首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of mild (non-noxious) tactile stimulation (stroking) of skin on dopamine (DA) release in the nucleus accumbens (NAc) of rats. A coaxial microdialysis probe was stereotaxically implanted in the NAc and perfused with modified Ringer’s solution. Dialysate output from consecutive 5-min periods was injected into a high-performance liquid chromatograph and DA was measured using an electrochemical detector. Bilateral tactile stimulation of the back for 5 min significantly increased DA release in conscious and anesthetized animals. Increased DA release was observed by stimulation of the contralateral, but not ipsilateral, back. DA secretion was also increased with stimulation of the forelimb, hindlimb, and abdomen. These effects were abolished after lesioning the ventral tegmental area (VTA). In contrast, noxious stimulation (pinching) of these areas had no effect on DA secretion. In conclusion, innocuous mechanical stimulation of the skin increases DA release in the contralateral NAc via the VTA.  相似文献   

2.
To better characterize the central nervous system response to peripheral insulin administration, male Sprague-Dawley rats were fitted with microdialysis probes in the nucleus accumbens (NAC; n = 23) and striatum (STR; n = 22). Awake intact rats were injected with either 0, 200, 400, or 600 mU regular insulin i.p. Dopamine overflow was measured for at least 2 h postinjection. In the NAC, four postinjection samples were collected once every 30 min. In the STR, eight postinjection samples were collected, once every 20 min. Dopamine baselines in the NAC and STR were 9.22 pg +/- 2.02 and 10.33 pg +/- 2.22 per sample, respectively. In the nucleus accumbens, dopamine release was significantly greater in the group treated with 600 mU insulin (203 +/- 38% of baseline at 30 min). In the STR, increased dopamine release was observed in the groups treated with 200 and 400 mU insulin, whereas a suppression of a dopamine release was observed in the group treated with 600 mU. These data demonstrate that the metabolic state induced by peripheral insulin injection causes dopamine metabolism to change in both the NAC and STR, and at least in part support the hypothesis that insulin may have reinforcing properties in its effect on NAC dopamine release.  相似文献   

3.
This study examined the effect of scheduled eating on the in vivo release of dopamine (DA) in the nucleus accumbens of rats that were maintained on a food deprivation schedule. DA release was measured by means of a fully automated on-line brain dialysis system. The initiation of eating increased the release of DA, which remained elevated during the entire eating period. Termination of eating caused a gradual decrease of the release of DA to basal values. Increased motor activities did not change the release of DA. These results indicate a link between eating and DA release and demonstrate the suitability of on-line brain dialysis for behavioural experiments.  相似文献   

4.
Three experiments were conducted to investigate the behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum. In the first experiment, dialysis probes were implanted in the nucleus accumbens or ventrolateral striatum of rats previously trained to respond on fixed interval lever pressing schedules for food reinforcement. During the dialysis test session, both schedule- and site-dependent effects on dopamine release were observed. Overall, lever pressing on a fixed interval 30-s schedule produced a greater increase in extracellular dopamine than did responding on a fixed interval 120-s schedule. The fixed interval 30-s schedule was also accompanied by a higher rate of lever pressing. Rats with nucleus accumbens probe placements showed significantly higher increases in dopamine release than rats with ventrolateral striatal placements. An additional dialysis experiment showed that baseline levels of dopamine were suppressed by 1.0 microM tetrodotoxin to a similar extent in the nucleus accumbens and ventrolateral striatum. In the third experiment, 6-hydroxydopamine was injected locally into either the nucleus accumbens or the ventrolateral striatum in order to deplete dopamine. Nucleus accumbens dopamine depletions produced only a minor decrease in operant responding, whereas rats with ventrolateral striatal dopamine depletions showed low levels of responding that differed from both the control group and from the group that had accumbens dopamine depletions. Thus, these results are somewhat paradoxical, in that the structure that showed the greatest increase in dopamine release (i.e. the nucleus accumbens) was also the terminal region at which dopamine depletions had very little effect on operant responding. Ventrolateral striatal dopamine appears to be largely permissive over lever pressing, in that normal levels of dopamine in the ventrolateral striatum are critical for responding, although dopamine levels do not fluctuate much during behavioral sessions.  相似文献   

