首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan H  Yin FF  Kim JH 《Medical physics》2003,30(12):3052-3060
A phantom study was conducted to investigate inherent positioning accuracy of an image-guided patient positioning system-the Novalis Body system for three-dimensional (3-D) conformal radiotherapy. This positioning system consists of two infrared (IR) cameras and one video camera and two kV x-ray imaging devices. The initial patient setup was guided by the IR camera system and the target localization was accomplished using the kV x-ray imaging system. In this study, the IR marker shift and phantom rotation were simulated and their effects on the positioning accuracy were examined by a Rando phantom. The effects of CT slice thickness and treatment sites on the positioning accuracy were tested. In addition, the internal target shift was simulated and its effect on the positioning accuracy was examined by a water tank. With the application of the Novalis Body system, the positioning error of the planned isocenter was significantly reduced. The experimental results with the simulated IR marker shifts indicated that the positioning errors of the planned isocenter were 0.6 +/- 0.3, 0.5 +/- 0.2, and 0.7 +/- 0.2 mm along the lateral, longitudinal, and vertical axes, respectively. The experimental results with the simulated phantom rotations indicated that the positioning errors of the planned isocenter were 0.6 +/- 0.3, 0.7 +/- 0.2, and 0.5 +/- 0.2 mm along the three axes, respectively. The experimental results with the simulated target shifts indicated that the positioning errors of the planned isocenter were 0.6 +/- 0.3, 0.7 +/- 0.2, and 0.5 +/- 0.2 mm along the three axes, respectively. On average, the positioning accuracy of 1 mm for the planned isocenter was achieved using the Novalis Body system.  相似文献   

2.
Image-guided frameless extracranial radiosurgery has become an established treatment option; however, without a frame to restrict patient movements, intrafraction field mispositioning becomes more probable. The primary aim of this study is to determine the intrafraction motion of spinal radiosurgery patients. This aim was approached in two steps. First, a phantom study demonstrated that the system can detect movements accurately within 0.1 mm and rotational changes within 0.2 degrees. Second, patient positioning and monitoring were carried out for a group of 15 patients with 20 treatment sites. For the patient pool in the study, vertebral anatomy movement was observed to vary as much as 3 mm between sequential measurements and could occur in as little as 5 min. These results suggest a need for intrafraction patient monitoring and correctional shifts, even for patients whose overall treatment times are expected to be relatively short. Small relative rotations with standard deviations of less than 1.5 degrees were observed. The small relative rotational movements observed do not, alone, justify patient monitoring using the image-guidance system during the treatments of generally small radiosurgical targets.  相似文献   

3.
Jin JY  Ryu S  Rock J  Faber K  Chen Q  Ajlouni M  Movsas B 《Medical physics》2008,35(3):1087-1093
PURPOSE: The Novalis system has been demonstrated to achieve accurate target localization on anthropomorphic phantoms. However, other factors, such as rotational deviation, patient intrafraction motion, and image fusion uncertainty due to patient body deformation, could contribute additional position uncertainty for actual patients. This study evaluates such position uncertainty for spinal radiosurgery patients. MATERIALS AND METHODS: Fifty-two consecutive spinal radiosurgery patients were included in the study. Rotational deviation was evaluated from 6-deg of freedom (6D) fusion results for all patients. The combined uncertainty of patient motion and image fusion was determined from fusion results of additional kV x-ray images acquired before, during, and after treatment for 25 of the 52 patients. The uncertainty of image fusion was also evaluated by performing 6D fusion ten different times with various regions of interest in the images selected for fusion. This was performed for two patients with L3 and T2 lesions, respectively, for comparison. RESULTS: The mean rotational deviation was 0.7 +/- 1.8, 0.7 +/- 1.5, and 0.7 +/- 1.6 deg along the yaw, roll, and pitch directions, respectively. The combined uncertainty from patient motion and image fusion was 0.1 +/- 0.9, 0.2 +/- 1.2, and 0.2 +/- 1.0 mm in the anteroposterior (AP), longitudinal, and lateral directions, respectively. The uncertainty (standard deviation) due to image fusion was less than 0.28 mm in any direction for the L3 lesion and 0.8 mm in the AP direction for the T2 lesion. CONCLUSION: Overall position uncertainty for spinal radiosurgery patients has been evaluated. Rotational deviation and patient motion were the main factors contributed to position uncertainty for actual patient treatment.  相似文献   

