首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adrenalectomy abolishes corticosteroid feedback onto the hypothalamic-pituitary-adrenal axis. This results in an increased biosynthetic and secretory activity of corticotropin-releasing hormone (CRH) neurons of the hypothalamic paraventricular nucleus (PVN), sustained in the absence of hormone replacement. In the PVN, cholecystokinin (CCK) is present both in parvicellular CRH-containing and in magnocellular oxytocin (OXY)-containing neurons. We presently studied the glucocorticoid feedback regulation of the expression of cholecystokinin (CCK) mRNA in rats after: (i) adrenalectomy, (ii) sham surgery or (iii) adrenalectomy with corticosterone replacement. Using 35S-labeled CRH and p-CCK cRNA probes and in situ hybridization, CRH and CCK mRNAs were radiolabeled. The total amount of hybridization labeling (integrated density), was quantified in adjacent series of cryosections regularly spaced throughout the PVN. The OXY mRNA detection served to identify PVN magnocellular areas. Adrenalectomy was shown to induce: (i) a 75% increase in CRH mRNA labeling in the PVN, (ii) a concomitant 43% decrease in CCK mRNA labeling but only in the anterior part of the PVN and occurring both in CCK/CRH area (two thirds of it) and CCK/OXY area (one third of it) and (iii) that they were fully reversed by corticosterone replacement. Thus, glucocorticoids that are well known to negatively feedback on CRH expression in parvicellular PVN neurons are also capable of positively regulating CCK expression in anterior PVN neurons, both in parvicellular and magnocellular areas.  相似文献   

2.
The role of afferent innervation to the hypothalamic paraventricular nucleus (PVN) on CRH mRNA and CRH receptor mRNA levels was studied in control and stressed rats. Groups of rats were subjected to unilateral transection of the stria terminalis (ST), the medial forebrain bundle at the rostral hypothalamic level (RMFB), or the lower brainstem through the medulla oblongata between the obex and the locus coeruleus (CBs). Twelve days after surgery, each group of rats was further divided into controls (basal conditions) and stressed (1 h immobilization), before collecting brains for mRNA analysis by in situ hybridization histochemistry. While ST and RMFB cuts had no effect on basal CRH mRNA levels in the PVN, CBs cut decreased CRH mRNA in the PVN ipsilaterally to the knife cut but it was without effect on the contralateral side (– 40% and –37%vs contralateral and sham-operated, respectively, P&0.01). Acute stress (rats were killed 3 h after immobilization) increased CRH mRNA levels by about 30% bilaterally, an effect which was unchanged by any of the three hemisections. Under basal conditions, CRH receptor mRNA levels in the PVN were indistinguishable from the surrounding areas in sham-operated controls, ST and RMFB operated rats. However, brainstem hemisection resulted in clear expression of CRH receptor mRNA in areas consistent with the dorsal, medial-ventral and lateral parvicellular subdivisions of the PVN, ipsilateral to the transection. CRH neurons in these subdivisions project to the lower brainstem and the spinal cord. Expression of CRH receptor mRNA in the medial-dorsal and anterior parvicellular divisions (CRH neurons with median eminence projections) was not affected by CBs cut. In these subdivisions, immobilization stress markedly increased CRH receptor mRNA levels but it did not influence CBs cut-induced CRH receptor expression. ST and RMFB hemisections were without effect on PVN CRH receptor mRNA levels under basal or stress conditions. Oxytocin (OT) and vasopressin (VP) mRNA levels in the magnocellular subdivision of the PVN were unchanged after immobilization, or following ST, RMFB or CBs cuts, whereas OT mRNA in the medial-ventral and caudal parvicellular subdivisions was decreased by 52% after CBs cut. The data demonstrate that: 1) basal CRH mRNA levels in the PVN are under tonic stimulatory influence of the lower brainstem (and/or spinal cord) afferents; 2) CRH receptor mRNA expression in PVN subdivisions (pituitary vs lower brainstem/spinal cord projecting neurons) is under different control mechanisms, and 3) immobilization-induced changes in CRH mRNA and CRH receptor mRNA levels are mediated either by neural inputs from brain areas other than those investigated here, or by humoral factors.  相似文献   

