首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secretion of alpha-melanophore-stimulating hormone (alphaMSH) from pituitary melanotrope cells of the amphibian Xenopus laevis is under inhibitory synaptic control by three neurotransmitters produced by the suprachiasmatic nucleus: gamma-aminobutyric acid (GABA), neuropeptide Y (NPY) and dopamine (DA). These inhibitory effects occur through G(i)-protein-coupled receptors (G(i)PCR), and differ in strength: GABA(B)-receptor-induced inhibition is the weakest, whereas DA (via a D2-receptor) and NPY (via a Y1-receptor) strongly inhibit, with NPY having a long-lasting effect. Previously it was shown that DA inhibits two (R- and N-type channel) of the four voltage-operated Ca2+ channels in the melanotrope, and that only part of this inhibition is mediated by beta/gamma-subunits of the G(i) protein. We here demonstrate that also the Y1- and GABA(B)-receptor inhibit only part of the total Ca2+ current (I(Ca)), with fast activation and inactivation kinetics. However, GABA(B)-mediated inhibition is weaker than the inhibitions induced via Y1- and D2-receptors (-21 versus -27% and -30%, respectively). Using a depolarizing pre-pulse protocol it was demonstrated that GABA(B)-induced inhibition of I(Ca) most likely depends on Gbeta/gamma-subunit activation whereas Y1- and D2- induced inhibitions are only partially mediated by Gbeta/gamma-subunits. No differences were found between the Y1- and D2-induced inhibitions. These results imply that activation of different G(i)PCR inhibits the I(Ca) through different mechanisms, a phenomenon that may underlie the different potencies of the suprachiasmatic neurotransmitters to inhibit alphaMSH secretion.  相似文献   

2.
3.
The central melanocortin system is critical in the regulation of appetite and body weight, and leptin exerts its anorexigenic actions partly by increasing hypothalamic proopiomelanocortin (POMC) expression. The POMC-derived peptide alpha-melanocyte-stimulating hormone (alphaMSH) is a melanocortin 4 receptor agonist, and its potency in reducing energy intake is strongly increased by N-acetylation. The reason for the higher biological activity of N-acetylated alphaMSH (Act-alphaMSH) compared with that of N-desacetylated alphaMSH (Des-alphaMSH) is unclear, and regulation of acetylation by leptin has not been investigated. We show here that total hypothalamic alphaMSH levels are decreased in leptin-deficient ob/ob mice and increased in leptin-treated ob/ob and C57BL/6J mice. The increase in total alphaMSH occurred as soon as 3 h after leptin injection and was entirely due to an increase in Act-alphaMSH. Consistent with this observation, leptin rapidly induced the enzymatic activity of a N-acetyltransferase in the hypothalamus of mice. In 293T cells expressing the melanocortin 4 receptor, Act-alphaMSH is far more potent than Des-alphaMSH in stimulating cAMP accumulation, an effect caused by a dramatically increased stability of Act-alphaMSH. Moreover, Des-alphaMSH is rapidly degraded in the hypothalamus after intracerebroventricular injection in rats and was less potent in inhibiting energy intake. The results suggest that leptin activates a N-acetyltransferase in POMC neurons, leading to increased hypothalamic levels of Act-alphaMSH. Due to its increased stability, this posttranslational modification of alphaMSH may play a critical role in leptin action via the central melanocortin pathway.  相似文献   