4.
The purpose of this study was to determine the accuracy of a radiographic model-based tracking technique that measures the three-dimensional in vivo motion of the tibio-femoral joint during running. Tantalum beads were implanted into the femur and tibia of three subjects and computed tomography (CT) scans were acquired after bead implantation. The subjects ran 2.5m/s on a treadmill positioned within a biplane radiographic system while images were acquired at 250 frames per second. Three-dimensional implanted bead locations were determined and used as a "gold standard" to measure the accuracy of the model-based tracking. The model-based tracking technique optimized the correlation between the radiographs acquired via the biplane X-ray system and digitally reconstructed radiographs created from the volume-rendered CT model. Accuracy was defined in terms of measurement system bias, precision and root-mean-squared (rms) error. Results were reported in terms of individual bone tracking and in terms of clinically relevant tibio-femoral joint translations and rotations (joint kinematics). Accuracy for joint kinematics was as follows: model-based tracking measured static joint orientation with a precision of 0.2 degrees or better, and static joint position with a precision of 0.2mm or better. Model-based tracking precision for dynamic joint rotation was 0.9+/-0.3 degrees , 0.6+/-0.3 degrees , and 0.3+/-0.1 degrees for flexion-extension, external-internal rotation, and ab-adduction, respectively. Model-based tracking precision when measuring dynamic joint translation was 0.3+/-0.1mm, 0.4+/-0.2mm, and 0.7+/-0.2mm in the medial-lateral, proximal-distal, and anterior-posterior direction, respectively. The combination of high-speed biplane radiography and volumetric model-based tracking achieves excellent accuracy during in vivo, dynamic knee motion without the necessity for invasive bead implantation.  相似文献   

5.
Intrafraction patient motion is much more likely in intensity-modulated radiation therapy (IMRT) than in conventional radiotherapy primarily due to longer beam delivery times in IMRT treatment. In this study, we evaluated the uncertainty of intrafraction patient displacement in CNS and head and neck IMRT patients. Immobilization is performed in three steps: (1) the patient is immobilized with thermoplastic facemask, (2) the patient displacement is monitored using a commercial stereotactic infrared IR camera (ExacTrac, BrainLab) during treatment, and (3) repositioning is carried out as needed. The displacement data were recorded during beam-on time for the entire treatment duration for 5 patients using the camera system. We used the concept of cumulative time versus patient position uncertainty, referred to as an uncertainty time histogram (UTH), to analyze the data. UTH is a plot of the accumulated time during which a patient stays within the corresponding movement uncertainty. The University of Florida immobilization procedure showed an effective immobilization capability for CNS and head and neck IMRT patients by keeping the patient displacement less than 1.5 mm for 95% of treatment time (1.43 mm for 1, and 1.02 mm for 1, and less than 1.0 mm for 3 patients). The maximum displacement was 2.0 mm.  相似文献   

6.
Summary When the head rotates, vestibulocollic reflexes counteract the rotation by causing contraction of the neck muscles that pull against the imposed motion. With voluntary head rotations, these same muscles contract and assist the movement of the head. The purpose of this study was to determine if an infinite variety of muscle activation patterns are available to generate a particular head movement, or if the CNS selects a consistent and unique muscle pattern for the same head movement whether performed in a voluntary or reflex mode. The relationship of neck muscle activity to reflex and voluntary head movements was examined by recording intramuscular EMG activity from six neck muscles in three alert cats during sinusoidal head rotations about 24 vertical and horizontal axes. The cats were trained to voluntarily follow a water spout with their heads. Vestibulocollic reflex (VCR) responses were recorded in the same cats by rotating them in an equivalent set of planes with the head stabilized to the trunk so that only the vestibular labyrinths were stimulated. Gain and phase of the EMG responses were calculated, and data analyzed to determine the directions of rotation for which specific muscles produced their greatest EMG output. Each muscle exhibited preferential activation for a unique direction of rotation, and weak responses during rotations orthogonal to that preferred direction. The direction of maximal activation could differ for reflex and voluntary responses. Also, the best excitation of the muscle was not always in the direction that would produce a maximum mechanical advantage for the muscle based on its line of pull. The results of this study suggest that a unique pattern of activity is selected for VCR and tracking responses in any one animal. Patterns for the two behaviors differ, indicating that the CNS can generate movements in the same direction using different muscle patterns.  相似文献   