3.
Dopamine regulation of the levels of dynorphin, enkephalin, and substance P messenger RNAs in rat striatal neurons was analyzed with in situ hybridization histochemistry (ISHH). Relative levels of peptide mRNA expression in the patch and matrix compartments of the dorsolateral striatum were compared among control rats, rats treated for 10 d with apomorphine, rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal dopaminergic system, and rats with nigrostriatal dopaminergic lesions followed 2 weeks later by 10 d of apomorphine treatment. Image analysis of ISHH labeling demonstrated that the number of neurons expressing each peptide mRNA remained constant, whereas the relative level of peptide mRNA per neuron changed significantly, depending on the experimental treatment. Dynorphin mRNA expression increased following chronic apomorphine treatment: striatal patch neurons increased to an average of 100% above control values, whereas striatal matrix neurons showed only a 25% increase. Dynorphin mRNA expression decreased following 6-OHDA lesions: patch neurons showed an average 75% reduction in expression, whereas matrix neurons showed no significant change. In animals with 6-OHDA lesions followed by apomorphine treatment, both patch and matrix neurons showed an average increase in dynorphin expression of 300% above control levels. Changes in dynorphin mRNA levels with these treatments were matched by qualitative changes in dynorphin immunoreactivity both in the striatum and in striatonigral terminals in the substantia nigra. Neither substance P nor enkephalin mRNA levels showed a significant difference between the striatal patch and matrix compartments in any experimental condition (in the dorsolateral striatum). Substance P mRNA expression was increased an average of 50% after 10 d of apomorphine treatment and showed an average decrease of 75% following 6-OHDA lesions of the mesostriatal system. There was no significant change in the expression of substance P mRNA in striatal neurons compared to control values in rats with combined 6-OHDA lesion and apomorphine treatment. Enkephalin mRNA expression was not significantly altered by chronic apomorphine treatment but showed an average increase per cell of some 130% above control levels following 6-OHDA-induced lesions of the mesostriatal system. In animals with a 6-OHDA lesion and apomorphine treatment, enkephalin mRNA was also elevated but not significantly above the levels produced by the lesions alone. These data show that the expression of dynorphin, enkephalin, and substance P is differentially regulated by the mesostriatal dopaminergic system and, further, suggests that the mechanisms by which this regulation occurs may be different for the 3 peptide families.  相似文献   

4.
5.
The hypothalamic response to an environmental stress implicates the corticotrophin-releasing hormone (CRH) neuroendocrine system of the hypothalamic parvicellular paraventricular nucleus (PVN) in addition to other neuropeptides coexpressed within CRH neurones and controlling the hypothalamo-pituitary-adrenal (HPA) axis activity as well. Such neuropeptides are vasopressin, neurotensin and cholecystokinin (CCK). It has previously been demonstrated that the majority of the CRH neuronal population coexpresses CCK after a peripheral stress in rats. In the present study, we explored such neuroendocrine plasticity in the jerboa in captivity as another animal model. In particular, we studied CCK and CRH expression within the hypothalamic PVN by immunocytochemistry in control versus acute immobilisation stress-submitted jerboas. The results show that CCK- and CRH-immunoreactive neuronal systems are located in the hypothalamic parvicellular PVN. The number of CCK-immunoreactive neurones within the PVN was significantly increased (138% increase) in stressed animals compared to controls. Similarly, the number of CRH-containing neurones was higher in stressed jerboas (128%) compared to controls. These results suggest that the neurogenic stress caused by immobilisation stimulates CCK as well as CRH expression in jerboas, which correlates well with previous data obtained in rats using other stressors. The data obtained also suggest that, in addition to CRH, CCK is another neuropeptide involved in the response to stress in jerboa, acting by controlling HPA axis activity. Because CCK is involved in the phenotypical plasticity of CRH-containing neurones in response to an environmental stress, we also explored their coexpression by double immunocytochemistry within the PVN and the median eminence (i.e. the site of CRH and CCK corelease in the rat) following jerboa immobilisation. The results show that CCK is not coexpressed within CRH neurones in either control or stressed jerboa, suggesting differences between jerboas and rats in the neuroendocrine regulatory mechanisms of the stress response involving CRH and CCK. The adaptative physiological mechanisms to environmental conditions might vary from one mammal species to another.  相似文献   