5.
This report describes the changes in extracellular levels of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) detected in the nucleus accumbens of male rats engaged in copulatory activity. They were monitored by using differential normal pulse voltammetry (DNPV) with electrochemically pretreated carbon fiber microelectrodes and numerical analysis of the catechol signal. The copulatory pattern displayed during the voltammetric recordings was similar to those recorded prior to surgery. Copulating animals showed a conspicuous increase in the DA and DOPAC electrochemical signals up to, respectively, 170% and 150% of baseline levels. This response was much attenuated when the experimental animals were exposed to either non-receptive castrated females or intact males. These data are consistent with the permissive role currently ascribed to the dopaminergic innervation of the n. accumbens in the selection and the initiation of behavioral adaptive sequences.  相似文献   

6.
The nucleus accumbens (NAc) represents a critical site for the rewarding and addictive properties of several classes of abused drugs. The medium spiny GABAergic projection neurons (MSNs) in the NAc receive innervation from intrinsic GABAergic interneurons and glutamatergic innervation from extrinsic sources. Both GABA and glutamate release onto MSNs are inhibited by drugs of abuse, suggesting that this action may contribute to their rewarding properties. To investigate the actions of cannabinoids in the NAc, we performed whole cell recordings from MSNs located in the shell region in rat brain slices. The cannabinoid agonist WIN 55,212-2 (1 microM) had no effect on the resting membrane potential, input resistance, or whole cell conductance, suggesting no direct postsynaptic effects. Evoked glutamatergic excitatory postsynaptic currents (EPSCs) were inhibited to a much greater extent by [Tyr-D-Ala(2), N-CH(3)-Phe(4), Gly-ol-enkephalin] (DAMGO, approximately 35%) than by WIN 55,212-2 (<20%), and an analysis of miniature EPSCs suggested that the effects of DAMGO were presynaptic, whereas those of WIN 55,212-2 were postsynaptic. However, electrically evoked GABAergic inhibitory postsynaptic currents (evIPSCs), were reduced by WIN 55,212-2 in every neuron tested (EC(50) = 123 nM; 60% maximal inhibition), and the inhibition of IPSCs by WIN 55,212-2 was completely antagonized by the CB1 receptor antagonist SR141716A (1 microM). In contrast evIPSCs were inhibited in approximately 50% of MSNs by the mu/delta opioid agonist D-Ala(2)-methionine(2)-enkephalinamide and were completely unaffected by a selective mu-opioid receptor agonist (DAMGO). WIN 55,212-2 also increased paired-pulse facilitation of the evIPSCs and did not alter the amplitudes of tetrodotoxin-resistant miniature IPSCs, suggesting a presynaptic action. Taken together, these data suggest that cannabinoids and opioids differentially modulate inhibitory and excitatory synaptic transmission in the NAc and that the abuse liability of marijuana may be related to the direct actions of cannabinoids in this structure.  相似文献   

7.
Several studies on mice have demonstrated a correlation between the concentrations of dopamine and its metabolites in the nucleus accumbens and asymmetry in forelimb preference. Dopamine concentrations were greater in the nucleus accumbens ipsilateral in relation to the preferred paw. Limb preference was demonstrated in rats during performance of a response consisting of withdrawing food from a horizontal tube. Brain tissue dopamine concentrations were estimated by high-performance liquid chromatography with electrochemical detection. The results showed that in “left-handed” rats, the dopamine concentration in the left nucleus accumbens was significantly greater than that in “right-handed” rats. In right-handed rats, the dopamine concentration in the right nucleus accumbens was greater than that in the left. The results obtained here are significantly consistent with data obtained in mice and support the suggestion that the dopamine level in rats is greater in the nucleus accumbens ipsilateral to the preferred limb. __________ Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 57, No. 5, pp. 598–603, September–October, 2007.  相似文献   

