首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies of the trophic activities of brain-derived neurotrophic factor and neurotrophin-3 indicate that both molecules support the survival of a number of different embryonic cell types in culture. We have shown that mRNAs for brain-derived neurotrophic factor and neurotrophin-3 are localized to specific ventral mesencephalic regions containing dopaminergic cell bodies, including the substantia nigra and ventral tegmental area. In the present study, in situ hybridization with 35S-labeled cRNA probes for the neurotrophin mRNAs was combined with neurotoxin lesions or with immunocytochemistry for the catecholamine-synthesizing enzyme tyrosine hydroxylase to determine whether the dopaminergic neurons, themselves, synthesize the neurotrophins in adult rat midbrain. Following unilateral destruction of the midbrain dopamine cells with 6-hydroxydopamine, a substantial, but incomplete, depletion of brain-derived neurotrophic factor and neurotrophin-3 mRNA-containing cells was observed in the ipsilateral substantia nigra pars compacta and ventral tegmental area. In other rats, combined in situ hybridization and tyrosine hydroxylase immunocytochemistry demonstrated that the vast majority of the neurotrophin mRNA-containing neurons in the substantia nigra and ventral tegmental area were tyrosine hydroxylase immunoreactive. Of the total population of tyrosine hydroxylase-positive cells, double-labeled neurons constituted 25–50% in the ventral tegmental area and 10–30% in the substantia nigra pars compacta, with the proportion being greater in medial pars compacta. In addition, tyrosine hydroxylase/neurotrophin mRNA coexistence was observed in neurons in other mesencephalic regions including the retrorubral field, interfascicular nucleus, rostral and central linear nuclei, dorsal raphe nucleus, and supramammillary region. The present results demonstrate brain-derived neurotrophic factor and neurotrophin-3 expression by adult midbrain dopamine neurons and support the suggestion that these neurotrophins influence dopamine neurons via autocrine or paracrine mechanisms. These data raise the additional possibility that inappropriate expression of the neurotrophins by dopaminergic neurons could contribute to the neuropathology of disease states such as Parkinson's disease and schizophrenia. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The coexistence of cholecystokinin- and tyrosine hydroxylase-like immunoreactivities within neurons of the rat ventral mesencephalon was analyzed by using an indirect immunofluorescence technique for the simultaneous demonstration of two antigens in the same tissue section. A high degree of colocalization was observed in the substantia nigra pars compacta, in which 80-90% of all labeled neurons at rostral and up to 70% at intermediate levels contained both cholecystokinin and tyrosine hydroxylase. At caudal levels, the incidence of colocalization declined to approximately 30-50%. All of the immunoreactive perikarya in the substantia nigra pars lateralis were labeled with both substances. Other areas of the ventral midbrain that exhibited a moderate proportion of neurons immunoreactive for both cholecystokinin and tyrosine hydroxylase included the ventral tegmental area, interfascicular nucleus, and rostral and caudal linear nuclei. In addition, coexistence was occasionally observed within neurons of the central and ventral periaqueductal gray matter, supramammillary region, peripeduncular region, retrorubral field, and extremely rarely, within the substantia nigra pars reticulata. Cell bodies containing tyrosine hydroxylase-like immunoreactivity (indicative of dopamine) usually outnumbered those containing the peptide except in the supramammillary region and in the ventral periaqueductal gray matter, where the cholecystokinin perikarya were present in higher numbers. The double-labeling colocalization technique was combined with fluorescence retrograde tracing to determine some of the forebrain projections of these neurons. Ventral midbrain neurons containing both cholecystokinin and tyrosine hydroxylase were found to project to the caudate-putamen, nucleus-accumbens, prefrontal cortex, and amygdala. These projections originated from neurons located predominantly in the substantia nigra pars compacta and the ventral tegmental area. Thus, cholecystokinin occurs within the well-known dopaminergic nigrostriatal pathway in the rat. Overall, these results demonstrate that a significant proportion of the dopamine neurons giving rise to the ascending mesotelencephalic projections also contain the peptide cholecystokinin.  相似文献   

