia was different in rodents after a severe incomplete clip-compression SCI versus a complete spinal cord transection at thoracic segment T13. Above-level withdrawal behaviors evoked by forepaw stimulation provided evidence of mechanical hyperalgesia after incomplete but not complete SCI, whereas below-level responses evoked by hindpaw stimulation revealed hypersensitivity after both injuries. The latency of the above-level response was 4-5 wks but was longer after a moderate clip-compression injury. Mechanical hyperalgesia was fully reversed by three analgesic drugs used in treating neuropathic SCI pain, but their duration of action differed significantly, showing a rank order of amitriptyline (24-48 h) ? morphine (6 h) > gabapentin (2 h). Evidence of central sensitization in cervical spinal cord segments that receive sensory projections from the forelimbs was provided by immunohistochemistry for Zif268, a functional marker of neuroplasticity. Zif268-immunoreactive neurons in laminae I/II increased in response to repetitive noxious forepaw stimulation in the incomplete SCI group, and this response was reduced in the complete transection and sham-operated groups. These data are consistent with the hypothesis that neuropathic pain of cord origin is more likely to develop after SCI when there is an incomplete loss of axons traversing the lesion.  相似文献   

8.
《The journal of pain》2022,23(1):89-97
There is currently a lack of information regarding neuropathic pain in the very early stages of spinal cord injury (SCI). In the present study, neuropathic pain was assessed using the Douleur Neuropathique 4 Questions (DN4) for the patient's worst pain within the first 5 days of injury (i.e., hyperacute) and on follow-up at 3, 6, and 12 months. Within the hyperacute time frame (i.e., 5 days), at- and below-level neuropathic pain were reported as the worst pain in 23% (n = 18) and 5% (n = 4) of individuals with SCI, respectively. Compared to the neuropathic pain observed in this hyperacute setting, late presenting neuropathic pain was characterized by more intense painful electrical and cold sensations, but less itching sensations. Phenotypic differences between acute and late neuropathic pain support the incorporation of timing into a mechanism-based classification of neuropathic pain after SCI. The diagnosis of acute neuropathic pain after SCI is challenged by the presence of nociceptive and neuropathic pains, with the former potentially masking the latter. This may lead to an underestimation of the incidence of neuropathic pain during the very early, hyperacute time points post-injury.Trial registrationClinicalTrials.gov (Identifier: NCT01279811)PerspectiveThis article presents distinct pain phenotypes of hyperacute and late presenting neuropathic pain after spinal cord injury and highlights the challenges of pain assessments in the acute phase after injury. This information may be relevant to clinical trial design and broaden our understanding of neuropathic pain mechanisms after spinal cord injury.  相似文献   

9.
Approximately 70% of male rats receiving severe T8 spinal contusions develop allodynia in T5-7 dermatomes (at-level) beginning 2 weeks after injury. In contrast, rats having either complete transections or dorsal hemisections do not develop allodynia at-level after chronic spinal cord injury (SCI). In the present study, incomplete laceration and contusion injuries were made to test for neuroanatomical correlates between areas of white matter damage/sparing at the lesion epicenter and the presence/absence of allodynia. After incomplete laceration lesions and 6 weeks of behavioral testing, histological reconstruction and analysis of the lesion epicenters revealed a significant difference (P < .001) in the amount of ventrolateral funiculus (VLF) asymmetry between rats showing pain-like responses evoked by touch (74.5% ± 8.4% side-to-side difference in VLF damage) versus those not responding to touch (11.3% ± 4.4% side-to-side difference in VLF damage). A 5-week mean allodynia score for each rat that incorporates a full range of forces that are all innocuous in intact controls revealed that the degree of hypersensitivity at level is related to the extent of VLF asymmetry after SCI. No other damaged spinal white matter or gray matter area was correlated with sensitivity to touch. Similar findings were obtained for rats receiving T8 contusions, a more clinically relevant injury. These data suggest that different extents of damage/sparing between the 2 sides of VLF probably are a requisite for the development of allodynia after SCI.PerspectiveA side-to-side lesion asymmetry after chronic SCI in a rodent model was found to be highly correlated with the presence and degree of allodynia. Greater insight of key factors contributing to the development and maintenance of chronic neuropathic pain is important for improving quality of life.  相似文献   

