首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: The mechanism of HPC mobilization in humans is unclear. In this study, the relationship between PBPC mobilization and blood levels of G-CSF, endogenous cytokines (IL-8, SCF, thrombopoietin [TPO]), and the vascular cell adhesion molecule-1 (VCAM-1) was analyzed in patients with malignancy who were undergoing a PBPC mobilization regimen. STUDY DESIGN AND METHODS: Fifty-four patients with multiple myeloma (MM) and 29 with breast cancer (BC) underwent a mobilization regimen combining conventional chemotherapy and G-CSF up to the last day of PBPC collection. The CD34+ cell count was determined on each day when leukapheresis was scheduled. Venous blood samples (n = 117) were drawn before apheresis for CD34+ cell count (flow cytometry) and cytokine (G-CSF, IL-8, SCF, TPO) and VCAM-1 measurements (ELISA). RESULTS: In multiple regression analysis, SCF was a significant determinant of CD34+ cell levels in BC patients (R = 0.50, p = 0.03) and of VCAM-1 levels in MM patients (R = 0.32, p = 0.02). SCF was negatively correlated with CD34+ cell count in patients with BC. SCF and VCAM-1 blood levels were correlated in MM and BC patients. CONCLUSION: SCF and VCAM-1 could play a role in PBPC mobilization in patients and could be useful measures by which to study patients undergoing a mobilization regimen.  相似文献   

2.
BACKGROUND: Several studies have suggested that cytokine accumulation during storage of platelet concentrates (PCs) may mediate nonhemolytic febrile transfusion reactions and that a reduction in WBC numbers prevents the generation of cytokines. Despite efforts to minimize WBC contamination in apheresis PCs, high numbers of WBCs and increased cytokine levels may still occur, depending on the quality of the apheresis device employed. STUDY DESIGN AND METHODS: This study was undertaken to investigate whether PCs collected with WBC-reduction devices (Spectra LRS, COBE;or MCS+ LDP, Haemonetics) were sufficiently depleted of WBCs to limit cytokine accumulation during storage. The study evaluated 1) the levels of cytokines of WBC and platelet origin in two types of apheresis PCs during storage and 2) the effects of prestorage filtration on cytokine levels in the Spectra LRS PCs. RESULTS: In the Spectra LRS PCs, low levels of IL-6, IL-8, and monotype chemoattractant protein 1 (MCP-1) were detected in Day 1 PCs, and they remained consistent during the shelf life. RANTES, platelet factor 4 (PF4), beta-thromboglobulin (beta-TG), and transforming growth factor (TGF)-beta1 were also detected in these PCs, and their levels increased significantly on storage. Prestorage filtration of Spectra LRS PCs did not further reduce the levels of IL-6, IL-8, MCP-1, PF4, beta-TG, and TGF-beta1 in the filtered component. In the MCS+ LDP PCs, IL-6 was detected on Day 1, and its level increased significantly on storage, whereas the levels in the Spectra PCs remained steady. IL-8 levels were lower in MCS+ LDP PCs than in Spectra LRS PCs of the same age. MCP-1 levels were similar in both products on Day 1 and marginally increased in stored MCS+ LDP PCs. Substantial amounts of RANTES, PF4, beta-TG, and TGF-beta1 occurred in Day 1 MCS+ LDP PCs, and, on storage, these levels rose significantly. CONCLUSION: Despite a significant reduction in levels of WBC-derived cytokines, platelet-derived cytokines were present in different amounts in the two products.  相似文献   

3.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte-colony-stimulating factor (G-CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 microg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G-CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies. STUDY DESIGN AND METHODS: Various doses of G-CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G-CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G-CSF (median, 3.6 [range, 2.8-4.6] microg/kg/day). Group 2 included 45 patients who received a standard G-CSF dose of 6.0 (5.5-8. 1) microg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens. RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group.The number of leukapheresis procedures necessary to obtain a minimum of 3 x 10(6) CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups. CONCLUSION: The administration of low-dose G-CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection.This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