3.
Tyrosine hydroxylase immunohistochemical examination of the mesencephalon of severely parkinsonian MPTP-treated macaque fascicularis monkeys revealed a marked loss of substantia nigra pars compacta (SNc) neurons in both medial and central portions of the nucleus with a relative sparing of neurons in the dorsal-most portions of the substantia nigra. These animals also sustained 20–65% loss of neurons in the substantia nigra pars lateralis area, ventral tegmental area (A-10), and the retrorubral area (A-8 cell group, and the parabrachialis pigmentosus region). These animals all had extreme striatal dopamine depletions. A monkey which received several small doses of MPTP and yet remained asypptomatic for a motor disorder (although it had demonstrable behavioral performance deficits) had only a loss only ventral SNc neurons, with no appreciable cells in associated ventral mesencephalic dopamine areas and no loss of striatal dopamine. These data suggest that the effects of MPTP are not as selective as originally thought and, more importantly, indicate that MPTP-induced parkinsonism in the primate may be more analogous to idiopathic Parkinson's disease, where cells other than SNc cells are affected. Furthermore, the present findings suggest that only certain mesencephalic dopamine neurons are susceptible to MPTP-induced damage. The unique characteristics of these neurons need to be elucidated.  相似文献   

4.
Dopamine transporter messenger RNA (mRNA) expression was assessed by in situ hybridization over individual pigmented neurons from the substantia nigra pars compacta in midbrain sections from 7 parkinsonian and 7 age-matched, neurologically normal patients. In the normal control brains, high levels of expression of dopamine transporter mRNA were noted over pigmented neurons in the substantia nigra pars compacta; neurons in the adjacent nucleus paranigralis of the ventral tegmental area displayed less hybridization. Nigra compacta neurons surviving in brains of patients with Parkinson's disease displayed only 57% of the dopamine transporter mRNA hybridization intensity displayed by nigral neurons in normal control brains. The disease-related decrease in the apparent level of dopamine transporter mRNA expression in remaining neurons could reflect neuronal dysfunction. Conceivably, it might also reflect differential vulnerability of those neurons that initially expressed higher levels of this transporter to the insult of parkinsonism.  相似文献   

5.
Brainstem afferents to the magnocellular basal forebrain were studied by using tract tracing, immunohistochemistry and extracellular recordings in the rat. WGA-HRP injections into the horizontal limb of the diagonal band (HDB) and the magnocellular preoptic area (MgPA) retrogradely labelled many neurons in the pedunculopontine and laterodorsal tegmental nuclei, dorsal raphe nucleus, and ventral tegmental area. Areas with moderate numbers of retrogradely labelled neurons included the median raphe nucleus, and area lateral to the medial longitudinal fasciculus in the pons, the locus ceruleus, and the medial parabrachial nucleus. A few labelled neurons were seen in the substantia nigra pars compacta, mesencephalic and pontine reticular formation, a midline area in the pontine central gray, lateral parabrachial nucleus, raphe magnus, prepositus hypoglossal nucleus, nucleus of the solitary tract, and ventrolateral medulla. A similar but not identical distribution of labelled neurons was seen following WGA-HRP injections into the nucleus basalis magnocellularis. The possible neurotransmitter content of some of these afferents to the HDB/MgPA was examined by combining retrograde Fluoro-Gold labelling and immunofluorescence. In the mesopontine tegmentum, many retrogradely labelled neurons were immunoreactive for choline acetyltransferase. In the dorsal raphe nucleus, some retrogradely labelled neurons were positive for serotonin and some for tyrosine hydroxylase (TH); however, the majority of retrogradely labelled neurons in this region were not immunoreactive for either marker. The ventral tegmental area, substantia nigra pars compacta, and locus ceruleus contained retrogradely labelled neurons which were also immunoreactive for TH. Of the retrogradely labelled neurons occasionally observed in the nucleus of the solitary tract, prepositus hypoglossal nucleus, and ventrolateral medulla, some were immunoreactive for either TH or phenylethanolamine-N-methyltransferase. To characterize functionally some of these brainstem afferents, extracellular recordings were made from antidromically identified cortically projecting neurons, mostly located in the HDB and MgPA. In agreement with most previous studies, about half (48%) of these neurons were spontaneously active. Electrical stimulation in the vicinity of the pedunculopontine tegmental and dorsal raphe nuclei elicited either excitatory or inhibitory responses in 21% (13/62) of the cortically projecting neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A light and electron microscopic double antigen localization technique was employed to examine the fine structural relationship between neurotensin-containing axon terminals and dopaminergic neurons in the substantia nigra and ventral tegmental area of the rat. At the light microscopic level, neurotensin-immunoreactive terminals were densely distributed throughout the substantia nigra pars compacta and ventral tegmental area in close proximity to tyrosine hydroxylase-immunoreactive somata and dendrites. On electron microscopic examination, direct synaptic connections were identified between neurotensin-immunoreactive axon terminals and tyrosine hydroxylase-immunopositive perikarya and dendrites. However, only 8.2% and 8.8% of the neurotensin-immunoreactive axonal profiles detected in the substantia nigra and ventral tegmental area, respectively, were found in direct apposition with tyrosine hydroxylase-immunostained elements. In turn, only 9.3% and 10.0% of tyrosine hydroxylase immunoreactive dendrites sampled from the substantia nigra and ventral tegmental area, respectively, were seen in contact with neurotensin immunopositive axon terminals. However, neurotensin-immunoreactive and tyrosine hydroxylase-immunolabelled elements were frequently identified in close anatomical proximity (less than 5 microns) to one another. These results are interpreted in light of the selective association of neurotensin receptors with dopaminergic neurons in the substantia nigra and ventral tegmental area to suggest a predominantly parasynaptic mechanism of action for neurotensin in the ventral midbrain.  相似文献   

