首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的研究石墨炉原子吸收光谱法测定尿中铅含量不确定度的评定,找出影响不确定度的因素。方法用石墨炉原子吸收光谱法测定尿中铅,根据CNAS-CL07《测量不确定度评定与表示》有关规定分析不确定度的来源。结果合成标准不确定度为0.013 9μmol/L,扩展不确定度为0.027 8μmol/L。结论石墨炉原子吸收光谱法测定尿中铅的过程中重复测定是该方法不确定度的主要来源。  相似文献   

2.
通过石墨炉原子吸收光谱法重复测定大米样品中的Cd,建立不确定度评定数学模型,系统分析和量化不确定度各分量。分析了测量过程中的不确定度主要来源于样品制备的不确定度、标准物质引入的不确定度、曲线拟合中产生的不确定度以及重复试验的不确定度  相似文献   

3.
[目的]根据国家计量技术规范JJF 1135-2005<化学分析测量不确定度评定>的要求,以石墨炉原子吸收法测定面粉中铅为例对测定结果的不确定度进行评定. [方法]对不确定度的主要来源包括称量的不确定度、标准物质的不确定度、体积的不确定度、标准曲线的不确定度及测量重复性引起的不确定度进行分析,并按数学模型计算出各不确定度分量、合成标准不确定度和扩展不确定度.[结果]得到石墨炉原子吸收法测定面粉中铅的不确定度,当面粉中铅含量为0.122 mg/kg时,扩展不确定度为0.020 mg/kg,结果表达为(0.122±0.020)mg/kg.[结论]正确选择前处理方法和熟练掌握前处理方法极其重要.定容体积、样品称量产生的不确定度非常小,对测量结果影响不大.  相似文献   

4.
目的建立石墨炉原子吸收光谱法测定茶叶中铅含量不确定度的评定方法,为提高检测质量提供依据。方法建立数学模型,对各不确定度分量进行分析,找出影响不确定度的因素并对各不确定度分量进行评估。结果按GB5009.12-2010《食品中铅的测定》测定茶叶中铅含量,当结果为0.27 mg/kg时,其扩展不确定度为0.025 mg/kg。结论影响石墨炉原子吸收光谱法测定茶叶中铅含量结果不确定度的主要因素是样品制备、标准曲线的拟合和重复性实验。  相似文献   

5.
石墨炉原子吸收光谱法测定血中铅的不确定度分析   总被引:3,自引:0,他引:3  
目的 探讨石墨炉原子吸收光谱法测定血铅的不确定度。方法 根据测量不确定度的评定原理和测定方法,建立测定不确定度的数学模型,然后对不确定度的分量进行计算。结果 方法的合成标准不确定度为3.5%,对于含铅量为5.68μg/L的血样,其扩展不确定度为0.39μg/L。结论 该法的不确定度主要来源于样品的平行测定、仪器和工作曲线带来的误差,其次是标准溶液误差。  相似文献   

6.
石墨炉原子吸收光谱法测定血铅的不确定度   总被引:1,自引:0,他引:1  
目的进行血铅测定结果不确定度评定,为建立有效质量控制方法提供依据。方法依据WS/T174—1999《血中铅的酸脱蛋白-石墨炉原子吸收光谱法》和JJF 1059—1999《测量不确定度评定与表示》来进行评定,并对测定结果进行完整表述。结果血铅测定结果最终表述为CPb=(0.554±0.054)μmol/L;k=2。结论本评定方法适用于石墨炉原子吸收光谱法测定血中铅浓度的不确定度评定及类似分析方法的不确定度评定。  相似文献   

7.
目的通过分析实验中的各不确定度分量,评定测量结果的不确定度。方法使用GB/T5009.12-2010采用石墨炉原子吸收法测定大米中的铅,参照JJF 1059.1-2012建立数学模型,对每个不确定分量进行评估。结果通过对每个不确定度分量的计算,得出最终扩展不确定度为0.030 mg/kg(包含因子k=2),结果报告为0.70±0.030 mg/kg。结论石墨炉原子吸收法测定大米中铅,对不确定度影响较大的主要为重复性引入的不确定度和拟合曲线引入的不确定度。  相似文献   

