首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amplitude modulation is a prominent acoustic feature of biologically relevant sounds, such as speech and animal vocalizations. Enhanced temporal coding of amplitude modulation signals is found in certain dorsal and posteroventral cochlear nucleus neurons when they are compared to auditory nerve. Although mechanisms underlying this improved temporal selectivity are not known, involvement of inhibition has been suggested. gamma-Aminobutyric acid- and glycine-mediated inhibition have been shown to shape the dorsal cochlear nucleus and posteroventral cochlear nucleus response properties to other acoustic stimuli. In the present study, responses to amplitude modulation tones were obtained from chinchilla dorsal cochlear nucleus and posteroventral cochlear nucleus neurons. The amplitude modulation carrier was set to the neuron's characteristic frequency and the modulating frequency varied from 10 Hz. Rate and temporal modulation transfer functions were compared across neurons. Bandpass temporal modulation transfer functions were observed in 74% of the neurons studied. Most cochlear nucleus neurons (90%) displayed flat or lowpass rate modulation transfer functions to amplitude modulation signals presented at 2540 dB (re: characteristic frequency threshold). The role of inhibition in shaping responses to amplitude modulation stimuli was examined using iontophoretic application of glycine or gamma-aminobutyric acidA receptor agonists and antagonists. Blockade of gamma-aminobutyric acidA or glycine receptors increased stimulus-evoked discharge rates for a majority of neurons tested. Synchronization to the envelope was reduced, particularly at low and middle modulating frequencies, with temporal modulation transfer functions becoming flattened and less bandpass in appearance. Application of glycine, gamma-aminobutyric acid or muscimol increased the modulation gain over the low- and mid-modulation frequencies and reduced the discharge rate across envelope frequencies for most neurons tested. These findings support the hypothesis that glycinergic and gamma-aminobutyric acidergic inputs onto certain dorsal cochlear nucleus and posteroventral cochlear nucleus neurons play a role in shaping responses to amplitude modulation stimuli and may be responsible for the reported preservation of amplitude modulation temporal coding in dorsal cochlear nucleus and posteroventral cochlear nucleus neurons at high stimulus intensities or in background noise.  相似文献   

2.
Sinex DG  Sabes JH  Li H 《Hearing research》2002,168(1-2):150-162
Responses of inferior colliculus neurons to simplified stimuli that may engage mechanisms that contribute to auditory scene analysis were obtained. The stimuli were harmonic complex tones, which are heard by human listeners as single sounds, and the same tones with one component 'mistuned', which are heard as two separate sounds. The temporal discharge pattern elicited by a harmonic complex tone usually resembled the same neuron's response to a pure tone. In contrast, tones with a mistuned component elicited responses with distinctive, stereotypical temporal patterns that were not obviously related to the stimulus waveform. For a particular stimulus configuration, the discharge pattern was similar across neurons with different pure-tone frequency selectivity. A computational model that compared response envelopes across multiple narrow bands successfully reproduced the stereotypical response patterns elicited by different stimulus configurations. The results suggest that mistuning created a temporally synchronous distributed representation of the mistuned component that could be identified by higher auditory centers in the presence of the ongoing response produced by the remaining components; this kind of representation might facilitate the identification of individual sound sources in complex acoustic environments.  相似文献   

3.
The neuronal responses to amplitude modulated (AM) sounds were investigated in the auditory midbrain of the squirrel monkey. Sinusoidally modulated tones and noise served as acoustic stimuli. In order to describe the response properties of collicular neurons, Fast-Fourier-Transformation (FFT), a cross-correlation algorithm and spike-rate counts were applied to translate the neuronal reactions into modulation transfer functions. FFT and cross-correlation defined a measure for synchronic- ity of the neuronal discharges with the modulation cycles. All neurons (542) responded selectively to AM-sounds insofar as all displayed a best modulation frequency (BMF). Most of them furthermore had a band-pass-like modulation transfer function, whose center frequencies were mainly between 8 and 128 Hz. Transfer functions obtained by spike-rate showed less selectivity: a relatively great number of neurons did not change their spike rate as a function of modulation frequency.