6.
Wistar rats subjected to dehydration-induced anorexia (DIA), with 2.5% NaCl solution as drinking water for 7 days, decrease by 80% their food intake and present some changes common to pair-fed food restricted rats (FFR) such as: weight loss, decreased serum leptin and expression of orexigenic arcuate peptides, increasing the anorexigenic ones and serum corticosterone levels. In contrast, the response of the HPT axis differs: DIA animals have increased TRH expression in PVN and present primary as opposed to the tertiary hypothyroidism of the FFR. Exclusive to DIA is the activation of CRHergic neurons in the lateral hypothalamus (LH) that project to PVN. Since TRH neurons of the PVN contain CRH receptors, we hypothesized that the differences in the response of the HPT axis to DIA could be due to CRH regulating TRHergic neurons. CRH effect was first evaluated on TRH expression of cultured hypothalamic cells where TRH mRNA levels increased after 1h with 0.1nM of CRH. We then measured the mRNA levels of CRH receptors in the PVN of male and female rats subjected to DIA; only those of CRH-R2 were modulated (down-regulated). The CRH-R2 antagonist antisauvagine-30 was therefore injected into the PVN of male rats, during the 7 days of DIA. Antisauvagine-30 induced a higher food intake than controls, and impeded the changes produced by DIA on the HPT axis: PVN TRH mRNA, and serum TH and TSH levels were decreased to similar values of FFR animals. Results corroborate the anorexigenic effect of CRH and show its role, acting through CRH-R2 receptors, in the activation of TRHergic PVN neurons caused by DIA. These new data further supports clinical trials with CRH-R2 antagonists in anorexia nervosa patients.  相似文献   

7.
Cholecystokinin (CCK) is an important satiety factor, acting via the vagus nerve to influence central feeding centers. CCK binding sites have been demonstrated in the vagal sensory nodose ganglion and within the nerve proper. Using in situ hybridization, expression of the CCK(A) and (B) receptors (Rs), as well as of CCK itself, was studied in the normal nodose ganglion (NG), and after vagotomy, starvation and high-fat diet. CCK(A)-R mRNA expression in dorsal root ganglia (DRGs) was also explored. In the NG, 33% of the neuron profiles (NPs) contained CCK(A)-R mRNA and in 9% we observed CCK(B)-R mRNA. CCK mRNA was not found in normal NGs. Peripheral vagotomy decreased the number of CCK(A)-R mRNA-expressing NPs, dramatically increased the number of CCK(B)-R mRNA, and induced CCK mRNA and preproCCK-like immunoreactivity in nodose NPs. No significant differences in the number of NPs labelled for either mRNA species were detected following 48 h food deprivation or in rats fed a high-fat content diet. In DRGs, 10% of the NPs expressed CCK(A)-R mRNA, a number that was not affected by either axotomy or inflammation. This cell population was distinct from neurons expressing calcitonin gene-related peptide mRNA. These results demonstrate that the CCK(A)-R is expressed by both viscero- and somatosensory primary sensory neurons, supporting a role for this receptor as a mediator both of CCK-induced satiety and in sensory processing at the spinal level. The stimulation of CCK and CCK(B)-R gene expression following vagotomy suggests a possible involvement in the response to injury for these molecules.  相似文献   

8.
Corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) of the hypothalamus and in the central nucleus of the amygdala (ACE) participate in neurohumoral and behavioral responses to stress. To understand better the central regulation of CRH, the present study assessed the effects of ipsilateral surgical hemisection of the brainstem on expression of CRH mRNA in the PVN and the ACE. In situ hybridization was used to demonstrate PVN CRH mRNA expression in hemisected, sham-operated or intact rats before and after 3  h of immobilization (IMMO). In addition, hypothalamic-pituitary-adrenocortical (HPA) axis activity at baseline and during IMMO was assessed by measurements of plasma concentrations of ACTH and corticosterone. IMMO markedly increased CRH mRNA expression in the PVN in all experimental groups. Rats with brainstem hemisections had lower PVN CRH mRNA expression ipsilateral to the lesion and markedly blunted responses after IMMO, compared to values in sham-operated rats. In contrast, neither hemisection nor IMMO affected CRH mRNA expression in the ACE. Lesioned and SHAM-operated groups did not differ in baseline or IMMO-induced increases in plasma ACTH or corticosterone levels. The present results indicate that baseline levels and IMMO-induced increments in CRH mRNA expression in the PVN, but not in the ACE, depend on ipsilaterally ascending medullary tracts and that IMMO-induced HPA activation does not depend on these pathways.  相似文献   