8.
This study investigated the effect of ionotropic glutamate receptor agonist or antagonist administration into the nucleus accumbens on the maintenance of cocaine self-administration and the reinstatement of cocaine-seeking behavior. The stimulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid or N-methyl-D-aspartate glutamate receptors in the nucleus accumbens with either alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid or 1-aminocyclobutane-cis-1,3-dicarboxylic acid, respectively, decreased the number of cocaine-reinforced responses, suggesting an enhancement in the rewarding properties of cocaine. In contrast, blockade of alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid receptors with N-methyl-D-aspartate, or N-methyl-D-aspartate receptors with dizocilpine maleate or 2-amino-5-phosphonovaleric acid had no selective effect on the maintenance of cocaine self-administration. Following one week of extinction from the reinforcing cue of the drug-paired lever, both alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid and 1-aminocyclobutane-cis-1,3-dicarboxylic acid treatment in the nucleus accumbens reinstated cocaine-seeking behavior. However, alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid treatment increased responding only on the drug-paired lever, while 1-aminocyclobutane-cis-1,3-dicarboxylic acid increased responding on both the drug-paired and non-drug-paired levers. These results suggest that stimulation of glutamate receptors in the nucleus accumbens augments the reinforcing effect of cocaine, yet glutamate transmission is not required to maintain cocaine self-administration. In addition, increased glutamate transmission in the nucleus accumbens may be involved in facilitating the relapse to cocaine-seeking behavior.  相似文献   

9.
In order to study a possible modulatory effect of glutamatergic afferents to the nucleus accumbens (NAC) on psychostimulant-induced locomotion, L-glutamic acid diethyl ester (GDEE), a glutamate antagonist, was injected in the NAC of rats acutely treated with cocaine, amphetamine or caffeine. GDEE at the doses of 5, 10, and 20 micrograms/side significantly reduced locomotion induced by cocaine (20 mg/kg, i.p.). Amphetamine-induced hyperactivity was also reduced by GDEE, whereas caffeine-induced hyperactivity was not significantly decreased by GDEE. This suggests that glutamatergic afferents to the NAC modulate the effects of psychostimulants and also dopamine function in the mesolimbic system.  相似文献   

10.
《Neuroscience letters》1987,82(2):196-200
In experiments using a synaptosomal preparation from the striatum and nucleus accumbens, somatostatin caused a dose-dependent increase in dopamine synthesis. This increase was additive with that produced by 8-BrcAMP but not with that produced by the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA), and was blocked by the protein kinase C inhibitor polymyxin B (PMB). These findings suggest that stimulation of dopamine synthesis by somatostatin is mediated by activation of protein kinase C.  相似文献   

11.
The effects of the mu-receptor agonist fentanyl on extracellular levels of dopamine in rat nucleus accumbens were studied in awake animals by in vivo brain microdialysis. Fentanyl dose-dependently increased the levels of dopamine when given intravenously (microg/kg) or via a microdialysis probe placed into the ventral tegmental area or the nucleus accumbens (nmol). The effect of fentanyl given into the nucleus accumbens was blocked by systemic administration of the non-selective opioid receptor antagonist naloxone and by accumbens administration of D-Phe-Cys-Tyr-D-Trp-Om-Thr-Phe-Thr-NH2 (nmol), a mu-opioid receptor antagonist, and naltrindole (nmol), a non-selective delta-opioid receptor antagonist, in a dose-dependent manner. The delta2-opioid receptor antagonist, naltriben (nmol), also blocked the effects of fentanyl, whereas the delta1-opioid receptor antagonist, (E)-7-benzylidenenaltrexone (nmol), was ineffective. When marginally effective doses of D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Phe-Thr-NH2 and naltriben were given simultaneously, the effect of fentanyl was nearly fully blocked; the pretreatment itself had no effect. Administration of the mu-opioid receptor agonist [D-Ala2, N-Me-Phe4,Gly5-ol]-enkephalin (nmol), the delta1-opioid receptor agonist [D-Pen2,5]-enkephalin (nmol) or the delta2-opioid receptor agonist [D-Ala2,Glu4]-deltorphin (nmol) into the nucleus accumbens enhanced the amount of accumbal dopamine. This study provides evidence that not only activation of delta1- and delta2-opioid receptors, but also activation of mu-opioid receptors in the nucleus accumbens increases the release of accumbal dopamine in freely moving rats. We suggest that the effect of intra-accumbens administration of fentanyl upon accumbal release of dopamine is either due to the simultaneous activation of mu-opioid receptors and delta2-opioid receptors or due to activation of mu-opioid receptors that interact with delta2-opioid receptors in a complex manner.  相似文献   