4.
BACKGROUND: The optimal time for postchemotherapy granulocyte-colony stimulating factor (G-CSF) administration before peripheral blood stem and progenitor cell (PBPC) collection is not well defined. The impact of G-CSF scheduling on the number of CD34+ cells collected by leukapheresis from 65 patients with malignant disease was studied retrospectively. STUDY DESIGN AND METHODS: Chemotherapy was performed on Days 1 and 2 and was followed by G-CSF to mobilize PBPCs. In Group 1, 30 patients received the first dose of G-CSF immediately after the end of chemotherapy, as commonly recommended. In Group 2, 35 patients received the first G-CSF dose after the end of chemotherapy (Days 7 or 8). RESULTS: No difference was observed between the two groups in white cell recovery and the median number of CD34+ cells harvested. The number of leukapheresis procedures necessary to obtain the minimal number of 3 x 10(6) CD34+ cells per kg was the same. The proportion of patients with a failure of PBPC collection was similar, and G-CSF consumption was reduced in Group 2 without increasing infectious risks. CONCLUSION: Early administration of G-CSF after chemotherapy appears not to be a prerequisite for satisfactory PBPC collection. This approach could allow significant savings in terms of medical cost. A randomized and prospective study would be necessary, however, to assess the validity of these conclusions.  相似文献   

5.
BACKGROUND: A clinical study was performed to evaluate the peripheral blood progenitor cell (PBPC) collection, transfusion, and engraftment characteristics associated with use of a blood cell separator (Amicus, Baxter Healthcare). STUDY DESIGN AND METHODS: Oncology patients (n = 31) scheduled for an autologous PBPC transplant following myeloablative therapy were studied. PBPCs were mobilized by a variety of chemotherapeutic regimens and the use of G-CSF. As no prior studies evaluated whether PBPCs collected on the Amicus separator would be viable after transfusion, to ensure patient safety, PBPCs were first collected on another cell separator (CS-3000 Plus, Baxter) and stored as backup. The day after the CS-3000 Plus collections were completed, PBPC collections intended for transfusion were performed using the Amicus instrument. For each transplant, >2.5 x 10(6) CD34+ PBPCs per kg of body weight were transfused. RESULTS: Clinical data collected on the donors immediately before and after PBPC collection with the Amicus device were comparable to donor data similarly obtained for the CS-3000 Plus collections. While the number of CD34+ cells and the RBC volume in the collected products were equivalent for the two devices, the platelet content of the Amicus collections was significantly lower than that of the CS-3000 Plus collections (4.35 x 10(10) platelets/bag vs. 6.61 x 10(10) platelets/bag, p<0.05). Collection efficiencies for CD34+ cells were 64 +/- 23 percent for the Amicus device and 43 +/- 14 percent for the CS-3000 Plus device (p<0.05). The mean time to engraftment for cells collected via the Amicus device was 8.7 +/- 0.7 days for >500 PMNs per microL and 9.7 +/- 1.5 days to attain a platelet count of >20,000 per microL-equivalent to data in the literature. No CS-3000 Plus backup cells were transfused and no serious adverse events attributable to the Amicus device were encountered. CONCLUSIONS: The mean Amicus CD34+ cell collection efficiency was better (p<0.05) than that of the CS-3000 Plus collection. Short-term engraftment was durable. The PBPCs collected with the Amicus separator are safe and effective for use for autologous transplant patients requiring PBPC rescue from high-dose myeloablative chemotherapy.  相似文献   