10.
Neuropathic pain after spinal cord injury (SCI) represents a difficult problem that is commonly refractory to conventional medical management. To determine if spinal release of gamma-amino butyric acid (GABA) could reduce below-level central neuropathic pain after SCI, we constructed a replication-incompetent herpes simplex virus (HSV)-based vector encoding one isoform of human glutamic acid decarboxylase (GAD67). Dorsal root ganglion (DRG) neurons transduced in vitro or in vivo by subcutaneous inoculation produced GAD and released GABA constitutively. T13 spinal cord hemisection resulted in central neuropathic pain manifested by mechanical allodynia and thermal hyperalgesia. Subcutaneous inoculation of the vector into both feet reduced both manifestations of below-level SCI pain; the vector-mediated effect was partially reversed by intrathecal bicuculline or phaclofen at doses that did not affect thresholds in normal or injured uninoculated animals. Vector-mediated GABA release attenuated the increase in spinal calcitonin gene-related peptide immunoreactivity caused by cord hemisection. These results suggest that HSV-mediated gene transfer to DRG could be used to treat below-level central neuropathic pain after incomplete SCI.  相似文献   

11.
Abraham KE  McGinty JF  Brewer KL 《Pain》2001,90(1-2):181-190
Excitotoxic spinal cord injury (SCI) causes anatomic, physiologic and molecular changes within the spinal cord and brain. Intraspinal injection of quisqualic acid (QUIS) produces an excitotoxic injury that leads to the onset of behavioral syndromes, believed to be related to the clinical condition of chronic pain. The opioid system, classically involved in the suppression of pain transmission, has been associated with the onset of pain-related behaviors and changes in spinal opioid peptide expression have been demonstrated in various models of SCI and chronic pain. Recently, changes in opioid peptide expression have been demonstrated in both spinal and supraspinal areas following excitotoxic SCI. Therefore, the purpose of this study was to examine changes in opioid peptide gene expression as they relate to the onset of pain behaviors following excitotoxic SCI. Male, Long-Evans rats were given an intraspinal injection of 1.2 microl of 125 mM QUIS and allowed to survive for 10 days, a duration sufficient for the development of pain-related behaviors. Animals were assessed daily for the presence of excessive grooming behavior, i.e. self-directed biting and scratching resulting in damage to superficial and deeper layers of the skin. Animals were also tested for thermal hypersensitivity using a cold plate apparatus on days 5, 7, and 10 following QUIS injection. After sacrifice, quantitative in situ hybridization was performed on regions of the spinal cord surrounding the lesion site as well as whole brain sections through various levels of the thalamus and cortex. Spinal preproenkephalin (PPE) and preprodynorphin (PPD) expression was significantly increased in animals that developed excessive grooming behaviors vs. those that did not. For PPE, this difference was seen bilaterally, in areas of cord caudal to the site of injury. For PPD, this difference was seen only ipsilateral to the site of injection, rostral to the site of injury. In addition, PPE expression in the anterior cingulate cortex and PPD expression in the contralateral parietal cortex were significantly higher in grooming vs. non-grooming animals. These results support previous conclusions that both spinal and supraspinal regulation of endogenous opioid peptide expression plays a role in the response to or onset of post-SCI pain. These results also suggest that the opioid peptides are regulated independently and serve different functions in response to SCI.  相似文献   

12.
Intraspinal injection of the AMPA/metabotropic receptor agonist quisqualic acid (QUIS) results in a pathophysiology that leads to excessive grooming behavior, which has been proposed as a model of spontaneous at-level pain after spinal cord injury (SCI). To further characterize the onset and progression of this behavior we evaluated the effects of 3 drugs, agmatine (Agm), interleukin-10 (IL-10), and cyclosporin A (CsA), on different characteristics of this behavior. In these experiments rats were given saline, Agm, CsA10, or CsA20 once daily for 14 days (or a single injection of IL-10) starting either 30 minutes post-QUIS (group 1) or 10 to 18 days post-QUIS when excessive grooming behavior had been established (group 2). In the first group of animals agmatine, IL-10, CsA10, or CsA20 reduced the longitudinal extent of neuronal loss in the spinal cord compared to QUIS-injected animals treated with saline. The behavioral consequences of this effect included the delayed onset of excessive grooming behavior, reduction in the area of skin targeted for excessive grooming, and reduced grooming severity. Animals treated at the time of excessive grooming onset showed significantly reduced grooming area, grooming severity, and neuronal loss in the spinal cord compared to QUIS animals treated with saline. In conclusion, systemic administration of Agm, IL-10, or CsA significantly delayed the onset and reduced the severity of a spontaneous pain-like behavior. These effects are believed to be due, in part, to the neuroprotective properties of these drugs against QUIS-induced excitotoxicity. The effective treatment of excessive grooming behavior suggests that Agm, IL-10, and CsA modulate ongoing cellular events responsible for the progression of this behavior.  相似文献   