4.
We have investigated the physiological regulation and functional significance of brain-derived neurotrophic factor (BDNF) in the endocrine melanotrope cells of the pituitary pars intermedia of the amphibian Xenopus laevis, which can adapt its skin color to the light intensity of its environment. In black-adapted animals, melanotrope cells produce and release alpha-melanophore-stimulating hormone (alpha-MSH). In white-adapted animals, the activity of melanotrope cells is inhibited by neuronal input. Using Western blotting and immunocytochemistry at the light and electron microscopical level, we have detected both the BDNF precursor and the mature BDNF protein in Xenopus melanotrope cells. In situ hybridization and RT-PCR revealed the presence of BDNF mRNA in the pituitary pars intermedia, indicating that BDNF is synthesized in the melanotropes. Real-time quantitative RT-PCR showed that levels of BDNF mRNA in melanotrope cells are about 25 times higher in black- than in white-adapted animals. Although there is no difference in the amount of stored mature BDNF, the amount of BDNF precursor protein is 3.5 times higher in melanotropes of black-adapted animals than in those of white-adapted animals. These data indicate that BDNF mRNA expression and BDNF biosynthesis are up-regulated in active melanotrope cells. Because immunoelectron microscopy showed that BDNF is located in melanotrope secretory granules, BDNF is probably coreleased with alpha-MSH via the regulated secretory pathway. Superfusion and (3)H-amino acid incorporation studies demonstrated that BDNF stimulates the release of alpha-MSH and the biosynthesis of its precursor protein, POMC. Our results provide evidence that BDNF regulates the activity of Xenopus melanotrope cells in an autocrine fashion.  相似文献   

5.
Proopiomelanocortin (POMC)-derived peptides and their receptors have been identified in many peripheral organs including the skin in which they exert a diversity of biological actions. We investigated the expression and potential role of the POMC system in human dermal papilla cells (DPCs), a specialized cutaneous mesenchymal cell type regulating hair follicle activity. In culture, these cells expressed POMC and displayed immunoreactivity for ACTH, alphaMSH, and beta-endorphin. Among the prohormone convertases (PCs) tested, only PC2, its chaperone 7B2, and furin convertase but not PC1 and paired basic amino acid cleaving enzyme 4 gene were detected. Human DPCs in vitro expressed both the melanocortin-1 receptor (MC-1R) and MC-4R, and immunoreactivity for these receptors was also present in cells of the human dermal papilla in situ. In contrast to the dermal papilla of agouti mice, agouti signaling protein, a natural and highly selective MC-1R and MC-4R antagonist, was undetectable in human DPCs. The MC-Rs detected in human DPCs were functionally active because alphaMSH increased intracellular cAMP and calcium. Preincubation of the cells with a synthetic peptide corresponding to the C-terminal domain of agouti signaling protein abrogated cAMP induction by alphaMSH. Furthermore, alphaMSH was capable of antagonizing the expression of intercellular adhesion molecule-1 induced by the proinflammatory cytokine interferon-gamma. Our data suggest a regulatory function of alphaMSH within the dermal papilla whose disruption may lead to deregulation of immune and inflammatory responses of the hair follicle, thereby possibly contributing to the development of inflammatory forms of alopecia.  相似文献   

6.
In amphibians, the secretion of alpha-MSH by melanotrope cells is stimulated by TRH and inhibited by NPY. We have previously shown that NPY abrogates the stimulatory effect of TRH on alpha-MSH secretion. The aim of the present study was to characterize the receptor subtypes mediating the action of NPY and to investigate the intracellular mechanisms involved in the inhibitory effect of NPY on basal and TRH-induced alpha-MSH secretion. Y(1) and Y(5) receptor mRNAs were detected by RT-PCR and visualized by in situ hybridization histochemistry in the intermediate lobe of the pituitary. Various NPY analogs inhibited in a dose-dependent manner the spontaneous secretion of alpha-MSH from perifused frog neurointermediate lobes with the following order of potency porcine peptide YY (pPYY) > frog NPY (fNPY) > porcine NPY (pNPY)-2-36) > pNPY-(13-36) > [D-Trp(32)]pNPY > [Leu(31),Pro(34)]pNPY. The stimulatory effect of TRH (10(-8)6 M) on alpha-MSH release was inhibited by fNPY, pPYY, and [Leu(31),Pro(34)]pNPY, but not by pNPY-(13-36) and [D-Trp(32)]pNPY. These data indicate that the inhibitory effect of fNPY on spontaneous alpha-MSH release is preferentially mediated through Y(5) receptors, whereas the suppression of TRH-induced alpha-MSH secretion by fNPY probably involves Y(1) receptors. Pretreatment of neurointermediate lobes with pertussis toxin (PTX; 1 microg/ml; 12 h) did not abolish the inhibitory effect of fNPY on cAMP formation and spontaneous alpha-MSH release, but restored the stimulatory effect of TRH on alpha-MSH secretion, indicating that the adenylyl cyclase pathway is not involved in the action of fNPY on TRH-evoked alpha-MSH secretion. In the majority of melanotrope cells, TRH induces a sustained and biphasic increase in cytosolic Ca(2+) concentration. Preincubation of cultured cells with fNPY (10(-7) M) or omega-conotoxin GVIA (10(-7) M) suppressed the plateau phase of the Ca(2+) response induced by TRH. However, although fNPY abrogated TRH-evoked alpha-MSH secretion, omega-conotoxin did not, showing dissociation between the cytosolic Ca(2+) concentration increase and the secretory response. Collectively, these data indicate that in frog melanotrope cells NPY inhibits spontaneous alpha-MSH release and cAMP formation through activation of a Y(5) receptor coupled to PTX- insensitive G protein, whereas NPY suppresses the stimulatory effect of TRH on alpha-MSH secretion through a Y(1) receptor coupled to a PTX-sensitive G protein-coupled receptor.  相似文献   