8.
岳蕴瑶  张婷  蒋芳 《职业与健康》2014,(11):1518-1520
目的对石墨炉原子吸收光谱法测定大米中镉的全过程进行分析,分析不确定度的影响因素,并对其不确定度进行评定。方法根据GB/T 5009.15-2003的方法,用石墨炉原子吸收法测定大米中镉,依据JJF 1059-1999要求,对各个不确定度分量和测量结果的不确定度进行评定。结果实验测定大米中镉含量为(175±12)μg/kg,在标准物质证书给定的标准值与不确定度为(180±20)μg/kg的范围内。结论该实验室,用石墨炉原子吸收光谱法测定大米中镉含量,其结果准确可靠。  相似文献   

9.
李明  杨芸  李慧 《职业与健康》2012,28(16):1984-1985
目的对石墨炉原子吸收测定血中铅的过程进行分析,讨论不确定度的影响因素。方法通过对石墨炉原子吸收测定全血铅标准质控物质的过程进行分析,讨论不确定度的影响因素,并依据JJF 1059-1999《测量不确定度评定与表示》对各个不确定度分量和测量结果的不确定度进行评定。结果该检测结果(122.8±5.6)μg/L在该标准物质的标准值(122±15)μg/L范围内。结论用该方法测定全血中铅浓度准确可靠。  相似文献   

10.
目的分析石墨炉原子吸收法测定水中镉的不确定度。方法通过建立石墨炉原子吸收法测定水中镉的数学模型,找出影响不确定度的因素,计算合成不确定度,最后得出测量结果的扩展不确定度。结果相对扩展不确定度为4.54%。结论样品重复测定引入的不确定度对结果影响很大,因此应尽可能的增加单个样品的重复测量次数。  相似文献   

11.
目的 了解测量结果的不确定度,用于检测数据的真实性,合理评定测量结果.方法 石墨炉原子吸收法测定大米粉中镉的不确定度主要来源于称量样品、定容样品消解液、测定样品消解液中的镉质量浓度及测定大米粉水分引入的不确定度.对各不确定度分量进行计算,求得合成标准不确定度和扩展不确定度.结果 标准不确定度和扩展不确定度分别为0.003 3、0.006 6 mg/kg,样品测定结果表示为:x=(168±6.56)μg/kg.结论 镉测量不确定度的主要来源是测定样品消解液中镉质量浓度引入的不确定度.  相似文献   

12.
马君 《职业与健康》2014,(3):316-318
目的通过石墨炉原子吸收法测定茶叶中的铅不确定度。方法根据《测量不确定度评定和表示》中的方法和公式,对该方法的不确定度进行分析。结果标准曲线方程引入的不确定度是0.0158,电子天平称量引入的不确定度是0.00016,重复测定样品引入的不确定度是0.0155,样品消化液定容体积引入的不确定度是0.00074,标准储备溶液引入的不确定度是0.0015,标准溶液稀释过程中体积引入的不确定度是0.0144。结论标准曲线方程引入的不确定度对检测结果的影响最大。  相似文献   

13.
目的通过考察不同基体改进剂对石墨炉原子吸收光谱(GFAA)法测定血清中铟的增感效应,建立直接测定血清中铟的新方法。方法以0.1%硝酸-0.1%Triton X-100(V/V)混合溶液为稀释液、1 g/L硝酸钯溶液为基体改进剂,灰化温度为1 000℃,原子化温度为1 900℃,对血清进行5倍稀释后,直接采用石墨炉原子吸收光谱法测定铟的浓度。结果在0.156~100μg/L的线性范围内,该方法所得铟的回归方程为A=0.001 7c+0.003 6,r=0.999 6。该方法的检出限为0.156μg/L,RSD为2.82%~7.57%,回收率96.3%~105.0%。结论该方法具有简便、快速、回收率高、精密度好等优点,适用于血清中铟浓度的测定。  相似文献   

14.
通过研究不同基体改进剂对石墨炉原子吸收光谱(GFAA)法测定血清中铟的增感效应,建立直接测定血清中铟的新方法。以0.1%硝酸-0.1%Triton X-100(V/V)混合溶液为稀释液,Pd(NO_3)_2-Mg(NO_3)_2(1∶1)溶液为基体改进剂,灰化温度为900℃,原子化温度为1 800℃,对血清进行5倍稀释后,直接采用石墨炉原子吸收光谱法测定铟的浓度。结果显示,在0.596~100μg/L线性范围内,方法所得铟的回归方程为A=0.001 2c+0.002 6,r=0.999 3。方法的检出限为0.156μg/L,RSD为1.49%~3.20%,回收率为96.0%~103.0%。提示,该方法具有简便、快速、回收率高、精密度好等优点,适用于血清中铟浓度的测定。  相似文献   