The results show that encoding of amplitude-modulated sounds occurs to a greater extent via phase locking of discharges than via changes in spike number. In the same way, changing modulation depth is processed: whereas spike rate on average remains constant between 100% and 0% modulation, there is a drastic reduction in synchronicity. No clear relationship was found between a unit's characteristic frequency and BMF; the same applied to BMF and recording place. The results furthermore show that amplitude modulations are encoded selectively in a band pass function in a non-human primate. The midbrain thereby occupies an intermediate position within the pathway from the periphery to the cortex. This form of temporal resolution probably underlies mechanisms caused by the increasing synaptic activity in the course of the pathway. This may indicate adaptation since those modulation frequencies embedded in this species' vocal repertoire fit quite well with the system's tuning properties for amplitude modulation.  相似文献   


4.
Modulations of amplitude and frequency are common features of natural sounds, and are prominent in behaviorally important communication sounds. The mammalian auditory cortex is known to contain representations of these important stimulus parameters. This study describes the distributed representations of tone frequency and modulation rate in the rat primary auditory cortex (A1). Detailed maps of auditory cortex responses to single tones and tone trains were constructed from recordings from 50-60 microelectrode penetrations introduced into each hemisphere. Recorded data demonstrated that the cortex uses a distributed coding strategy to represent both spectral and temporal information in the rat, as in other species. Just as spectral information is encoded in the firing patterns of neurons tuned to different frequencies, temporal information appears to be encoded using a set of filters covering a range of behaviorally important repetition rates. Although the average A1 repetition rate transfer function (RRTF) was low-pass with a sharp drop-off in evoked spikes per tone above 9 pulses per second (pps), individual RRTFs exhibited significant structure between 4 and 10 pps, including substantial facilitation or depression to tones presented at specific rates. No organized topography of these temporal filters could be determined.  相似文献   

5.
In the cortex of barbiturate-anesthetized cats, area AI was identified by its tonotopic organization, and single neurons in that field were examined with regard to the shapes of their spike count-versus-intensity functions, the organization of their frequency-intensity response areas, and their responses to wide-spectrum noise, using calibrated sealed stimulating systems. Neurons whose pure tone rate intensity functions were monotonic in shape displayed V-shaped response areas that were open-ended at high tone intensities. In contrast, cells displaying nonmonotonic tone intensity functions tended to have circumscribed response areas; these cells were responsive to tones over limited ranges of both frequency and intensity. Monotonic neurons almost always responded to wide-spectrum noise stimuli, while nonmonotonic neurons often did not. The mean minimum latent period of monotonic cells (14.0 ms) was significantly shorter than that for nonmonotonic neurons (19.1 ms). For those cells that responded to both tones and noise, minimum latent periods for the two stimuli were similar or identical. Monotonic neurons tended to be horizontally segregated from nonmonotonic neurons across AI's middle cortical layers. The implications of these data for the nature of some neural mechanisms underlying the stimulus selectivity of cortical cells are discussed.  相似文献   

6.
Studies in several mammalian species have demonstrated that auditory cortical neurons respond strongly to single frequency-modulated (FM) sweeps, and that most responses are selective for sweep direction and/or rate. In the present study, we used extracellular recordings to examine how neurons in the auditory cortices of anesthetized rats respond to continuous, periodic trains of FM sweeps (described previously by deCharms et al., Science 280 (1998) pp. 1439–1444, as moving auditory gratings). Consistent with previous observations in owl monkeys, we found that the majority of cortical neurons responded selectively to trains of either up-sweeps or down-sweeps; selectivity for down-sweeps was most common. Periodic responses were typically evoked only by sweep trains with repetition rates less than 12 sweeps per second. Directional differences in responses were dependent on repetition rate. Our results support the proposal that a combination of both spectral and temporal acoustic features determines the responses of auditory cortical neurons to sound, and add to the growing body of evidence indicating that the traditional view of the auditory cortex as a frequency analyzer is not sufficient to explain how the mammalian brain represents complex sounds.  相似文献   

7.
The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.  相似文献   

8.
Responses of auditory nerve fibers were obtained to harmonic complex tones in which single components could be mistuned. Human listeners hear the harmonic tones as single sounds, but the same tones with one component mistuned are heard as two separate sounds. Fourier analysis of the temporal discharge patterns indicated that auditory nerve fibers typically responded to one or two stimulus components near the fibers' characteristic frequencies. At low stimulus levels, the discharge patterns could also exhibit low-frequency modulation that was produced by beating of two higher-frequency components. The same components were observed in the response spectra, whether those components were part of the original harmonic series or had been mistuned. The discharge patterns and response spectra were consistent with expectations based on previous studies of auditory nerve fibers with harmonic tones and other complex sounds. However, the discharge patterns differed dramatically from the discharge patterns elicited from inferior colliculus neurons by comparable stimuli.  相似文献   