7.
Brain-derived neurotrophic factor (BDNF) is expressed in the mammalian pituitary gland, in both the anterior and intermediate lobes, where its functional significance is unknown. Melanotrope cells in the intermediate pituitary lobe of the amphibian Xenopus laevis also produce BDNF, which co-exists in secretory granules with α-melanophore-stimulating hormone (α-MSH), a peptide that causes pigment dispersion in dermal melanophores during adaptation of the toad to a dark background. Xenopus melanotropes are highly plastic, undergoing very strong growth to support the high biosynthesis and release of α-MSH in black-adapted animals. In this study we have tested our hypothesis that this enhanced growth of the melanotrope is maintained by autocrine release of BDNF. Furthermore, since the extracellular-regulated kinase (ERK) pathway is a major component of BDNF signaling in neuronal plasticity, we investigated its involvement in melanotrope cell growth. For these purposes melanotropes were treated for 3 days in vitro, with either an anti-BDNF serum or a recombinant tropomyosin-receptor kinase B (TrkB) receptor fragment to eliminate released BDNF, or with the ERK inhibitor U0126. We also applied a novel inhibitor of the TrkB receptor, cyclotraxin-B, to test this receptor’s involvement in melanotrope cell growth regulation. All treatments markedly reduced melanotrope cell growth. Therefore, we conclude that autocrine release of BDNF and subsequent TrkB-dependent ERK-mediated signaling is important for melanotrope cell growth during its physiologically induced activation.  相似文献   

8.
9.
Brain-derived neurotrophic factor (BDNF) is, despite its name, also found outside the central nervous system (CNS), but the functional significance of this observation is largely unknown. This review concerns the expression of BDNF in the pituitary gland. While the presence of the neurotrophin in the mammalian pituitary gland is well documented its functional significance remains obscure. Studies on the pars intermedia of the pituitary of the amphibian Xenopus laevis have shown that BDNF is produced by the neuroendocrine melanotrope cells, its expression is physiologically regulated, and the melanotrope cells themselves express receptors for the neurotrophin. The neurotrophin has been shown to act as an autocrine factor on the melanotrope to promote cell growth and regulate gene expression. In doing so BDNF supports the physiological function of the cell to produce and release α-melanophore-stimulating hormone for the purpose of adjusting the animal's skin color to that of its background.  相似文献   