7.
A unilateral partially lesioned rat model of Parkinson's disease was developed following selective lesioning of the dopamine neurons of the substantia nigra pars compacta by stereotactic injection of the neurotoxin 6-hydroxydopamine. In this animal model the dopamine neurons of the ventral tegmental area and medial substantia nigra are spared. The neuronal loss in such partial lesioned models mimics more closely that seen in human mid-stage parkinsonism. Cografts of adrenal medullary cells and sciatic nerve to the partially lesioned striatum induced a sprouting response in grafted animals that was confirmed by immunocytochemical staining with antibodies to tyrosine hydroxylase (TH) and by quantification of the high affinity dopamine uptake complex using [3H]GBR 12935 binding. Enhanced TH fiber immunostaining was evident even in the presence of poor cograft survival. The origin of the TH-like immunostained fibers in the striatum was determined using Lucifer yellow retrograde axonal transport. Following discrete tracer injections into the striatum adjacent to a cograft, neurons in the medial substantia nigra and ventral tegmental area (areas A9 and A10, respectively) were labelled with Lucifer yellow. These labelled neurons displayed a morphology characteristics of dopamine neurons and, in double-labelling experiements, also immunostained for TH. These results support the utility of unilateral partially lesioned rat models of Parkinson's disease for studies investigating a host sprouting or upregulation response and confirm that the immunostained striatal fibers originate from spared dopamine neurons in the ventromedial midbrain.  相似文献   

8.
The topographical distributions of Met-enkephalin, dopamine and noradrenaline were determined in serial frontal sections of human substantia nigra (pars compacta and pars reticulata) and ventral tegmental area. Met-enkephalin was identified by Biogel and thin layer chromatography and assayed by a specific radioimmunoassay. In the substantia nigra (pars compacta and pars reticulata), the levels of Met-enkephalin increased progressively from the rostal to the caudal part of the structure. This pattern closely resembled that of dopamine levels, particularly in the pars compacta. Noradrenaline levels in the substantia nigra and those of Met-enkephalin, dopamine, and noradrenaline in the ventral tegmental area, exhibited only limited fluctuations from the anterior to the posterior part of each structure.Highly significant decreases in Met-enkephalin, dopamine and noradrenaline levels were observed in the substantia nigra and ventral tegmental area of Parkinsonian brains. This observation, together with the close topographical association of dopamine and Met-enkephalin in the substantia nigra, further supports the likely existence of important functional relationships between dopaminergic and enkephalinergic neurons in the human brain.  相似文献   

9.
Many behavioral effects of opiate narcotics and peptides have been linked to effects on dopamine neurons originating in the substantia nigra pars compacta and ventral tegmental area. Selective brain lesions were combined with quantitative autoradiography to determine whether opiate receptors are on dopaminergic somata and/or processes in the substantia nigra pars compacta and ventral tegmental area. 6-Hydroxydopamine lesions that eliminated dopamine neurons produced little change in the pattern or density of [3H]-naloxone binding in the substantia nigra pars compacta or ventral tegmental area. Radiofrequency lesions of the internal capsule or globus pallidus and kainic acid lesions of the striatum markedly decreased [3H]-naloxone binding in the pars compacta and pars reticulata. These results are consistent with a dense distribution of opiate receptors on pallido-nigral and/or striato-nigral fibers and strengthen the likelihood that local effects of opiates on dopamine function in the nigrostriatal pathway are mediated indirectly by actions on nondopaminergic processes.  相似文献   