9.
Theories of temporal coding by cortical neurons are supported by observations that individual neurons can respond to sensory stimulation with millisecond precision and that activity in large populations is often highly correlated. Synchronization is highest between neurons with overlapping receptive fields and modulated by both sensory stimulation and behavioral state. It is not yet clear whether cortical synchronization is an epiphenomenon or a critical component of efficient information transmission. Experimental manipulations that generate receptive field plasticity can be used to test the relationship between synchronization and receptive fields. Here we demonstrate that increasing receptive field size in primary auditory cortex by repeatedly pairing a train of tones with nucleus basalis (NB) stimulation increases synchronization, and decreasing receptive field size by pairing different tone frequencies with NB stimulation decreases synchronization. These observations seem to support the conclusion that neural synchronization is simply an artifact caused by common inputs. However, pairing tone trains of different carrier frequencies with NB stimulation increases receptive field size without increasing synchronization, and environmental enrichment increases synchronization without increasing receptive field size. The observation that receptive fields and synchronization can be manipulated independently suggests that common inputs are only one of many factors shaping the strength and temporal precision of cortical synchronization and supports the hypothesis that precise neural synchronization contributes to sensory information processing.  相似文献   

10.
FM bats perceive their surroundings during echolocation by analyzing frequency-modulated (FM) acoustic signals. Results from this study indicate a cortical organization in Myotis lucifugus which is largely made up of neurons sensitive to FM sounds (FM-sensitive neurons). Three types of neurons were distinguished by their responses to pure-tone and FM stimuli: (1) Type I FM-sensitive units (83%), Type II FM-sensitive units (13%) and pure-tone sensitive units (4%). Type I FM-sensitive units responded to pure tones, but exhibited greater response magnitudes to FM stimuli when the best FM swept through the BF. An orderly frequency representation was found when the frequencies of pure tones essential for response (EPTs) in Type I units were mapped along the cortical surface. The EPTs for Type I neurons were usually found within the last millisecond of a downward FM sweep. As outlined by two neuronal network models, both the responses of Type I and II units could likely result from the convergence of excitatory and inhibitory lower level neurons with slightly differing BFs. Type II units were selective for an FM sweep and showed negligible to no response to pure-tone stimuli. Pure-tone sensitive units exhibited weak or no responses to FM stimuli. These neurons were clustered in a small area located rostrodorsal to the tonotopic zone and had significantly lower best frequencies than adjacent EPT frequencies of Type I FM-sensitive neurons.  相似文献   

11.
The frequency following response (FFR) arises from the sustained neural activity of a population of neurons that are phase locked to periodic acoustic stimuli. Determining the source of the FFR noninvasively may be useful for understanding the function of phase locking in the auditory pathway to the temporal envelope and fine structure of sounds. The current study compared the FFR recorded with a horizontally aligned (mastoid-to-mastoid) electrode montage and a vertically aligned (forehead-to-neck) electrode montage. Unlike previous studies, envelope and fine structure latencies were derived simultaneously from the same narrowband stimuli to minimize differences in cochlear delay. Stimuli were five amplitude-modulated tones centered at 576 Hz, each with a different modulation rate, resulting in different side-band frequencies across stimulus conditions. Changes in response phase across modulation frequency and side-band frequency (group delay) were used to determine the latency of the FFR reflecting phase locking to the envelope and temporal fine structure, respectively. For the FFR reflecting phase locking to the temporal fine structure, the horizontal montage had a shorter group delay than the vertical montage, suggesting an earlier generation source within the auditory pathway. For the FFR reflecting phase locking to the envelope, group delay was longer than that for the fine structure FFR, and no significant difference in group delay was found between montages. However, it is possible that multiple sources of FFR (including the cochlear microphonic) were recorded by each montage, complicating interpretations of the group delay.  相似文献   

12.
Fritz J  Elhilali M  Shamma S 《Hearing research》2005,206(1-2):159-176
Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.  相似文献   

13.
Most information about neuronal properties in primary auditory cortex (AI) has been gathered using simple artificial sounds such as pure tones and broad-band noise. These sounds are very different from the natural sounds that are processed by the auditory system in real world situations. In an attempt to bridge this gap, simple tonal stimuli and a standard set of six natural sounds were used to create models relating the responses of neuronal clusters in AI of barbiturate-anesthetized cats to the two classes of stimuli. A significant correlation was often found between the response to the separate frequency components of the natural sounds and the response to the natural sound itself. At the population level, this correlation resulted in a rate profile that represented robustly the spectral profiles of the natural sounds. There was however a significant scatter in the responses to the natural sound around the predictions based on the responses to tonal stimuli. Going the other way, in order to understand better the non-linearities in the responses to natural sounds, responses of neuronal clusters were characterized using second order Volterra kernel analysis of their responses to natural sounds. This characterization predicted reasonably well the amplitude of the response to other natural sounds, but could not reproduce the responses to tonal stimuli. Thus, second order non-linear characterizations, at least those using the Volterra kernel model, do not interpolate well between responses to tones and to natural sounds in auditory cortex.  相似文献   