10.
The melanocortin system coordinates the maintenance of energy balance via the regulation of both food intake and energy expenditure. Leptin, a key adipogenic hormone involved in the regulation of energy balance is thought to act by stimulating production, in the hypothalamic arcuate nucleus, of alpha-melanocyte stimulating hormone (alphaMSH), a potent agonist of MC3/4 melanocortin receptors located in the paraventricular nucleus of the hypothalamus. Additionally leptin inhibits release of agouti-related protein (AgRP), an MC4R antagonist. During periods of caloric restriction, weight loss is not sustained because compensatory mechanisms, such as reduced resting metabolic rate (RMR) are brought into play. Understanding how these compensatory systems operate may provide valuable targets for pharmaceutical therapies to support traditional dieting approaches. As circulating leptin is reduced during caloric restriction, it may mediate some of the observed compensatory responses.In addition to decreases in circulating leptin levels, circulating AgRP is increased during fasting in rodents while alphaMSH is decreased. As central administration of AgRP depresses metabolism, we hypothesised that the peripheral rise in AgRP might be involved in signalling the depression of RMR during food restriction. We hypothesised that changes in plasma AgRP and alphaMSH may coordinate the regulation of changes in energy expenditure acting through central MC4 melanocortin receptors via the sympathetic nervous system.We show here that acute peripherally administered AgRP at supra-physiological concentrations in both lean (C57BL/6) and obese leptin-deficient (ob/ob) mice does not depress RMR, possibly because it crosses the blood-brain barrier very slowly compared with other metabolites. However, in vitro AgRP can decrease leptin secretion, by approximately 40%, from adipocytes into culture medium and may via this axis have an effect on energy metabolism during prolonged caloric restriction. In contrast, peripheral [Nle4,D-Phe7]-alpha MSH produced a large and sustained increase in resting energy expenditure (0.15 ml O2/min; P < 0.05) with a similar response in leptin-deficient ob/ob mice (0.27 ml O2/min) indicating that this effect is independent of the status of leptin production in the periphery. In both cases respiratory exchange ratio and the levels of energy expended on spontaneous physical activity were unaffected by the administration of peripheral [Nle4,D-Phe7]-alpha MSH. In conclusion, alphaMSH analogues that cross the blood-brain barrier may significantly augment dietary restriction strategies by sustaining elevated RMR.  相似文献   

11.
The melanotrope cell of the amphibian Xenopus laevis is a neuroendocrine transducer that converts neuronal input concerning the color of background into an endocrine output, the release of alpha-melanophore-stimulating hormone (alpha-MSH). The cell displays intracellular Ca(2+) oscillations that are thought to be the driving force for secretion as well as for the expression of genes important to the process of background adaptation. Here we review the functioning of the Xenopus melanotrope cell, with emphasis on the role of Ca(2+) oscillations in signal transduction in this cell. We start by giving a general overview of the evolution of Ca(2+) as an intracellular messenger molecule. This is followed by an examination of the melanotrope as a neuroendocrine integrator cell. Then, the evidence that Ca(2+) oscillations drive the secretion of alpha-MSH is reviewed, followed by a similar analysis of the evidence that the same oscillations regulate the expression of proopiomelanocortin (POMC), the precursor protein for alpha-MSH. Finally, the possible importance of the pattern of Ca(2+) signaling to melanotrope cell function is considered.  相似文献   

12.
A number of neurochemical messengers have been shown to act directly on the melanotrope cells of the pars intermedia of Xenopus laevis to regulate alpha MSH secretion. In the present study the possibility that the melanotropes are also indirectly controlled has been examined. For this purpose, the characteristics of alpha MSH release from superfused intact lobes, cultured lobe and isolated melanotropes were compared after treatment with elevated potassium. Isolated melanotropes responded with an increased secretion of alpha MSH, whereas intact lobes showed a profound inhibitory response, probably caused by potassium-induced release of inhibitory factors from nerve terminals. Cultured lobes displayed a biphasic response characterized by an initial activation followed by a strong inhibition; the stimulatory phase likely reflects a direct action of potassium on the melanotropes, before being overridden by an inhibitory mechanism. The inhibitory phase must originate from the action of nonneuroendocrine cells because the cultured lobes lack functionally active nerve terminals, as verified by immunocytochemistry and electron microscopy. The most likely candidates for this action are folliculo-stellate cells which are in intimate contact with the melanotropes and are innervated by neuropeptide Y-containing nerve terminals. Like elevated potassium, neuropeptide Y inhibited alpha MSH secretion from fresh and cultured lobes but not from isolated melanotropes. This indicates that NPY acts indirectly, in a nonpresynaptic way, to inhibit alpha MSH secretion.  相似文献   