9.
The melanocortin 4 receptor (MC4-R) plays a pivotal role in maintaining energy homeostasis in rodents and humans. For example, MC4-R deletion or mutation results in obesity, hyperphagia, and insulin resistance. Additionally, subsets of leptin-induced autonomic responses can be blocked by melanocortin receptor antagonism, suggesting that MC4-R-expressing neurons are downstream targets of leptin. However, the critical autonomic control sites expressing MC4-Rs are still unclear. In the present study, we systematically examined the distribution of MC4-R mRNA in the adult rat central nervous system, including the spinal cord, by using in situ hybridization histochemistry (ISHH) with a novel cRNA probe. Autonomic control sites expressing MC4-R mRNA in the hypothalamus included the anteroventral periventricular, ventromedial preoptic, median preoptic, paraventricular, dorsomedial, and arcuate nuclei. The subfornical organ, dorsal hypothalamic, perifornical, and posterior hypothalamic areas were also observed to express MC4-R mRNA. Within extrahypothalamic autonomic control sites, MC4-R-specific hybridization was evident in the infralimbic and insular cortices, bed nucleus of the stria terminalis, central nucleus of the amygdala, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, dorsal motor nucleus of the vagus (DMV), and intermediolateral nucleus of the spinal cord (IML). By using dual-label ISHH, we confirmed that the cells expressing MC4-R mRNA in the IML and DMV were autonomic preganglionic neurons as cells in both sites coexpressed choline acetyltransferase mRNA. The distribution of MC4-R mRNA is consistent with the proposed roles of central melanocortin systems in feeding and autonomic regulation.  相似文献   

10.
Immobilization stress induces in adult male rats rapid activation of brain derived neurotrophic factor (BDNF) expression in the hypothalamic paraventricular nucleus (PVN) preceding the increases in corticotropin releasing hormone (CRH) and arginin-vasopressin (AVP) expression. The BDNF mRNA signal belatedly co-localizes with CRH and AVP mRNA signals in the PVN, as determined by in situ hybridization. Intracerebroventricular BDNF injections (5 microg/rat) in non-anesthetized adult male rats induce a gradual increase in the CRH mRNA signal whereas AVP mRNA signal progressively decreases in the parvocellular and magnocellular PVN portions. At the same time, the CRH hypothalamic content decreases while the AVP content increases. These variations are accompanied by increases in ACTH and corticosterone plasma concentrations. These results strongly suggest that BDNF could be a stress-responsive intercellular messenger since when it is exogenously administered acts as an important and early component in the activation and recruitment of hypothalamic CRH and AVP neurons.  相似文献   

11.
Recent studies of neuronal cholecystokinin (CCK) expression performed with more sensitive techniques have demonstrated that the distribution of the expression of this peptide is more widespread than previously thought. In the present study, hybridization histochemistry was used to map cortical neurons expressing the CCK gene in adult and developing rats. Retrograde tracing with Fluorogold in combination with hybridization histochemistry was used to demonstrate some of the projections of these neurons. Neurons expressing the CCK gene were found in all areas of the neo- and allocortices. They were of several morphological types, including pyramidal neurons, and were found in almost all layers, albeit at different relative numbers and with different levels of expression. Generally, layers II and III, deep layer V, and layer VI had many neurons expressing CCK mRNA. Cortical CCK expression was first detected on the 15th day of gestation in the primordial plexiform layer. Expression developed thereafter in a regular and continuous fashion until an adult-like pattern was present on the 21st day after birth. Cortical neurons containing CCK mRNA were found in almost all the projections studied. Many neurons in both neo- and allocortical areas with cortico-cortical, associational, and commissural pathways contained CCK mRNA. Similarly, numerous corticostriatal neurons contained CCK mRNA; however, only a few corticothalamic neurons expressed CCK mRNA. These results demonstrate that in the rat cortex the distribution of projection neurons expressing CCK is much more widespread than had been previously shown and will stimulate further investigations into the role of CCK in these neurons.  相似文献   