13.
Both, pruritus and pain are aversive, but clearly distinct sensations originating in the peripheral and central nervous system. During the last years, many interactions between itch and pain in acute transmission and sensitization processes have been identified. It is common experience that the itch sensation can be reduced by the painful sensations caused by scratching. Vice versa analgesia may reduce this inhibition and thus enhance itch. This phenomenon is particularly relevant to spinally administered mu-opioid receptor agonists, which induce segmental analgesia often combined with segmental pruritus. The peripheral and central sensitization to pain and to itch exhibits striking similarities. Classical inflammatory mediators such as bradykinin have been shown to sensitize nociceptors for both itch and pain. Also regulation of gene expression induced by trophic factors, such as NGF, plays a major role in persistently increased neuronal sensitivity for itch and pain. Finally, itch and pain exhibit corresponding patterns of central sensitization. The knowledge of antagonistic interaction, but also of similar sensitization processes has major implication for antipruritic therapeutic approaches.  相似文献   

14.
Oatway MA  Chen Y  Weaver LC 《Pain》2004,110(1-2):259-268
Spinal cord injury (SCI) results in the development of mechanical allodynia immediately rostral to the lesion site, within the dermatome border of normal sensation and sensory loss (at-level mechanical allodynia). We propose that an observed threefold increase in serotonergic fibre immunoreactivity within spinal segments corresponding to these allodynic dermatomes facilitates the maintenance of chronic neuropathic pain via activation of the 5-HT(3) receptor (5-HT(3)-R). Serotonin (5-HT), the non-selective 5-HT(1)/5-HT(2) receptor antagonist, methysergide, the 5-HT(3)-R agonist, m-chlorophenylbiguanide (m-CPBG) or the 5-HT(3)-R antagonist, ondansetron were intrathecally administered five weeks following SCI in rats. Ondansetron produced a robust, long-term reduction of at-level mechanical allodynia, while m-CPBG exacerbated allodynia. Exogenous 5-HT transiently reduced at-level mechanical allodynia. This effect was opposed by methysergide, which enhanced mechanical allodynia. Co-administration of 5-HT and ondansetron produced a short-lasting partial summation of effects, further decreasing mechanical allodynia while co-administration of methysergide attenuated the anti-allodynic effect of ondansetron. Depletion of spinal 5-HT via 5,7-dihydroxytryptamine (5,7-DHT) resulted in decreased at-level mechanical allodynia. The reduction of allodynia by ondansetron was lost following 5,7-DHT administration, suggesting that reduced allodynia following intrathecal ondansetron is via blockade of 5-HT-induced excitation of the 5-HT(3)-R. These results suggest that increased 5-HT fibre density immediately rostral to the SCI lesion site could have transient effects to reduce mechanical allodynia via actions at 5-HT(1) and/or 5-HT(2) receptors. However, the more long-lasting effects of this enhanced serotonergic input may facilitate chronic, at-level allodynia via the 5-HT(3)-R.  相似文献   

15.
Patients with spinal cord injury (SCI) may experience several types of chronic pain, including peripheral and central neuropathic pain, pain secondary to overuse, painful muscle spasms, and visceral pain. An accurate classification of the patient's pain is important for choosing the optimal treatment strategy. In particular, neuropathic pain appears to be persistent despite various treatment attempts. In recent years, we have gained increasing knowledge of SCI pain mechanisms from experimental models and clinical studies. Nevertheless, treatment remains difficult and inadequate. In line with the recommendations for peripheral neuropathic pain, evidence from randomized controlled treatment trials suggests that tricyclic antidepressants and pregabalin are first-line treatments. This review highlights the diagnosis and classification of SCI pain and recent improvements in the understanding of underlying mechanisms, and provides an update on treatment of SCI pain.  相似文献   

16.
Erichsen HK  Hao JX  Xu XJ  Blackburn-Munro G 《Pain》2005,116(3):347-358
Controversy persists in relation to the analgesic efficacy of opioids in neuropathic pain. In the present study the effects of acute, subcutaneous administration of the mu-opioid receptor agonists morphine, methadone and codeine were examined in rat models of peripheral and central neuropathic pain. In the spared nerve injury (SNI) and chronic constriction injury (CCI) models of peripheral neuropathic pain, both morphine (6mg/kg) and methadone (3mg/kg) attenuated mechanical allodynia, mechanical hyperalgesia and cold allodynia for up to 1.5h post-injection (P<0.05); codeine (30mg/kg) minimally alleviated mechanical hypersensitivity in SNI, but not CCI rats. When administered to rats with photochemically-induced spinal cord injury (SCI), morphine (2 and 6mg/kg) and methadone (0.5-3mg/kg) robustly attenuated mechanical and cold allodynia for at least 2h post-injection (P<0.05). Codeine (10 and 30mg/kg) also attenuated mechanical and cold allodynia in this model for at least 3h after injection. The magnitude of opioid-mediated antinociception was similar between SNI, SCI and non-injured rats as measured in the tail flick test. At antinociceptive doses, no motor impairment as determined by the rotarod test was observed. The therapeutic window (based on antiallodynia versus ataxia) obtained for codeine, was vastly superior to that obtained with morphine or methadone in SNI and SCI rats. Furthermore, the therapeutic window for codeine in SCI rats was 4-fold greater than in SNI rats. Our results further support the efficacy of mu-opioid receptor agonists in alleviating signs of neuropathic pain in animal models of peripheral and especially central nerve injury.  相似文献   