13.
Pituitary melanotropes release alpha-melanocyte-stimulating hormone (alpha-MSH) and acetylated beta-endorphin (NAc beta-end) during stress responses. However, effects of stressors on plasma concentrations of these hormones are highly inconsistent among fish species. Here, we show that also within a species, the common carp (Cyprinus carpio), fish sometimes respond with elevated alpha-MSH and NAc beta-end plasma levels, and at other times not. The origin of this variable response was investigated by (1) studying the effects of corticotropin-releasing hormone (CRH) on alpha-MSH and NAc beta-end release in vitro, (2) establishing where in the second messenger pathway coupled to CRH receptors melanotrope responsiveness is determined, and (3) testing modulatory actions of other hypothalamic factors (here opioid beta-endorphin). Melanotropes were in a high or low responsive state to CRH in vitro, which was especially evident when tissue was tested from fish kept at higher ambient water temperatures, and this correlates with the variability in alpha-MSH and NAc beta-end responses in vivo. Relative rates of alpha-MSH and NAc beta-end release following stimulation with CRH in vitro match plasma level changes in vivo, and this indicates that the CRH pathway does act in vivo. cAMP did not stimulate melanotropes in the low responsive state to release hormones in vitro. Thus, the mechanism that determines the cell status, occurs downstream of cAMP accumulation. Opioid beta-endorphin differentially modulated the actions of CRH, as NAc beta-end, but not alpha-MSH, release was inhibited. This response was not observed in the stress paradigms studied. We conclude that the variation in alpha-MSH and NAc beta-end stress responses in vivo correlates with many CRH responses in vitro; whether a cell is in a high or low responsive state to CRH is determined downstream of accumulation of the second messenger. We propose that melanotropes have to be in the high responsive state to be activated by CRH during stress in carp and other teleosts.  相似文献   

14.
Cunha SR  Mayo KE 《Endocrinology》2002,143(12):4570-4582
GHRH stimulates GH secretion from somatotroph cells of the anterior pituitary via a pathway that involves GHRH receptor activation of adenylyl cyclase and increased cAMP production. The actions of GHRH to release GH can be augmented by the synthetic GH secretagogues (GHS), which bind to a distinct G protein-coupled receptor to activate phospholipase C and increase production of the second messengers calcium and diacylglycerol. The stomach peptide ghrelin represents an endogenous ligand for the GHS receptor, which does not activate the cAMP signaling pathway. This study investigates the effects of GHS and ghrelin on GHRH-induced cAMP production in a homogenous population of cells expressing the cloned GHRH and GHS receptors. Each epitope-tagged receptor was shown to be appropriately expressed and to functionally couple to its respective second messenger pathway in this heterologous cell system. Although activation of the GHS receptor alone had no effect on cAMP production, coactivation of the GHS and GHRH receptors produced a cAMP response approximately twice that observed after activation of the GHRH receptor alone. This potentiated response is dose dependent with respect to both GHRH and GHS, is dependent on the expression of both receptors, and was observed with a variety of peptide and nonpeptide GHS compounds as well as with ghrelin-(1-5). Pharmacological inhibition of signaling molecules associated with GHS receptor activation, including G protein betagamma-subunits, phospholipase C, and protein kinase C, had no effect on GHS potentiation of GHRH-induced cAMP production. Importantly, the potentiation appears to be selective for the GHRH receptor. Treatment of cells with the pharmacological agent forskolin elevated cAMP levels, but these levels were not further increased by GHS receptor activation. Similarly, activation of two receptors homologous to the GHRH receptor, the vasoactive intestinal peptide and secretin receptors, increased cAMP levels, but these levels were not further increased by GHS receptor activation. Based on these findings, we speculate that direct interactions between the GHRH and GHS receptors may explain the observed effects on signal transduction.  相似文献   