6.
BACKGROUND: Selection of CD34+ cells by specific immunoselection leads to a significant loss of those cells. The factors influencing the yield and purity are not well identified. The results of CD34+ selection from peripheral blood progenitor cells (PBPCs) with high and low platelet contamination that are harvested with two different cell separators are reported. STUDY DESIGN AND METHODS: A progenitor cell concentrator (Ceprate SC, CellPro) was used to select CD34+ cells from 41 PBPC concentrates from 23 consecutive patients with relapsed non-Hodgkin's lymphoma (n = 3), breast cancer (n = 17), and multiple myeloma (n = 3). PBPC collection was performed by using two cell separators (CS3000 Plus, Fenwal: Group A, n = 11; and Spectra, COBE: Group B, n = 9). To reduce platelet contamination in the Spectra PBPC concentrates, an additional low-speed centrifugation was performed before CD34+ cell selection (Group C, n = 3). Leukapheresis components were stored overnight at 4 degrees C and combined with the next day's collection before the CD34+ selection procedure in 19 patients. RESULTS: A median of 1.5 leukapheresis procedures per patient were performed. Pooled PBPC concentrates showed no statistical difference in median numbers of white cells and CD34+ cells in Groups A and B: 3.2 (0.8-9.2) versus 4.4 (1.6-8. 3) x 10(10) white cells per kg and 15.0 (4.7-24.0) versus 12.0 (5. 6-34.0) x 10(6) CD34+ cells per kg. Platelet contamination was significantly higher in Group B: 0.67 (0.15-2.4) versus 2.3 (0.5-7. 1) x 10(11) (p = 0.0273). After the selection process, there was a significantly greater loss of CD34+ cells in Group B than in Group A: 39.1 versus 63.2 percent (p = 0.0070), with a median purity of 78. 0 percent versus 81.0 percent. An additional low-speed centrifugation before CD34+ cell selection seemed to reduce CD34+ cell loss in Group C with 16.9, 31.9, and 37.5 percent, respectively. CONCLUSION: CD34+ cell selection from PBPC concentrates resulted in an increased loss of CD34+ cells in concentrates with a higher platelet content. To improve CD34+ yield, PBPC concentrates with an initially low platelet contamination should be used, or additional low-speed centrifugation should be performed.  相似文献   

7.
BACKGROUND: Defining the optimum regimen and time for repeat peripheral blood progenitor cell mobilization would have important clinical applications. STUDY DESIGN AND METHODS: Remobilization with SCF and G-CSF at 2 weeks after an initial mobilization in mice and at 2 or 4 weeks after an initial mobilization in nonhuman primates was examined. In mice, competitive repopulation assays were used to measure long-term progenitor cell-repopulating activity. In monkeys, mobilization of hematopoietic progenitor CFUs was used as a surrogate marker for progenitor cell-repopulating ability. RESULTS: Efficacy of progenitor cell remobilization differed in the two animal species. In mice, peripheral blood progenitor cell-repopulating ability with repeat mobilization at 2 weeks was 70 percent of that with the initial mobilization. In monkeys, there was no significant difference in peripheral blood progenitor cell mobilization between the initial and the repeat mobilizations at 2 weeks. In mobilizations separated by 4 weeks, however, peripheral blood progenitor cell mobilization was higher than that with initial mobilizations. CONCLUSION: In animal models, mobilization of peripheral blood progenitor cells with remobilization after a 2-week interval is similar to or moderately decreased from that with the initial mobilization. Progenitor cell collection at this time point may be useful in certain clinical circumstances. A 4-week interval between remobilizations may be preferable. Clinical trials in humans would be useful to clarify these issues.  相似文献   

8.
BACKGROUND: Ex vivo expansion strategies with different cytokine combinations are currently used by several groups as a means of increasing the number of HPCs for a variety of special clinical applications. Because there is little information on the potential role of IL-10 in such ex vivo expansion models, the effect of this cytokine on the generation of myeloid progenitor cells in suspension cultures was investigated. STUDY DESIGN AND METHODS: On the basis of data from the literature and from new experiments, the combination of SCF and IL-3 at concentrations of 100 ng per mL and 100 U per mL, respectively, was chosen as the standard cocktail. The addition of IL-10 to such cultures resulted in a marked and dose-dependent potentiation of myeloid progenitor cell production. RESULTS: Using unmanipulated leukapheresis components from 13 individuals (including lymphoma and cancer patients and normal donors), the expansion multiple of CFU-GM after 14 days as compared with pre-expansion values was 9.54 +/- 2.31 times by SCF/IL-3 and 46.38 +/- 7.37 times by the combination of SCF/IL-3 and 100 ng per mL of IL-10 (p<0.001). IL-10 also potentiated CFU-GM generation from selected CD34 PBMNCs (n = 9) with an expansion of 17.22 +/- 7.04 times versus 45.67 +/- 16.78 times using the SCF/IL-3 and SCF/IL-3/IL-10 combination, respectively (p<0.05). Moreover, expansion-promoting effects of IL-10 were observed in liquid cultures containing MNCs from bone marrow (n = 4) and cord blood (n = 3), but did not reach statistical significance because of the small number of samples. CONCLUSION: These results suggest IL-10 as a useful cytokine to optimize progenitor cell-expansion strategies for clinical application.  相似文献   