12.
13.
Acute stress causes biphasic changes in corticotropin releasing hormone (CRH) receptor mRNA expression with an early decrease followed by an increase. However, in the absence of glucocorticoids in adrenalectomized rats, stress results in prolonged CRH receptor (CRH-R) mRNA loss, suggesting that interactions between glucocorticoids and hypothalamic factors are critical for regulation of CRH receptor mRNA. To address this question, CRH binding, type-1 CRH-R mRNA, POMC mRNA and POMC hnRNA expression were measured by binding autoradiography and in situ hybridization in pituitaries from intact and adrenalectomized rats. CRH-R mRNA decreased by 59% 5 h after injection of corticosterone (10 mg sc) and returned to basal levels by 18 h, a time when plasma corticosterone concentrations were still elevated, and CRH binding and POMC hnRNA were significantly reduced. Elevations in plasma corticosterone in the range of acute stress by injection of 2 mg sc caused CRH-R mRNA expression to return to near basal values by 6 h, after a 52% and 39% decrease at 2 h and 4 h. More transient changes were seen after a single injection of CRH (1 μg), with a 44% decrease in CRH-R mRNA and a 175% increase in POMC hnRNA by 2 h, returning to basal values by 4 h. The transient effect of CRH was not due to clearance of CRH from the circulation or receptor desensitization since CRH receptor mRNA expression also recovered after injection of a higher dose (10 μg) or repeated injections of CRH which caused sustained increases in plasma CRH and pituitary POMC hnRNA levels. CRH injection in adrenalectomized rats decreased CRH-R mRNA for up to 6 h, suggesting that glucocorticoids are permissive for the recovery of CRH-R mRNA. Supporting this hypothesis, simultaneous injection of corticosterone and CRH restored CRH-R mRNA expression by 4 h, and increased CRH binding 4 h and 6 h after injection. The data show that interaction between CRH and glucocorticoids counteracts individual inhibitory effects of these regulators alone, and that such effects are likely to contribute to the regulatory pattern of pituitary CRH receptors during acute stress.  相似文献   

14.
The present study was conducted to investigate the pattern of neuronal activation and corticotropin‐releasing hormone (CRH) expression in fed, food deprived and refed lean (Fa/?) and obese (fa/fa) Zucker rats. The pattern of neuronal activation was studied by measuring the expression of the immediate‐early gene c‐fos. Expression of c‐fos and CRH mRNA was determined by in situ hybridization histochemistry. In both lean and obese rats, one hour of refeeding led to a transient increase in c‐fos mRNA levels which was detected in the paraventricular hypothalamic nucleus (PVH), the dorsomedial hypothalamic nucleus, the supraoptic nucleus, the paraventricular thalamic nucleus, the central nucleus of amygdala (CeA), the lateral and medial parabrachial nuclei, the nucleus of the solitary tract, and the area postrema. In addition, refeeding led to strong activation of the arginine‐vasopressin neurons located in the magnocellular part of the PVH. Following 24 h of food deprivation, CRH expression in the parvocellular division of the PVH was significantly higher in obese rats compared to lean animals. During refeeding, PVH CRH mRNA levels in obese rats decreased to reach control values. The decrease in CRH expression in obese rats was accompanied by the alleviation of the hypercorticosteronemia that characterized obese Zucker rats. CRH mRNA levels in the central nucleus of the amygdala were significantly higher in lean rats than in obese animals, when the rats were fed ad libitum During food deprivation, CeA CRH mRNA levels decreased in lean rats and gradually returned to predeprivation values during refeeding. In refed obese rats, CeA levels of CRH mRNA were higher than those of ad libitum fed or food‐deprived obese mutants. In the perifornical region of the lateral hypothalamic area (LHA), the expression of CRH mRNA rose significantly in response to refeeding in lean rats, but not in obese animals. Following the first hour of refeeding, the number of neurons expressing CRH mRNA in the LHA in lean rats almost doubled. The present results demonstrate that refeeding has a stimulating effect in obese Zucker rats in a pattern of activation similar to that seen in lean Fa/? rats. They also demonstrate differences in CRH expression between Fa/? and fa/fa rats after refeeding. The most apparent of these differences was seen in the lateral hypothalamus in which refeeding failed to up‐regulate CRH expression in obese rats.  相似文献   