15.
Intracellular calcium and cAMP are the 2 second messengers that regulate renin release; cAMP stimulates renin release from juxtaglomerular (JG) cells, whereas increased intracellular calcium inhibits it. We hypothesized that decreased intracellular calcium acts by activating calcium-inhibitable isoforms of adenylyl cyclase, increasing cAMP, and stimulating renin secretion. We used a primary culture of JG cells isolated from C-57/B6 mice. Cells were plated to a density of 70% in serum-free medium and incubated for 2 hours with or without 100 micromol/L of the cytosolic calcium chelator 5'5-dimethyl-1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetra-acetic acid (BAPTA-AM) to decrease intracellular calcium. JG cell cAMP content and renin release were determined by radioimmunoassay. Intracellular cAMP content was 4.04+/-0.92 pM/mL per milligram of protein, and it increased by125+/-33% (P<0.01) with BAPTA-AM. Basal renin was 1.28+/-0.40 microg of angiotensin I per milliliter per hour per milligram of protein, and BAPTA-AM increased it by 182+/-62% (P<0.025). Western blots using an antibody that recognizes adenylyl cyclase types V and VI yielded a characteristic band of approximately 135 kDa. When primary cultures of isolated JG cells were tested for the calcium-inhibitable isoforms of adenylyl cyclase, they showed intense focal cytoplasmic staining. Cells stained for both renin and adenylyl cyclase V/VI showed colocalization in the cytoplasm, primarily on the granules. An adenylyl cyclase inhibitor (SQ 22,536) completely blocked BAPTA-AM-stimulated renin release and JG cell cAMP content. We conclude that calcium-inhibitable isoform(s) of adenylyl cyclase (types V and/or VI) exist within the JG cell. Thus, decreased intracellular calcium stimulates adenylyl cyclase, resulting in cAMP synthesis and, consequently, renin release.  相似文献   

16.
The intermediate lobe of the pituitary secretes the melanotropic hormone alpha-MSH, which in amphibians plays a crucial role in skin color adaptation. It has been previously demonstrated that, in the frog Rana ridibunda, the intermediate lobe is composed of two distinct subpopulations of melanotrope cells that can be separated in vitro by using Percoll density gradients. These two melanotrope cell subsets, referred to as high-density (HD) and low-density (LD) cells, differ in their ultrastructural characteristics as well as in their biosynthetic and secretory activity. However, the specific, physiological role of the heterogeneity displayed by melanotrope cells remains elusive. In the present study, we investigated the effects of background color adaptation on melanotrope cell subpopulations. We found that adaptation of frogs to dark or white environment did not modify either the overall number of cells per intermediate lobe or the apoptotic and proliferation rates of melanotrope cells. On the other hand, adaptation of the animals to a white background significantly increased the proportion of hormone-storage HD cells and caused a concomitant decrease in that of LD cells (which exhibit higher levels of alpha-MSH release and POMC messenger RNA than HD cells). Conversely, after black-background adaptation the proportion of LD cells was markedly increased, suggesting that interconversion of HD cells to LD cells occurs during physiological activation of the intermediate lobe. In addition, black-background adaptation also enhanced alpha-MSH release by both cell subpopulations and increased inositol phosphate production in LD cells. These data indicate that, in frog, the proportions of the two melanotrope cell subsets undergo marked modifications during skin color adaptation, likely reflecting the occurrence of a secretory cell cycle whose dynamics are highly correlated to the hormonal demand imposed by the environment.  相似文献   

17.
The acute control of human placental lactogen (hPL) and chorionic gonadotrophin (hCG) secretion by the placenta remains elusive. The in vitro release of both hormones can be stimulated by calcium inflow and by albumin. To investigate the placental secretory response to putative ligand(s) present in the maternal circulation, we evaluated the coupling of the hPL and hCG releases from term placenta with intracellular signaling pathways. Addition of NaF, forskolin or sodium nitroprusside, activators of the inositol phosphates (IPs), cAMP and cGMP pathways, significantly increased their respective messengers in villous explants but failed to affect the hPL and hCG releases from syncytiotrophoblast. By contrast, albumin did not modify the IPs, cAMP and cGMP villous content but significantly stimulated the placental hormonal release. These data suggest that the hPL and hCG secretion is not regulated through the IPs, cAMP and cGMP signaling pathways.  相似文献   