9.
BACKGROUND: The peripheral blood progenitor cell (PBPC) mobilization capacity of EPO in association with either G-CSF or sequential GM-CSF/G-CSF was compared in a randomized fashion after epirubicin, paclitaxel, and cisplatin (ETP) chemotherapy. STUDY DESIGN AND METHODS: Forty patients with stage IIIB, IIIC, or IV ovarian carcinoma were enrolled in this randomized comparison of mobilizing capacity and myelopoietic effects of G-CSF + EPO and GM-/G-CSF + EPO following the first ETP chemotherapy treatment. After ETP chemotherapy (Day 1), 20 patients received G-CSF 5 microg per kg per day from Day 2 to Day 13 and 20 patients received GM-CSF 5 microg per kg per day from Day 2 to Day 6 followed by G-CSF 5 microg per kg per day from Day 7 to Day 13. EPO (150 IU per kg) was given every other day from Day 2 to Day 13 to all patients in both arms of the study. Apheresis (two blood volumes) was performed during hematologic recovery. RESULTS: The magnitude of CD34+ cell mobilization and the abrogation of patients' myelosuppression were comparable in both study arms; however, GM-/G-CSF + EPO patients had significantly higher CD34+ yields because of a higher CD34+ cell collection efficiency (57.5% for GM-/G-CSF + EPO and 46.3% for G-CSF + EPO patients; p = 0.0009). Identical doses of PBPCs mobilized by GM-/G-CSF + EPO and G-CSF + EPO drove comparable hematopoietic recovery after reinfusion in patients treated with identical high-dose chemotherapy. CONCLUSION: The sequential administration of GM-CSF and G-CSF in combination with EPO is feasible and improves the PBPC collection efficiency after platinum-based intensive polychemotherapy, associating high PBPC mobilization to high collection efficiency during apheresis.  相似文献   

10.
BACKGROUND: Information on the safety and efficacy of allogeneic peripheral blood progenitor cell (PBPC) collection in filgrastim-mobilized normal donors is still limited. STUDY DESIGN AND METHODS: The PBPC donor database from a 42-month period (12/94-5/98) was reviewed for apheresis and clinical data related to PBPC donation. Normal PBPC donors received filgrastim (6 microg/kg subcutaneously every 12 hours) for 3 to 4 days and subsequently underwent daily leukapheresis. The target collection was > or =4 x 10(6)CD34+ cells per kg of recipient's body weight. RESULTS: A total of 350 donors were found to be evaluable. Their median age was 41 years (range, 4-79). Their median preapheresis white cell count was 42.8 x 10(9) per L (range, 18.3-91.6). Of these donors, 17 (5%) had inadequate peripheral venous access. Leukapheresis could not be completed because of apheresis-related adverse events in 2 donors (0.5%). Of the 324 donors evaluable for apheresis yield data, 221 (68%) reached the collection target with one leukapheresis. The median CD34+ cell dose collected (first leukapheresis) was 462 x 10(6) (range, 29-1463).The main adverse events related to filgrastim administration in donors evaluable for toxicity (n = 341) were bone pain (84%), headache (54%), fatigue (31%), and nausea (13%). These events were rated as moderate to severe (grade 2-3) by 171 (50%) of the donors. In 2 donors (0.5%), they prompted the discontinuation of filgrastim administration. CONCLUSION: PBPC apheresis for allogeneic transplantation is safe and well tolerated. It allows the collection of an "acceptable" PBPC dose in most normal donors with one leukapheresis, with minimal need for invasive procedures.  相似文献   