15.
16.
The ability of alcohol to activate the hypothalamic-pituitary-adrenal (HPA) axis is well documented in investigations based in acute and short-term experimental paradigms. Herein, we have addressed the possibility that the prolonged exposure to ethanol concentrations that are initially effective in stimulating corticosteroid secretion might induce alterations in the response of the HPA axis that cannot be evinced by shorter exposures. Using conventional histological techniques, immunohistochemistry and in situ hybridization, we have examined the medial parvocellular division of the paraventricular nucleus (PVNmp), and the synthesis and expression of corticotropin-releasing hormone (CRH) and vasopressin (VP) by its constituent neurons, in rats submitted to 6 months of ethanol treatment and to withdrawal (2 months after 6 months of alcohol intake). Ethanol treatment and withdrawal did not produce neuronal loss in the PVNmp. However, the total number of CRH- and VP-immunoreactive neurons and the CRH mRNA levels were significantly decreased by ethanol treatment. In withdrawn rats, the number of CRH- and VP-immunostained neurons and the gene expression of CRH were increased relative to ethanol-treated rats and did not differ from those of controls. No significant variations were detected in VP mRNA levels as a result of ethanol treatment or withdrawal. These results show that prolonged alcohol intake blunts the expression of CRH and VP in the parvocellular neurons of the PVN, and that this effect is, partially at least, reversible by withdrawal. They also suggest that the development of tolerance to the effects of ethanol involve changes that take place at the hypothalamic level.  相似文献   

17.
The central neuropeptide Y (NPY) Y1 receptor (Y1-R) system has been implicated in feeding, endocrine, and autonomic regulation. In the present study, we systematically examined the brain distribution of Y1-R mRNA in rodents by using radioisotopic in situ hybridization histochemistry (ISHH) with a novel sensitive cRNA probe. Within the rat hypothalamus, Y1-R-specific hybridization was observed in the anteroventral periventricular, ventromedial preoptic, suprachiasmatic, paraventricular (PVH), dorsomedial, ventromedial, arcuate, and mamillary nuclei. In the rat, Y1-R mRNA expression was also seen in the subfornical organ, anterior hypothalamic area, dorsal hypothalamic area, and in the lateral hypothalamic area. In addition, Y1-R hybridization was evident in several extrahypothalamic forebrain and hindbrain sites involved in feeding and/or autonomic regulation in the rat. A similar distribution pattern of Y1-R mRNA was observed in the mouse brain. Moreover, by using a transgenic mouse line expressing green fluorescent protein under the control of the melanocortin-4 receptor (MC4-R) promoter, we observed Y1-R mRNA expression in MC4-R-positive cells in several brain sites such as the PVH and central nucleus of the amygdala. Additionally, dual-label ISHH demonstrated that hypophysiotropic PVH cells coexpress Y1-R and pro-thyrotropin-releasing hormone mRNAs in the rat. These observations are consistent with the proposed roles of the central NPY/Y1-R system in energy homeostasis.  相似文献   

18.
The expression of cholecystokinin (CCK) messenger RNA (mRNA) was examined in dorsal root ganglia of rat and guinea pig using in situ hybridization histochemistry and RNA (Northern) blot hybridization with synthetic oligodeoxyribonucleotide (oligomer) probes. In guinea pig, CCK mRNA was detected in small and medium-sized neuronal perikarya comprising approximately 10-15% of the total dorsal root ganglia cell population. In contrast, in neurons of rat dorsal root ganglia, CCK mRNA was not detectable. Northern blot analyses revealed a single CCK mRNA species of expected size (0.8 kb) in guinea pig, but not rat, dorsal root ganglia. A 0.8 kb CCK mRNA was, however, detected in cortex of both rat and guinea pig. These data suggest that CCK is normally not synthesized in neurons of rat dorsal root ganglia and that there are species differences in CCK gene expression in mammalian sensory ganglia.  相似文献   

19.
20.
急性脑缺血鼠下丘脑-垂体-肾上腺轴的活动特征   总被引:8,自引:0,他引:8  
目的探讨急性脑缺血(ACI)及再灌注过程中边缘系统促肾上腺皮质释放激素(CRH)mRNA转录与血浆促肾上腺皮质激素(ACTH)应变调控作用的机制。方法利用鼠大脑中动脉阻塞(MCAO)模型,应用原位杂交和放射免疫分析法,监测对照组和缺血组鼠脑颞叶、海马和下丘脑的CRHmRNA转录水平和血浆ACTH的活性变化。结果ACI组缺血及再灌注各期颞叶、海马和下丘脑等多部位CRHmRNA转录显著活跃,血浆ACTH水平同步升高,两者间密切相关。结论缺血再灌注各期,广泛脑区特别是边缘系统和下丘脑CRH启动,合成活跃,是导致ACI的中枢神经系统调控紊乱的关键环节和加重缺血神经元损伤的一个重要物质基础。显然,干预CRH启动、合成与释放是减轻应激反应和保护缺血神经元的重要途径之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号