18.
The pineal hormone melatonin exhibits immunomodulatory activity well documented in mammals and birds. The mechanism of melatonin action within the immune system is, however, poorly understood. In mammalian immune cells in vitro, melatonin acts mainly as an antiapoptotic, oncostatic and antiproliferative agent, and these effects are exerted via specific receptors or are related to its free radical scavenging activity. In previous studies we have found that in short-term chicken splenocyte cultures in vitro melatonin stimulated basil proliferation and inhibited that stimulated with phytohemagglutinin, a T-cell mitogen. This paper is devoted to the involvement of membrane receptors, previously characterised by us as MT2 (Mel(1b)) and Mel(1c) subtypes, in the above mentioned melatonin effects in chicken splenocyte cultures. For this purpose, in present study a nonselective melatonin receptor antagonist, luzindole, and the selective MT2 blocker, 4P-PDOT, were used. The effect of melatonin on second messengers, cyclic adenosine-3',5'-monophosphate (cAMP) and inositol-1,4,5-trisphosphate (IP(3)), involved in the regulation of proliferation, was examined. We have found that the stimulation of proliferation occurs via Mel(1c) receptor and is associated with the changes in intracellular second messengers concentration: a decrease in cAMP and an increase in IP(3). In contrast, in mitogen-activated splenocytes, melatonin-induced inhibition of proliferation is mediated by MT2 receptors and is related to cAMP accumulation, as well as a decrease in IP(3). In conclusion, we have demonstrated that the stimulatory and inhibitory effect of melatonin on chicken splenocytes in vitro, dependent on the magnitude of cell stimulation, resulted from two different subtypes of membrane receptors.  相似文献   

19.
In an attempt to delineate the mechanism(s) of PRL secretion from human lactotrophs, the effects of dopamine and somatostatin on PRL release from adenomatous and nonadenomatous human pituitary cells in culture was studied. High K+ and the divalent cation ionophore A23187 both elevated PRL secretion, which was blocked by dopamine and somatostatin. When the cells were incubated in low calcium medium, PRL secretion was significantly inhibited. The addition of dopamine or somatostatin to low calcium medium further decreased PRL release. The stimulatory action of ionophore A23187 on PRL release was found even in the absence of extracellular calcium. Theophylline and isobutylmethylxanthine, when added to the incubation medium, increased PRL secretion, and dopamine as well as somatostatin again inhibited PRL release induced by phosphodiesterase inhibitors. No qualitative difference in these PRL responses was found in adenomatous and nonadenomatous human lactotrophs. In prolactinoma cells obtained from three different patients, cAMP generation was correlated with hormone release. Exposure of the cells to dopamine or somatostatin resulted in a parallel decrease in intracellular cAMP content and PRL secretion. The inhibitory effect of dopamine on PRL secretion and cAMP accumulation was blocked by coincubation of the cells with haloperidol. These results suggest that an increase in cytosol calcium caused by either mobilization from intracellular calcium pools or influx from the extracellular compartment and intracellular cAMP accumulation may be involved in the mechanism of PRL secretion from human lactotrophs, and dopamine and somatostatin may influence these two messengers to suppress PRL secretion.  相似文献   

20.
A family of genes encoding four distinct muscarinic receptors (designated m1-m4) has been cloned and stably expressed in A9 L cells. When the m1 and m3 receptors were stimulated with carbachol, there was a rapid rise of liberated arachidonic acid, inositol phosphates, and cAMP, while m2 and m4 receptor stimulation had no detectable stimulation of these second messengers. Pretreatment with phorbol 12-myristate 13-acetate (PMA) caused a marked acceleration and amplification of m1 and m3 receptor-mediated arachidonic acid release. In contrast, m1- and m3-mediated inositol phosphate formation was inhibited by the same PMA pretreatment. Arachidonic acid release was unaffected by manipulations of cAMP levels. Arachidonic acid production was inhibited by calcium-free medium and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8; an inhibitor of cytosolic calcium mobilization) yet was unaffected by verapamil, a calcium-channel blocker. These experiments show that arachidonic acid release induced by the m1 and m3 receptors is regulated independently of phospholipase C and cAMP accumulation. Carbachol stimulation of the m1 and m3 cAMP accumulation. Carbachol stimulation of the m1 and m3 receptors also markedly decreased mitogenesis as measured by thymidine incorporation. The m1 receptor-mediated inhibition of mitogenesis could be partially blocked by indomethacin, a cyclooxygenase inhibitor. The inhibition of mitogenesis could be mimicked by cAMP elevation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号