11.
BACKGROUND: The optimal dose of post-chemotherapy granulocyte–colony-stimulating factor (G–CSF) administration before peripheral blood progenitor cell (PBPC) collection has not been determined as yet, although 5 μg per kg per day has been recommended as the standard dose. This study retrospectively analyzed the effect of G–CSF dose on peripheral blood CD34+ cell collection from 91 patients with hematologic malignancies.
STUDY DESIGN AND METHODS: Various doses of G–CSF were administered after several chemotherapeutic PBPC mobilization regimens. According to the dose of G–CSF administered, patients were assigned to two groups. Group 1 included 46 patients who received a low dose of G–CSF (median, 3.6 [range, 2.8-4.6] μg/kg/day). Group 2 included 45 patients who received a standard G–CSF dose of 6.0 (5.5-8.1) μg per kg per day. Patients in the two groups were matched for age, diagnosis, previous therapy, and chemotherapeutic PBPC mobilization regimens.
RESULTS: No difference was observed in the median number of CD34+ cells harvested from each group. The number of leukapheresis procedures necessary to obtain a minimum of 3 × 106 CD34+ cells per kg was the same in both groups, and the percentage of patients who failed to achieve adequate PBPC collections was similar in the two groups.
CONCLUSION: The administration of low-dose G–CSF after chemotherapy appears equivalent to administration of the standard dose in achieving satisfactory PBPC collection. This approach could allow significant savings in medical cost. A randomized and prospective study is necessary, however, to assess the validity of these conclusions.  相似文献   

12.
BACKGROUND: Nonhemolytic transfusion reactions (NHTRs) frequently occur after platelet transfusions. White cell (WBC)-derived inflammatory cytokines can cause these reactions, but they are rarely found in WBC-poor platelet preparations. Transfusion reactions were investigated with regard to the residual WBC content in the stored platelet concentrate in two consecutive study periods.
STUDY DESIGN AND METHODS: In the first study period, platelet concentrates were WBC-reduced by bedside filtration. In the second period, all platelet concentrates were filtered before storage. Recipients who experienced transfusion reactions were examined with regard to their main clinical symptoms during and after transfusion. In the supernatant of the involved platelet concentrates, concentrations of interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)α, macrophage inflammatory protein 1α, and RANTES were analyzed.
RESULTS: The incidence of transfusion reactions remained steady when the transfusion regimen was changed from bedside filtration to prestorage WBC filtration (1.63% and 1.56%; p = 0.84). In both periods, NHTRs were predominantly of allergic origin. Inflammatory mediators IL-1β, IL-6, IL-8, and TNFα were detectable in only a minority of platelet components involved in NHTRs. Platelet concentrates involved in allergic reactions contained high concentrations of RANTES (668 ± 223 ng/mL).
CONCLUSIONS: Prestorage WBC filtration did not reduce the incidence of these reactions, and inflammatory cytokines were of minor relevance. The proinflammatory platelet-derived chemokine RANTES, which accumulates even in WBC-reduced platelet concentrates, was associated with allergic transfusion reactions. Platelet-derived mediators may be a key to understanding NHTRs.  相似文献   

13.
BACKGROUND: The transplantation of autologous peripheral blood progenitor cells (PBPCs) after high-dose chemotherapy is a valuable therapy for patients with hematologic and solid malignancies. Several methods are used for harvesting PBPCs. The efficiency of intermittent- and continuous-flow blood cell separators in collecting progenitor cells from the blood of patients undergoing myeloablative treatment for cancer was compared. STUDY DESIGN AND METHODS: PBPC components (n = 133) were obtained from 72 patients by leukapheresis with continuous-flow machines (Spectra, COBE; CS 3000 Plus, Baxter) and with an intermittent-flow machine (MCS 3P, Haemonetics). The data were analyzed retrospectively. Blood samples obtained from the patients before leukapheresis and samples of the leukapheresis components themselves were analyzed for their content of RBCs, WBCs, platelets, and CD34+ cells. RESULTS: The Spectra processed more than twice the blood volume in the shortest time (15 L in 178 min), whereas the Baxter CS 3000 Plus (10 L in 185 min) and the MCS 3P (4.8 L in 239 min) processed significantly smaller volumes in a longer time. The mean ACD consumption was 403 mL with the MCS 3P, 900 mL with the CS 3000 Plus, and 1000 mL with the Spectra. The product volumes were 50 mL (CS 3000 Plus), 69 mL (MCS 3P), and 166 mL (Spectra). In all groups, differences in the preapheresis hemograms were not significant, but the Spectra group had fewer CD34+ cells than the other groups. Despite this, the differences in the number of CD34+ cells in the leukapheresis components of all groups were without statistical significance. In the Spectra group, the collection of MNCs of 104 percent and CD34+ cells of 154 percent was significantly more efficient than that in the MCS 3P group (42.2% and 56%, respectively) or the CS 3000 Plus group (50.8% and 47.15%) as related to the patients' blood volume. CONCLUSION: PBPC collection can be performed successfully with continuous-flow and intermittent-flow blood cell separators. The Spectra had the best recovery of CD34+ cells within the shortest time. Leukapheresis with the MCS 3P is indicated if only a single venous access is available.  相似文献   