10.
11.
A rat model of Parkinson’s disease was induced by injecting lactacystin stereotaxically into the left mesencephalic ventral tegmental area and substantia nigra pars compacta. After rats were intragastrically perfused with Anchanling, a Chinese medicine, mainly composed of magnolol, for 5 weeks, when compared with Parkinson’s disease model rats, tyrosine hydroxylase expression was increased, α-synuclein and ubiquitin expression was decreased, substantia nigra cell apoptosis was reduced, and apomorphine-induced rotational behavior was improved. Results suggested that Anchanling can ameliorate Parkinson’s disease pathology possibly by enhancing degradation activity of the ubiquitin-proteasome system.  相似文献   

12.
The ventral tegmental area contains a high density of dopaminergic perikarya having ascending projections to a number of limbic forebrain regions. In this study, we use combined retrograde labeling with horseradish peroxidase (HRP) and immunohistochemical staining for tyrosine hydroxylase to examine the catecholaminergic projection from the ventral tegmental area to the diagonal band of Broca. When injection of HRP was restricted to the diagonal band, only neurons in the nucleus linearis, nucleus interfascicularis and ventromedial portion of the nucleus paranigralis were labeled. In contrast, HRP injection into the adjacent nucleus accumbens labeled neurons throughout these nuclei, plus the nucleus parabrachialis pigmentosus, nucleus retroruber and substantia nigra, pars compacta. Approximately 60% of neurons in the ventral tegmental area labeled from the diagonal band contained tyrosine hydroxylase, compared with 79% of the neurons labeled from the nucleus accumbens. Neurotensin is a tridecapeptide found in the ventral tegmental area which has been shown to activate dopamine neurons projecting to the nucleus accumbens. In this study, microinjection of neurotensin into ventral tegmental nuclei which contained neurons retrogradely labeled from the diagonal band significantly elevated the levels of dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, in the diagonal band. The results of this study demonstrate that a catecholaminergic projection exists from the ventral tegmental area to the diagonal band of Broca, and that this pathway can be stimulated by intra-ventral tegmental injection with neurotensin.  相似文献   

13.
Immunocytochemistry procedures and 6-hydroxy-dopamine-induced degeneration of dopamine nerve cells provided evidence that practically all tyrosine hydroxylase immunoreactive (IR) neurons of the substantia nigra and ventral tegmental area contain cytoplasmic basic fibroblast growth factor immunoreactivity (bFGF IR), while many astroglial cells in the neostriatum and substantia nigra contain nuclear bFGF IR. RNA blot analysis demonstrated strong expression of a major 3.7 kb bFGF mRNA in the substantia nigra and ventral tegmental area. These results indicate that bFGF may be a significant growth factor in the DA neurons.  相似文献   

14.
The excitatory amino acid, glutamate, has long been thought to be a transmitter that plays a major role in the control of the firing pattern of midbrain dopaminergic neurons. The present study was aimed at elucidating the anatomical substrate that underlies the functional interaction between glutamatergic afferents and midbrain dopaminergic neurons in the squirrel monkey. To do this, we combined preembedding immunocytochemistry for tyrosine hydroxylase and calbindin D-28k with postembedding immunostaining for glutamate. On the basis of their ultrastructural features, three types (so-called types I, II, and III) of glutamate-enriched terminals were found to form asymmetric synapses with dendrites and perikarya of midbrain dopaminergic neurons. The type I terminals accounted for more than 70% of the total population of glutamate-enriched boutons in contact with dopaminergic cells in the dorsal and ventral tiers of the substantia nigra pars compacta as well as in the ventral tegmental area, whereas 5–20% of the glutamatergic synapses with dopaminergic neurons involved the two other types of terminals. The major finding of our study is that the glutamate-enriched boutons were involved in 70% of the axodendritic synapses in the ventral tegmental area. In contrast, less than 40% of the boutons in contact with dopaminergic dendrites were immunoreactive for glutamate in the dorsal and ventral tiers of the substantia nigra pars compacta. Approximately 50% of the terminals in contact with the perikarya of the different populations of midbrain dopaminergic neurons displayed glutamate immunoreactivity. In conclusion, our findings provide the first evidence that glutamate-enriched terminals form synapses with midbrain dopaminergic neurons in primates. The fact that the proportion of glutamatergic boutons in contact with dopaminergic cells is higher in the ventral tegmental area than in the substantia nigra pars compacta suggests that the different groups of midbrain dopaminergic neurons are modulated differently by extrinsic glutamatergic afferents in primates. © 1996 Wiley-Liss, Inc.  相似文献   