17.
《The journal of pain》2022,23(5):772-783
Opioids are not universally effective for treating neuropathic pain following spinal cord injury (SCI), a finding that we previously demonstrated in a rat model of SCI. The aim of this study was to determine analgesic response of morphine-responsive and nonresponsive SCI rats to adjunct treatment with dopamine modulators and to establish if the animal groups expressed distinct metabolomic profiles. Thermal thresholds were tested in female Long Evans rats (N = 45) prior to contusion SCI, after SCI and following injection of morphine, morphine combined with dopamine modulators, or dopamine modulators alone. Spinal cord and striatum samples were processed for metabolomics and targeted mass spectrometry. Morphine provided analgesia in 1 of 3 of SCI animals. All animals showed improved analgesia with morphine + pramipexole (D3 receptor agonist). Only morphine nonresponsive animals showed improved analgesia with the addition of SCH 39166 (D1 receptor antagonist). Metabolomic analysis identified 3 distinct clusters related to the tyrosine pathway that corresponded to uninjured, SCI morphine-responsive and SCI morphine-nonresponsive groups. Mass spectrometry showed matching differences in dopamine levels in striatum and spinal cord between these groups. The data suggest an overall benefit of the D3 receptor system in improving analgesia, and an association between morphine responsiveness and metabolomic changes in the tyrosine/dopamine pathways in striatum and spinal cord.PerspectiveSpinal cord injury (SCI) leads to opioid-resistant neuropathic pain that is associated with changes in dopamine metabolomics in the spinal cord and striatum of rats. We present evidence that adjuvant targeting of the dopamine system may be a novel pain treatment approach to overcome opioid desensitization and tolerance after SCI.  相似文献   

18.
Itch, also known as pruritus, is a common, intractable symptom of several skin diseases, such as atopic dermatitis and xerosis. TLRs mediate innate immunity and regulate neuropathic pain, but their roles in pruritus are elusive. Here, we report that scratching behaviors induced by histamine-dependent and -independent pruritogens are markedly reduced in mice lacking the Tlr3 gene. TLR3 is expressed mainly by small-sized primary sensory neurons in dorsal root ganglions (DRGs) that coexpress the itch signaling pathway components transient receptor potential subtype V1 and gastrin-releasing peptide. Notably, we found that treatment with a TLR3 agonist induces inward currents and action potentials in DRG neurons and elicited scratching in WT mice but not Tlr3(-/-) mice. Furthermore, excitatory synaptic transmission in spinal cord slices and long-term potentiation in the intact spinal cord were impaired in Tlr3(-/-) mice but not Tlr7(-/-) mice. Consequently, central sensitization-driven pain hypersensitivity, but not acute pain, was impaired in Tlr3(-/-) mice. In addition, TLR3 knockdown in DRGs also attenuated pruritus in WT mice. Finally, chronic itch in a dry skin condition was substantially reduced in Tlr3(-/-) mice. Our findings demonstrate a critical role of TLR3 in regulating sensory neuronal excitability, spinal cord synaptic transmission, and central sensitization. TLR3 may serve as a new target for developing anti-itch treatment.  相似文献   

19.
Spinal cord injuries frequently determine central pain symptoms that are difficult to control. The authors present the case of a 67-year-old suffering from a pleural mesothelioma. During the disease course, he developed a paraplegia syndrome from mesothelioma compression of the spinal cord at T4–T5 level. Following spinal decompression surgery, the patient presented an intense at-level, superficial neuropathic pain syndrome with allodynia and hyperalgesia. After systemic pharmacological therapies had failed, treatment with lidocaine 5% plaster was initiated. The superficial neuropathic symptoms almost completely disappeared within a few days. The lidocaine topical treatment was continued for months with durable analgesic effect.  相似文献   

20.
Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide– and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号