14.
BACKGROUND: The aim of this study was to assess the feasibility of freezing mobilized peripheral blood progenitor cell (PBPC) components at higher cell concentrations than are classically recommended for bone marrow. This approach might have potential benefits, such as lower cost of processing and storage and less risk of the complications associated with the transfusion of large component volumes and large quantities of DMSO. STUDY DESIGN AND METHODS: In the first phase, small aliquots of 19 apheresis components were cryopreserved at standard and higher cell concentrations (Aliquots A and B, respectively). In the second phase, 21 apheresis components were split into two bags each and frozen at standard (Bag A) and high (Bag B) cell concentrations. The differences in viability, cloning efficiency, and nucleated cell recovery in Bags A and B were examined. Finally, the hematologic recovery of 10 patients who underwent autologous transplantation with PBPC components frozen at high cell concentrations was analyzed. RESULTS: The median cell concentration at freezing was 94 (57-100) x 10(6) per mL and 291 (220-467) x 10(6) per mL for Aliquots A and B, respectively, and 90.9 (45.4-92) x 10(6) per mL and 332 (171-582) x 10(6) per mL for Bags A and B, respectively. The viability was significantly lower in samples frozen at higher cell concentrations: 92 versus 83 percent (p = 0.001) and 87 versus 77 percent (p<0.001) for Aliquots and Bags A and B, respectively. Significant differences were not observed in the recovery of total nucleated cells (102 vs. 101% and 98 vs. 105%) or the cloning efficiency after thawing (13 vs. 16% and 27 vs. 23%) for Aliquots and Bags A and B, respectively. The time to granulocyte engraftment >0.5 x 10(9) per L and platelet engraftment >20 x 10(9) per L was 9 (8-11) and 10.5 (7-21) days, respectively. CONCLUSION: The cryopreservation of PBPC components at standard concentrations and 3.3 (1.8-6.2)-fold cell concentrations has no adverse effect on the function of HPCs after thawing.  相似文献   

15.
BACKGROUND: Bone marrow transplantation with minor ABO incompatibility may be followed by moderate delayed hemolysis of the recipient's red cells by donor-derived ABO antibodies. This reaction may be more severe after transplantation of peripheral blood progenitor cells (PBPCs). CASE REPORT: A 16-year-old boy underwent an allogeneic PBPC transplant from his HLA-mismatched mother as treatment for acute myeloblastic leukemia that had proved resistant to induction chemotherapy. Transfusion of the unmanipulated PBPCs proceeded without any complication, despite the difference in ABO blood group (donor, O Rh-positive; recipient, A Rh-positive). On Day 7, a rapid drop in hemoglobin to 4 g per dL was observed, which was attributed to a massive hemolysis. All the recipient's group A red cells were destroyed within 36 hours. This delayed and rapidly progressive hemolytic anemia was not associated with the transfusion of the donor's plasma. Rather, the anti-A titer increased in parallel with marrow recovery, which suggested an active synthesis of these antibodies by immunocompetent cells from the donor against the recipient's red cells. The mother's anti-A titer was retrospectively found to be 2048. Her unusually high titer is probably due to prior sensitization during pregnancies. On Day 12, the patient developed grade IV graft-versus-host disease, which proved resistant to all treatments instituted and led to his death on Day 35. CONCLUSION: PBPC transplantation with minor ABO incompatibility may be associated with significant risk of massive delayed hemolysis.  相似文献   