15.
The dopamine transporter (DAT) was localized in normal human brain tissue by light microscopic immunocytochemistry by using highly specific monoclonal antibodies. Regional distribution of DAT was found in areas with established dopaminergic circuitry, e.g., mesostriatal, mesolimbic, and mesocortical pathways. Mesencephalic DAT-immunoreactivity was enriched in the dendrites and cell bodies of neurons in the substantia nigra pars compacta and ventral tegmental area. Staining in the striatum and nucleus accumbens was dense and heterogeneous. Mesocortical DAT immunoreactivity in motor, premotor, anterior cingulate, prefrontal, entorhinal/perirhinal, insular, and visual cortices was detected in scattered varicose and a few nonvaricose fibers. Varicose fibers were relatively enriched in the basolateral and central subnuclei of amygdala, with sparser fibers in lateral and basomedial subnuclei. Double-labeling studies combining DAT and tyrosine hydroxylase (TH) immunostaining in the ventral mesencephalon showed two subpopulations of dopaminergic neurons differentiated by the presence or absence of DAT-immunoreactivity in the A9 and A10 cell groups. In other dopaminergic cell groups (All, A13-A15), TH-positive hypothalamic neurons showed no detectable DAT-immunoreactivity. However, fine DAT-immunoreactive axons were scattered throughout the hypothalamus, particularly concentrated along the medial border, with more coarse axons present along the lateral border. These findings demonstrate that most mesotelencephalic dopamine neurons of human brain express high levels of DAT throughout their entire somatodendritic and axonal domains, whereas a smaller subpopulation of mesencephalic dopamine cells and all hypothalamic dopamine cell groups examined express little or no DAT. These data indicate that different subpopulations of dopaminergic neurons use different mechanisms to regulate their extracellular dopamine levels.  相似文献   

16.
A rabbit antiserum (R917) was raised to a purified fraction of bovine brain basic fibroblast growth factor (bFGF). On Western blots of rat midbrain extract, the antiserum did not recognize low molecular weight forms of bFGF. Instead, it recognized a single band of 27-28 kDa. Immunohistochemically, the antiserum preferentially stained a subpopulation of calbindin-negative mesencephalic dopaminergic neurons. The positive somata were mainly packed in a ventral portion of the tegmentum including the A10 region, the ventral tegmental area and the pars compacta of the medial substantia nigra, but were also scattered in both the pars compacta and reticulata portions of the lateral substantia nigra. Processes of dendrites and axons were clearly visible. Terminal fields were located in striosomes, the dorsolateral rim of the neostriatum, the anterodorsal aspect of the nucleus accumbens shell, the infralimbic cortex, and the medial prefrontal cortex. These results suggest that trophic specialization in subpopulations may occur in all three of these dopaminergic projection systems, i.e. the nigrostriatal, mesolimbic and mesocortical pathways.  相似文献   

17.
目的观察评价预先应用谷氨酸(Glu)受体拮抗剂kynurenic acid(KYNA)对黑质多巴胺(DA)能神经元及神经传导纤维损伤的保护性作用. 方法雌性SD大鼠40只,随机分为4组,每组10只,应用江湾I型C立体定向仪,在单侧黑质致密部及中脑被盖腹侧部, A组注射生理盐水,B组注射KYNA,C组注射KYNA和6-羟基多巴胺(6-OHDA), KYNA先于6-OHDA 30 min, D组注射6-OHDA.注射药物3 d后,进行症状观察,4周后处死大鼠.切片HE染色观察黑质细胞的形态特点,冰冻切片免疫组化特殊染色观察酪氨酸羟化酶(TH)阳性细胞及TH阳性纤维着色情况.结果正常黑质细胞体形较大,富含黑色素颗粒,可见尼氏体.TH着色结果提示B组与A组之间无显著差异,P>0.05.实验组C与A、B、D组比较均有显著性差异,P<0.01.结论外源性Glu受体拮抗剂KYNA通过阻滞Glu受体一定时间阶段内能减轻6-OHDA诱导的黑质DA能神经元毒性损害.  相似文献   