12.
The potent reinforcing effects of cocaine can readily become associated with salient environmental stimuli that acquire secondary reinforcing properties. This phenomenon is of considerable significance as intense craving can be evoked by stimuli previously associated with the effects of cocaine. It has been proposed that the reinforcing properties of these conditional stimuli are due to their ability to elicit neural events that are similar to those produced by the drug itself. Given the large body of evidence that implicates the mesolimbic dopaminergic projection in the unconditioned behavioural properties of cocaine, the present study used in vivo microdialysis to determine whether stimuli paired with cocaine elicit increases in interstitial dopamine in the nucleus accumbens that are similar to the unconditioned effects of this drug. When administered acutely, cocaine (10 mg/kg, i.p.) produced a potent unconditioned increase in interstitial dopamine concentrations (300% of basal values) in the nucleus accumbens. The results from two separate experiments indicate that the administration of cocaine (10 mg/kg for seven days) in association with a specific environment produced significant locomotion in that environment. Compared to subjects that received saline in both settings, rats that received cocaine in their home cage (pseudoconditioned group) did not exhibit increased locomotion on the test day. Although repeated pairing of cocaine with a specific environment produced conditioned locomotion, there was no concomitant conditional increase in dopamine release. Specifically, the modest increase in dopamine (10-15% above basal values) observed after exposure to the conditional environment was equal in the conditioned and pseudoconditioned groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Behavioral studies implicate the nucleus accumbens (NAcc) as a brain area pivotal for the rewarding effects of opiates like heroine and morphine. Therefore, we studied the effect of a variety of opioids on membrane properties and responses to synaptic stimulation in a slice preparation of the NAcc using intracellular recording. Superfusion of opioid peptides did not affect the membrane potential or input resistance of NAcc neurons, but significantly reduced both depolarizing and hyperpolarizing synaptic potentials. Naloxone superfusion significantly reversed the depressant effects of the mu and delta receptor agonists (but not those of the kappa agonist) on synaptic transmission, suggesting involvement of opiate receptors. These results imply that the predominant effect of opiates in NAcc is a reduction of synaptic transmission.  相似文献   

14.
The nucleus accumbens septi is the major target of mesolimbic dopamine neurons originating in the ventral tegmental area of the mesencephalon. Studies involving experimental manipulation of dopamine transmission by drugs and by lesions, as well as in vivo monitoring of extracellular dopamine concentrations, have provided evidence that the dopamine transmission of the nucleus accumbens plays an important role in behaviour motivated by conventional (e.g., food, sex) and drug reinforcers. Motivated behaviour is distinguished into an appetitive (preparatory/anticipatory) phase consisting of flexible response patterns intended to search and approach the reward itself, and a consummatory phase, consisting of fixed response patterns (eating, drinking, copulating, etc.) finalized to the utilization of the biological resources of the reward (caloric, metabolic, genetic, etc.). While some studies reported a stimulation of dopamine transmission in the nucleus accumbens in relation to appetitive as well as consummatory behaviour, other studies reported a relationship exclusively with consummatory behaviour. Therefore, the precise relationship between dopamine transmission in the nucleus accumbens and specific phases of motivated behaviour is debated. On the basis of topographical, histochemical and connectional evidence, the nucleus accumbens has been subdivided into two compartments, a medioventral "shell" and a laterodorsal "core". This heterogeneity may be relevant to the current debate over the role of nucleus accumbens dopamine in behaviour. Thus, one might hypothesize that, depending on the specific compartment of the nucleus accumbens where dopamine transmission is monitored, a different relationship with specific stimuli which motivate behaviour is obtained. In order to verify this possibility we monitored by microdialysis the changes in dopamine transmission in the nucleus accumbens shell and core during appetitive and consummatory phases of behaviour motivated by food. As food we utilized a palatable snack food (Fonzies) whose consumption has been shown in previous studies from our laboratory to release dopamine in the nucleus accumbens shell and in the medial prefrontal cortex. Unpredicted consumption of Fonzies preferentially stimulated dopamine transmission in the shell as compared to the core. Appetitive food stimuli (perforated Fonzies-filled boxes) phasically stimulated dopamine transmission in the core but not in the shell and sensitized the dopamine response to feeding in the core but inhibited that in the shell. These clear-cut differences between nucleus accumbens shell and core suggest that phasic dopamine transmission in each compartment of the nucleus accumbens subserves different roles in motivated behaviour.  相似文献   