16.
BACKGROUND: It has been shown in several studies that platelets play a role in the removal of TPO from the circulation. For instance, in vitro studies have shown that platelets can bind and internalize TPO, and transfusion studies have shown that the concentration of circulating TPO decreased after platelet transfusion. In the current study, the in vivo kinetics of plasma TPO levels and TPO uptake by transfused platelets is analyzed in more detail. STUDY DESIGN AND METHODS: Serial blood samples from patients who received a platelet transfusion were analyzed with respect to platelet count, plasma TPO concentration, and TPO content per platelet. In addition, the capacity of transfused platelets to bind TPO in vitro was assessed. RESULTS: Platelet counts increased immediately after transfusion, but subsequently started to decrease. Conversely, TPO levels decreased significantly but then returned to baseline level by 44 hours after transfusion. Platelet count and plasma TPO concentration were inversely correlated (r(p) = -0.9; p<0.05). The decrease in TPO concentration upon transfusion was accompanied by a significant increase in the platelet-associated TPO concentration. After transfusion, platelets isolated from the patient still displayed functional TPO receptors, as indicated by their intact capacity to bind TPO in vitro. CONCLUSION: The decrease in plasma TPO followed by the increase in platelet TPO provides evidence that platelets are responsible for the clearance of TPO in circulation. In vivo, platelets can bind and may degrade TPO upon platelet transfusion.  相似文献   

17.
BACKGROUND: Autologous platelet components were recently used as part of tissue-engineering strategies in oral and maxillofacial surgery. Various preparation methods were investigated to define standardized blood bank components and to collect data on the growth factor content of human platelets before and after storage. STUDY DESIGN AND METHODS: Apheresis platelets (AP), buffy coat-derived platelets (BCP), platelets prepared by tube method (TP), and highly concentrated samples prepared from AP and from BCP were evaluated for standard quality criteria of platelet components and for their concentration of transforming growth factor (TGF)-ss1, platelet-derived growth factor (PDGF)-AB, and PDGF-BB. AP were stored for 5 days. On Days 3 and 5, these components and freshly prepared, highly concentrated samples were evaluated for the same measures. RESULTS: Platelet concentration in TP was lower than that in the other groups (p<0.05). However, the concentrations of PDGF-AB, PDGF-BB, and TGF-ss1 were comparable in the three groups. TP showed higher spontaneous CD62 expression than did AP and BCP. The three preparation procedures resulted in significantly different WBC contamination, with the highest levels in TP. For the whole series of measurements, there was a strong correlation between growth factor levels and platelet concentration (p<0.05), which was due to the face that the growth factor content of concentrated platelet samples was tenfold that of AP, BCP, and TP. In TP, the WBC concentration was correlated with PDGF levels (p<0.05). After 5-day storage, the mean levels of PDGF-AB, PDGF-BB, and TGF-ss1 were 57.1, 43.0, and 72.0 percent of the initial values in AP. Overall, multiple regression analysis revealed the following factors influencing the measured growth factor concentrations: platelet concentration, baseline CD62 expression, lactate production, and WBC contamination. CONCLUSION: Various methods enable the preparation of platelet components and of highly concentrated components for local use according to standard blood banking criteria. The obtained components differ, particularly in their WBC content and in vitro platelet activation. These findings are relevant for planning and evaluating further studies of locally usable autologous platelet components.  相似文献   

18.
Rowley SD  Prather K  Bui KT  Appel M  Felt T  Bensinger WI 《Transfusion》1999,39(11-12):1200-1206
BACKGROUND: Apheresis devices designed for the collection of mature blood elements are being used for the collection of peripheral blood progenitor cells (PBPCs).The collection of PBPCs differs from that of other cells in the rarity of the target cell and in the fact that donors may undergo several days of collection. A consequence of this process may be a depletion of blood cells such as platelets from the blood. The disposable set and operating software for an apheresis device (Spectra, COBE BCT) was modified by the manufacturer to automate the collection of PBPCs and reduce the collection of unwanted blood cells. STUDY DESIGN AND METHODS: A study was initiated to compare the collection of PBPCs with the new device, the AutoPBSC (version [V]6.0 with AutoPBSC tubing set), and that with the MNC (mononuclear cell) procedure (V4.7 with white cell tubing set), for patients and healthy donors. RESULTS: Patients whose blood was processed by either theV6.0 orV4.7 procedure achieved the target dose of 5 x 10(6) CD34+ cells per kg of patient weight in similar numbers of procedures, even though the calculated collection efficiency for CD34+ cells using the automated V6.0 procedure was significantly less than that with the V4.7 procedure for both allogeneic donors and patients donating PBPCs. The collection efficiency for platelets was lower with the V6.0 procedure, and components collected in this manner contained fewer platelets. Apheresis by the V6.0 procedure required 30 to 60 more minutes per procedure than apheresis by the V4.7 procedure. Review of engraftment kinetics after transplantation did not reveal any effect of the collection procedure on recipients of either allogeneic or autologous transplants. CONCLUSION: The collection efficiencies of the V6.0 procedure for both CD34+ cells and mature blood cells are lower than those of the V4.7 procedure.The lower collection efficiency for platelets results in a smaller drop in peripheral blood platelet count after the procedure.The automated features of the V6.0 procedure may simplify PBPC collection, but this procedure requires a longer apheresis.  相似文献   