18.
The goal of the present study was to provide neurochemical evidence for a shift in the functional balance between the nigrostriatal and mesolimbic pathway in favour of the mesolimbic pathway by investigating the effects of a partial, nigral, bilateral 6-hydroxydopamine lesion on basal and novelty-induced extracellular dopamine release in the accumbens of Low responder rats to novelty (LR). Low responders were chosen because the above-mentioned shift was seen in LR rats, but not in rats that have a high response to novelty (HR). About 1 microg/microl of 6-hydroxydopamine was injected bilaterally into the substantia nigra pars compacta and a guide cannula was placed into the right accumbens. Changes in extracellular dopamine in response to novelty, a new cage, were measured using a microdialysis probe inserted into the accumbens. The lesion size was determined by quantification of tyrosine hydroxylase immunoreactivity of the substantia nigra and the ventral tegmental area. This revealed that the lesion partly destroyed the dopaminergic cells of the nigrostriatal pathway, thereby relatively sparing the dopaminergic cells of the mesolimbic pathway. The lesion significantly increased the amount of extracellular dopamine in the accumbens during both basal and novelty conditions. We suggest that the experimentally induced neuronal death in the substantia nigra pars compacta with subsequent removal of lateral inhibition of adjacent neurons underlies the observed changes in the amount of extracellular dopamine in the accumbens.  相似文献   

19.
The immunostaining for tyrosine hydroxylase (TH) in the substantia nigra pars compacta (SNpc) and in the ventral tegmental area (VTA) after intranigral infusion of 6-hydroxydopamine (6-OHDA, 6 microg/side) was analyzed in ovariectomized adult female Wistar rats. Estrogen replacement for 52 days (400-microg 17-beta-estradiol capsules) did not prevent the loss of TH-immunoreactive cells induced by 6-OHDA in the SNpc. This result indicates that the neuroprotective effect of dopaminergic mesencephalic cells is not observed with long-term estrogen replacement.  相似文献   

20.
The purpose of the present study was to analyze the distribution of cholecystokininlike-immunoreactive (CCK-I) neurons within the rat ventral mesencephalon which project to several forebrain areas. The peroxidase-antiperoxidase immunocytochemical technique was used to examine the anatomical localization of CCK-I within the ventral midbrain and in the following forebrain regions: caudate-putamen, nucleus accumbens, olfactory tubercle, bed nucleus of the stria terminalis, septum, amygdala, and prefrontal, anterior cingulate, and piriform cortices. CCK-I perikarya were distributed throughout the substantia nigra, ventral tegmental area, and several midline raphe nuclei to a greater extent than previously reported, particularly in the substantia nigra pars compacta. Terminallike immunoreactivity for CCK was observed in all of the above forebrain sites. In addition, infrequent CCK-I cell bodies were localized in the caudate-putamen, nucleus accumbens, olfactory tubercle, septum, and bed nucleus of the stria terminalis. To analyze forebrain projections of the ventral midbrain CCK-I neurons, indirect immunofluorescence was combined with fluorescence retrograde tracing. CCK-I neurons of the substantia nigra and/or ventral tegmental area were found to project, to varying extents, to all of the above CCK-I forebrain terminal fields. The nucleus accumbens, olfactory tubercle, and septal and prefrontal cortical projections arose primarily from CCK-I perikarya in the ventral tegmental area whereas the projections to the caudate-putamen and anterior cingulate cortex arose predominantly from immunoreactive neurons in the substantia nigra pars compacta. The amygdala received innervation mainly from CCK-I cell bodies located in the substantia nigra pars lateralis. CCK-I afferents to the bed nucleus of the stria terminalis and piriform cortex originated from perikarya distributed approximately equally across the ventral tegmental area and substantia nigra pars compacta. The general topography of CCK-I forebrain innervation observed in this study is similar to that previously reported for the ascending dopaminergic projections from ventral mesencephalic neurons. CCK-I neurons of the midline raphe nuclei were found to provide relatively minor afferents to the caudate-putamen, bed nucleus of the stria terminalis, septum, and prefrontal cortex and more substantial projections to the amygdala. The results of this study demonstrate that CCK-I neurons of the ventral midbrain supply a much broader innervation of forebrain regions than previously appreciated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号