15.
石墨炉原子吸收光谱法测定饮用水中镉的不确定度分析   总被引:1,自引:0,他引:1  
目的分析讨论石墨炉原子吸收光谱法测定饮用水中镉过程中不确定度的因素,从而找到影响测定结果准确性的主要原因,为更准确测定饮用水中的镉提供帮助。方法采用石墨炉原子吸收光谱法,测定饮用水中镉,获取一定的实验数据,依据JJF1059-2012《测量不确定度评定与表示》建立数学模型,分析和计算不确定度。结果用石墨炉原子吸收光谱法测定饮用水镉的含量时,标准溶液带来的相对标准不确定度Urel(1)为0.001,由体积引入的相对标准不确定度Urel(2)为0.0071,曲线拟合过程中产生的相对标准不确定度Urel(3)为0.070,样品重复测定引入的相对标准不确定度Urel(4)为0.017,石墨炉进样时引入的相对标准不确定度Urel(5)为0.00075。合成标准不确定度为0.072μg/L,扩展不确定度为0.092μg/L。结论用石墨炉原子吸收光谱法测定饮用水镉的含量时,标准曲线拟合和重复测定是不确定度的主要来源。  相似文献   

16.
目的建立石墨炉原子吸收光谱法直接测定血锰的分析方法并进行不确定度评定。方法样品用0.2%HNO3溶解后直接用石墨炉原子吸收光谱法进行分析,测定时采用PdCl2-NH4NO3作为基体改进剂,利用程序升温,采用2步干燥和2步灰化法消除血液对信号的干扰。并依据JJF 1059-1999,对各不确定度分量进行分析评定。结果该方法线性范围为0~10μg/L,检出限0.057/μg/L,相关系数0.999 6,回收率96.08%~105.53%。结论该方法操作简便,快速,准确,符合生物材料中有害物质测定规范要求,可用于血锰的测定。  相似文献   

17.
目的建立石墨炉原子吸收光谱法测定大米中镉含量的不确定度分析方法,找出其主要影响因素。方法建立不确定度的数学模型,系统分析计算不确定度的各个分量[1]。结果按GB/T 5009.15-2003,食品中镉的测定,测定大米中镉的含量,当结果为406μg/kg时,其扩展不确定度为12.9μg/kg(k=2)。结论把握好样品测量过程中的主要环节,严格控制样品测定条件以及标准溶液的配制是降低测量不确定度的关键。  相似文献   

18.
石墨炉原子吸收光谱法测定饮用水中铝的不确定度分析   总被引:2,自引:0,他引:2  
[目的]分析石墨炉原子吸收光谱法测定饮用水中铝的不确定度分析。[方法]根据测量不确定度的评定原理和测定方法,建立测定不确定度的数学模型,然后对不确定度的分量进行计算。[结果]该法的不确定度主要来源于样品的平行测定、工作曲线绘制带来的误差,其次是标准溶液的配制及仪撂带来的误差。[结论]本文所提出的方法可用于石墨炉原子吸收光谱法测定饮用水中铝的不确定度分析,该不确定度分析处于较好的受控状态。  相似文献   

19.
黄涛 《职业与健康》2012,28(7):814-815,817
<正>测量不确定度是表征合理的赋予被测量值的分散性与测量结果相联系的参数。此参数是标准差或者其倍数,或说明了置信区间的半宽度,其值恒为正值。根据《检测和校准实验室的能力的通用要求》GB/T15481-2000规定:检测实验室应具有并应用测量不确定度评定程序,在评定测量不确定度时,对给定条件下  相似文献   

20.
目的 研究微波消解-石墨炉原子吸收分光光度法测定馕中铅含量的测量不确定度评定方法。 方法 采用微波消解前处理技术,利用石墨炉原子吸收光谱法对馕中铅的含量进行测定,建立相应的数学模型,对模型中各种不确定因素进行量化处理。 结果 研究表明,不确定度的主要来源为标准溶液的配制、样品的称量、容器器具的体积、标准曲线拟合以及重复性测定等,馕中铅的测定结果为(0.065±0.004)mg/kg。 结论 该评定方法适用于微波消解-石墨炉原子吸收分光光度法测定馕中铅含量测量不确定度分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号