19.
BACKGROUND: With the implementation of universal WBC reduction in the United Kingdom, in-process WBC-reduction filters for pooled buffy coat (BC)-derived platelet concentrates (PCs) are used in routine production. The effects of three filter/storage bag combinations on platelet activation and microvesiculation and on the activation of coagulation were investigated. STUDY DESIGN AND METHODS: Using pooled BCs from the same donors, three filter/storage bag combinations (Autostop BC/CLX, Pall Biomedical; Sepacell PLX5/PL2410, Asahi Medical; and Imugard III-PL 4P/Teruflex, Terumo) were compared with unfiltered controls for their effects on microvesiculation and other storage-induced changes in platelets. Process efficiency was measured by platelet yield and residual WBC count. The storage changes were assessed: pH, activation of platelets measured by CD62P on the platelet surface and in supernatant plasma, quantitation of platelet-derived and RBC-derived microvesicles, cellular injury measured by annexin V in the supernatant plasma, and activation of the coagulation system measured by kallikrein-like and thrombin-like activities, prothrombin fragment 1+2, and thrombin-antithrombin complex. RESULTS: All three filters were comparable in terms of platelet recovery and WBC removal, and none induced immediate platelet activation or microvesiculation. With storage, platelet activation or microvesiculation increased in platelets prepared by all three filters and in unfiltered controls, but these effects were significantly less in the Imugard PCs than in controls. These findings were consistent with those for annexin V in the supernatant plasma, which were lower in Imugard PCs than in other products. Sepacell and Imugard filters reduced RBC-derived microvesicles to 50 percent of control levels, but the Autostop filter had no effect. On storage, levels of RBC-derived microvesicles in filtered products remained static, but levels in the unfiltered control doubled. Kallikrein- and thrombin-like activities were generated only by the Autostop filter without any further increment on storage. CONCLUSION: WBC-reduced pooled BC-PCs prepared by various filter/bag combinations were equivalent on Day 1 but differed during storage in terms of platelet activation or microvesiculation.  相似文献   

20.
BACKGROUND: Although controlled-rate freezing and storage in liquid nitrogen are the standard procedure for peripheral blood progenitor cell (PBPC) cryopreservation, uncontrolled-rate freezing and storage at -80 degrees C have been reported. STUDY DESIGN AND METHODS: The prospective evaluation of 109 autologous PBPC transplantations after uncontrolled-rate freezing and storage at -80 degrees C of apheresis products is reported. The cryoprotectant solution contained final concentrations of 1-percent human serum albumin, 2.5-percent hydroxyethyl starch, and 3.5-percent DMSO. RESULTS: With in vitro assays, the median recoveries of nucleated cells (NCs), CD34+ cells, CFU-GM, and BFU-E were 60.8 percent (range, 11.2-107.1%), 79.6 percent (6.3-158.1%), 35.6 percent (0.3-149.5%), and 32.6 percent (1.7-151.1%), respectively. The median length of storage was 7 weeks (range, 1-98). The median cell dose, per kg of body weight, given to patients after the preparative regimen was 6.34 x 10(8) NCs (range, 0.02-38.3), 3.77 x 10(6) CD34+ cells (0.23-58.5), and 66.04 x 10(4) CFU-GM (1.38-405.7). The median time to reach 0.5 x 10(9) granulocytes per L, 20 x 10(9) platelets per L, and 50 x 10(9) reticulocytes per L was 11 (range, 0-37), 11 (0-129), and 17 (0-200) days, respectively. Hematopoietic reconstitution did not differ in patients undergoing myeloablative or nonmyeloablative conditioning regimens before transplantation. CONCLUSION: This simple and less expensive cryopreservation procedure can produce successful engraftment, comparable to that obtained with the standard storage procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号