14.
P Heil  R Rajan  D R Irvine 《Hearing research》1992,63(1-2):135-156
The spatial distribution of neuronal responses to tones and frequency-modulated (FM) stimuli was mapped along the 'isofrequency' dimension of the primary auditory cortex (AI) of barbiturate-anesthetized cats. In each cat, electrode penetrations roughly orthogonal to the cortical surface were closely spaced (average separation approximately 130 microns) along the dorsoventral extent of a single 'isofrequency' strip in high frequency parts of AI (> 15 kHz). Characteristic frequency (CF), minimum threshold, sharpness of frequency tuning (Q10 and Q20), the dynamic range of the spike count-intensity function at CF, sensitivity to the rate of change of frequency (RCF) and to the direction of frequency-modulation (DS) were determined for contralaterally-presented tone and FM stimuli. Sharpness of tuning attained maximum values at central loci along the dorsoventral 'isofrequency' axis and values declined towards more dorsal and more ventral locations. Minimum threshold and dynamic range varied between high and low values in a similar and correlated periodic fashion. Their combined organization yielded an orderly spatial representation of response strength, relative to maximum, as a function of stimulus amplitude. The distributions of the most common forms of FM rate sensitivity (RCF response categories) and best RCF along 'isofrequency' strips were significantly non-random although there was a considerable degree of variability between cats. FM directional preference and sensitivity appeared to be randomly distributed. Sharpness of tuning may be related to the analysis of the spectral content of an acoustic stimulus, both minimum threshold and dynamic range are related to the encoding of stimulus intensity, and measures of FM rate and directional sensitivity assess the coding of temporal changes of stimulus spectra. The independent, or for minimum threshold and dynamic range dependent, topographic organizations of these neuronal parameters therefore suggest parallel and independent processing of these aspects of acoustic signals in AI.  相似文献   

15.
Early postnatal exposure to an abnormal acoustic environment has been shown to significantly influence the behaviour of neurons in the auditory cortex. In the present study, we ask if sustained neonatal exposure to an FM sweep affects the development of responses to tonal and FM stimuli in chinchilla auditory cortex. Newborn chinchilla pups were exposed continuously to an upward linear FM sweep (0.1-20 kHz) at 0.05 kHz/ms for 4 weeks. Neuronal responses to pure tones and bidirectional linear FM sweeps (range: 0.1-20 kHz; speeds: 0.05-0.82 kHz/ms) were assessed in anesthetized animals following the exposure period as well as in age-matched controls (P28). We hypothesized that constant FM exposure would increase the response selectivity of cortical neurons to the environmental FM sweep. However, our results show that while tonal response latencies increased after the exposure period (p < 0.0001, one-way ANOVA), the exposure stimulus had minimal effect on neuronal direction sensitivity and decreased neuronal selectivity for any of the presented FM sweep speeds (p < 0.05, one-way ANOVA). We therefore suggest that the development of FM direction sensitivity is experience-independent while normal acoustic experience may be required to maintain FM speed tuning.  相似文献   

16.
In the mustached bat's central nucleus of the inferior colliculus (ICC), many neurons display facilitatory or inhibitory responses when presented with two tones of distinctly different frequencies. Our previous studies have focused on spectral interactions between specific frequency bands contained in the bat's sonar vocalization. In this study, we describe excitatory and facilitatory frequency response areas across all frequencies in the mustached bat's audible range. We show that many neurons in the ICC have more extensive frequency interactions than previously documented. We recorded responses of 96 single units to single tones and combinations of two tones. Best frequencies of the units ranged from 59-15 kHz. Forty-one units had a single, excitatory frequency response area. The rest of the units had more complex frequency tuning that included multiple excitatory frequency response areas and facilitatory frequency response areas. Some of the facilitatory frequency interactions were between one sound with energy in a sonar frequency band and a second sound with energy in a non-sonar frequency band. We also found that neurons could be facilitated by more than one additional frequency band. Our findings of extensive frequency interactions in the ICC of the mustached bat suggest that some neurons may be well suited for the analysis of complex sounds, possibly including social communication sounds.  相似文献   