15.
Glucocorticoid receptor-immunoreactive nerve cells have been analysed in the dorsal striatum and nucleus accumbens of the rat by means of a monoclonal antibody against rat liver glucocorticoid receptor. Glucocorticoid receptor immunoreactivity was present in the nuclei of the vast majority of the striatal nerve cells. The analysis of sections stained with glucocorticoid receptor antibody and cresyl violet showed that around 90% of the entire striatal neuronal population contained glucocorticoid receptor immunoreactivity. By means of the double immunoperoxidase technique evidence was provided that somatostatin- and choline acetyltransferase-immunoreactive nerve cells in the striatum do not contain glucocorticoid receptor immunoreactivity. The density of glucocorticoid receptor-immunoreactive nerve cells in the grey matter and the presence of clusters of glucocorticoid receptor-immunoreactive nerve cells have been investigated in three fields located in the medial and central dorsal striatum and nucleus accumbens at the coronal level A 8620 microns according to the K?nig and Klippel atlas using computer-assisted image analysis. Every aggregate containing three or more glucocorticoid receptor-immunoreactive nerve cells, which had an intercenter distance less than the mean diameter (10-11 microns) of the striatal cells, was considered an island. A higher density of both glucocorticoid receptor-immunoreactive nerve cell nuclei and islands was found in the nucleus accumbens with respect to dorsal striatal areas. The most frequent island formed consisted of three to ten nerve cells both in dorsal striatum and nucleus accumbens. Furthermore, some nucleus accumbens islands contained up to 100 nerve cells, whereas in the dorsal striatum the maximum number of glucocorticoid receptor-immunoreactive nerve cells per island ranged from 50 to 60. The present procedure proved to be a sensitive method to reveal clusters of chemically identified structures and provided evidence for a basic cytoarchitectonic organization of the dorsal striatum and nucleus accumbens of the rat. This paper also demonstrated that the vast majority, but not all, striatal nerve cells contained glucocorticoid receptor immunoreactivity, and thus may be under the control of circulating glucocorticoids. In fact, only small transmitter-identified neuronal populations, such as somatostatin- and choline acetyltransferase-immunoreactive nerve cells, were devoid of glucocorticoid receptor immunoreactivity.  相似文献   

16.
Substance P modulation of dopamine in the nucleus accumbens   总被引:2,自引:0,他引:2  
Rats were implanted with bilateral injection cannulae in the nucleus accumbens. While microinjection of substance P (1.0-10.0 micrograms/side) did not alter locomotor or rearing behavior, it did potentiate the motor stimulant effects of intra-accumbens injection with dopamine. Further, substance P injection into the nucleus accumbens significantly elevated the levels of dopamine metabolites in that nucleus. Both the behavioral and neurochemical dose-response curves were biphasic, with 3.0 micrograms of substance P producing a maximal response. These data suggest an interaction between substance P and dopamine in the nucleus accumbens.  相似文献   

17.
The action of dopamine was evaluated in the nucleus accumbens of acutely prepared rabbits. It was found that the effect of iontophoretically applied dopamine depended upon the frequency of stimulation of an afferent pathway; in this case the ipsilateral fimbria. Dopamine had a marked suppressive effect on field responses evoked by fimbria stimulation at 0.5 Hz, but not those responses evoked at 6.0 Hz. Dopamine was also effective in activating adenylate cyclase. Both the physiological and the biochemical effects of dopamine could be blocked by appropriate antagonists, suggesting that the phenomena observed were receptor mediated. It is suggested that dopamine serves to enhance information arriving from the hippocampal formation within the theta range by the suppression of competing non-theta activity.  相似文献   

18.
Gu PF  Wu CF  Yang JY  Shang Y  Hou Y  Bi XL  Dai F 《Neuroscience letters》2006,399(1-2):79-84
Previous studies have shown that striatum and nucleus accumbens (NAc) are two different structures in mediating addictive drug-induced ascorbic acid (AA) release. In order to further characterize the different effects of drugs-induced AA release in the striatum and NAc, in the present study, we investigated the effect of ethanol, morphine, methamphetamine, nicotine-induced AA release in these two nuclei using microdialysis coupled to high performance liquid chromatography with electrochemical detection (HPLC-ECD). All drugs were continuously perfused directly into the striatum or NAc. This study showed that local intrastriatal or intra-accumbensal perfusion of ethanol (500 microM) could increase AA release to 280, 260% in the striatum and NAc, respectively. Intra-striatal infusion of morphine (1 mM), methamphetamine (250 microM) or nicotine (500 microM), reduce striatal AA release to 48, 50, 45%, respectively. While given intra-accumbensally, morphine (1 mM), methamphetamine (250 microM) or nicotine (500 microM) increase AA release to 165, 160, 160%, respectively. These results suggested that different presynaptic or postsynaptic mechanisms might be involved in addictive drug-induced AA release in the striatum and NAc.  相似文献   

19.
Recent anatomical data suggest that the nucleus accumbens can be parcellated into a core region, related to the caudate-putamen, and a shell region, associated with the limbic system. We have used pharmacological methods to characterize the dopamine innervations of the nucleus accumbens core and shell in the rat. Concentrations of both dopamine and serotonin were significantly greater in the nucleus accumbens shell than the nucleus accumbens core. Metabolite: amine ratios suggested that both dopamine and serotonin utilization are greater in the core. However, dopamine turnover (as determined by measuring the rate of decline of dopamine after alpha-methyl-p-tyrosine treatment) was not significantly different in the two accumbal sectors. Dopamine concentrations in the two nucleus accumbens sectors were decreased to an equivalent degree at both 4 and 18 h after reserpine administration. In contrast, serotonin concentrations were decreased to a significantly greater degree in the nucleus accumbens core than nucleus accumbens shell at 4 h, but not 18 h, after reserpine administration. Administration of haloperidol increased dopamine utilization in both nucleus accumbens sectors, but augmented utilization to a significantly greater degree in the nucleus accumbens core. Clozapine increased dopamine utilization to an equivalent degree in both nucleus accumbens regions. Short duration immobilization stress selectively increased dopamine utilization in the nucleus accumbens shell. These data indicate that there are significant differences between the nucleus accumbens core and nucleus accumbens shell in basal dopamine metabolism, and indicate that the core and shell dopamine innervations can be distinguished on the basis of response to both pharmacological and environmental challenges.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The effects of the neuropeptide neurotensin on dopamine release and metabolism in the posteromedial nucleus accumbens and anterior dorsomedial striatum of the anesthetized rat were investigated using in vivo chronoamperometry and intracerebral microdialysis techniques. A dose-dependent augmentation of dopamine efflux as evidenced by increases in the chronoamperometric signal was observed in the nucleus accumbens following intracerebroventricular injections of neurotensin. However, neurotensin failed to alter extracellular concentrations of dopamine in the striatum. The selective effects of neurotensin on mesolimbic dopamine neurons were confirmed using in vivo microdialysis. These results demonstrate that neurotensin can selectively enhance the release and metabolism of dopamine in neurons projecting from the ventral tegmental area to the nucleus accumbens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号