17.
This review investigates the roles of representation, transformation and coding as part of a hierarchical process between sound and perception. This is followed by a survey of how speech sounds and elements thereof are represented in the activity patterns along the auditory pathway. Then the evidence for a place representation of texture features of sound, comprising frequency, periodicity pitch, harmonicity in vowels, and direction and speed of frequency modulation, and for a temporal and synchrony representation of sound contours, comprising onsets, offsets, voice onset time, and low rate amplitude modulation, in auditory cortex is reviewed. Contours mark changes and transitions in sound and auditory cortex appears particularly sensitive to these dynamic aspects of sound. Texture determines which neurons, both cortical and subcortical, are activated by the sound whereas the contours modulate the activity of those neurons. Because contours are temporally represented in the majority of neurons activated by the texture aspects of sound, each of these neurons is part of an ensemble formed by the combination of contour and texture sensitivity. A multiplexed coding of complex sound is proposed whereby the contours set up widespread synchrony across those neurons in all auditory cortical areas that are activated by the texture of sound.  相似文献   

18.
OBJECTIVE: Harmonic complex tones consisting of four or more continuous harmonics of a certain stem frequency are perceived as the pitch of the fundamental frequency tone, it is referred to as the missing fundamental phenomenon (MFP). It is considered that the MFP is produced in the central auditory system, not in the periphery. However, it remains unclear where and how complex sounds is integrated. Using 306ch magnetoencephalography (MEG), we investigated when and where the MFP was integrated in the auditory cortex. METHOD: We examined six subjects who were selected by MEG in 12 healthy right-handed adult volunteers with normal auditory sensation. Ears were randomly stimulated with five different complex tones consist of fundamental frequency tone and harmonic complex tones. The location and direction of equivalent current dipoles (ECD) were evaluated at P50 and N100 in the right temporal lobe by MEG. Dispersion of the source of ECD was respectively evaluated on their brain MRI. RESULTS: Stimulation of ears with harmonic complex tones and the stem frequency tone revealed the localization of P50 and N100 ECD in the transverse temporal gyrus and their peripheral superior temporal gyrus. Although the sources of P50 ECD for harmonic complex tones and the fundamental tone were varied around the transverse temporal gyrus and superior temporal gyrus, the sources of N100 ECD were almost identical at the transverse temporal gyrus, demonstrating the MFP. This phenomenon were similarly observed, even when dichotic listening were stimulated. CONCLUSION: These findings suggest that the MFP occurs in the transverse temporal gyrus and the superior temporal gyrus, which are the primary auditory cortex, between P50 and N100.  相似文献   

19.
Wang X 《Hearing research》2007,229(1-2):81-93
In contrast to the visual system, the auditory system has longer subcortical pathways and more spiking synapses between the peripheral receptors and the cortex. This unique organization reflects the needs of the auditory system to extract behaviorally relevant information from a complex acoustic environment using strategies different from those used by other sensory systems. The neural representations of acoustic information in auditory cortex can be characterized by three types: (1) isomorphic (faithful) representations of acoustic structures; (2) non-isomorphic transformations of acoustic features and (3) transformations from acoustical to perceptual dimensions. The challenge facing auditory neurophysiologists is to understand the nature of the latter two transformations. In this article, I will review recent studies from our laboratory regarding temporal discharge patterns in auditory cortex of awake marmosets and cortical representations of time-varying signals. Findings from these studies show that (1) firing patterns of neurons in auditory cortex are dependent on stimulus optimality and context and (2) the auditory cortex forms internal representations of sounds that are no longer faithful replicas of their acoustic structures.  相似文献   

20.
Irvine DR 《Journal of communication disorders》2000,33(4):293-311; quiz 311-2
After restricted cochlear lesions in adult animals, the frequency selectivity of neurons in the cortical region deprived of its normal input by the lesion is changed such that the region is occupied by expanded representations of adjacent (perilesion) frequencies. Analogous changes in cortical frequency selectivity and organization are seen as a consequence of behavioral training that enhances the significance of particular acoustic stimuli. The occurrence of such reorganization in a wide range of species (including simian primates) suggests that it would also occur in humans. Direct evidence in support of this suggestion is provided by a small body of functional imaging evidence. Although such reorganization almost certainly does not have a compensatory function, such a profound change in the pattern of cortical activation produced by stimuli exciting perilesion parts of the receptor epithelium would be expected to have perceptual consequences and, perhaps, clinical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号