7.
We studied the effect of cerebellar lesions on the 3-D control of the rotational vestibuloocular reflex (RVOR) to abrupt yaw-axis head rotation. Using search coils, three-dimensional (3-D) eye movements were recorded from nine patients with cerebellar disease and seven normal subjects during brief chair rotations (200 degrees /s(2) to 40 degrees /s) and manual head impulses. We determined the amount of eye-position dependent torsion during yaw-axis rotation by calculating the torsional-horizontal eye-velocity axis for each of three vertical eye positions (0 degrees , +/-15 degrees ) and performing a linear regression to determine the relationship of the 3-D velocity axis to vertical eye position. The slope of this regression is the tilt angle slope. Overall, cerebellar patients showed a clear increase in the tilt angle slope for both chair rotations and head impulses. For chair rotations, the effect was not seen at the onset of head rotation when both patients and normal subjects had nearly head-fixed responses (no eye-position-dependent torsion). Over time, however, both groups showed an increasing tilt-angle slope but to a much greater degree in cerebellar patients. Two important conclusions emerge from these findings: the axis of eye rotation at the onset of head rotation is set to a value close to head-fixed (i.e., optimal for gaze stabilization during head rotation), independent of the cerebellum and once the head rotation is in progress, the cerebellum plays a crucial role in keeping the axis of eye rotation about halfway between head-fixed and that required for Listing's Law to be obeyed.  相似文献   

8.
OBJECTIVE: To evaluate the performance of specific face-mask removal tools during football helmet face-mask retraction using 3-dimensional (3-D) video. DESIGN AND SETTING: Four different tools were used: the anvil pruner (AP), polyvinyl chloride pipe cutters (PVC), Face Mask (FM) Extractor (FME), and Trainer's Angel (TA). Subjects retracted a face mask once with each tool. SUBJECTS: Eleven certified athletic trainers served as subjects and were recruited from among local sports medicine professionals. MEASUREMENTS: We analyzed a sample of movement by 3-D techniques during the retraction process. Movement of the head in 3 planes and time to retract the face mask were also assessed. All results were analyzed with a simple repeated-measures one-way multivariate analysis of variance. An overall efficiency score was calculated for each tool. RESULTS: The AP allowed subjects to perform the face-mask removal task the fastest. Face mask removal with the AP was significantly faster than with the PVC and TA and significantly faster with the TA than the PVC. The PVC and AP created significantly more movement than the FME and TA when planes were combined. No significant differences were noted among tools for flexion-extension, rotation, or lateral flexion. The AP had an efficiency score of 14; FME, 15; TA, 18; and PVC, 35. CONCLUSIONS: The subjects performed the face-mask removal task in the least amount of time with the AP. They completed the task with the least amount of combined movement using the FME. The AP and FME had nearly identical overall efficiency scores for movement and time.  相似文献   

9.
The purpose of this study was to examine the effect of fixation target distance on the human vestibuloocular reflex (VOR) during eccentric rotation in pitch. Such rotation induces both angular and linear acceleration. Eight normal subjects viewed earth-fixed targets that were either remote or near to the eyes during wholebody rotation about an earth-horizontal axis that was either oculocentric or 15 cm posterior (eccentric) to the eyes. Eye and head movements were recorded using magnetic search coils. Using a servomotor-driven chair, passive whole-body rotations were delivered as trains of single-frequency sinusoids at frequencies from 0.8 to 2.0 Hz and as pseudorandom impulses of acceleration. In the light, the visually enhanced VOR (VVOR) was recorded while subjects were asked to fixate targets at one of several distances. In darkness, subjects were asked to remember targets that had been viewed immediately prior to the rotation. In order to eliminate slip of the retinal image of a near target when the axis of rotation of the head is posterior to the eyes, the ideal gain (compensatory eye velocity divided by head velocity) of the VVOR and VOR must exceed 1.0. Both the VOR and VVOR were found to have significantly enhanced gains during sinusoidal and pseudorandom impulses of rotation (P<0.05). Enhancement of VVOR gain was greatest at low frequencies of head rotation and decreased with increasing frequency. However, enhanced VOR gain only slightly exceeded 1.0, and VVOR gain enhancement was significantly lower than the expected ideal values for the stimulus conditions employed (P<0.05). During oculocentric rotations with near targets, both the VOR and VVOR tended to exhibit small phase leads that increased with rotational frequency. In contrast, during eccentric rotations with near targets, there were small phase lags that increased with frequency. Visual tracking contributes during ocular compensatory responses to sustained head rotation, although the latency of visual tracking reflexes exceeds 100 ms. In order to study initial vestibular responses prior to modification by visual tracking, we presented impulses of head acceleration in pseudorandom sequence of initial positions and directions, and evaluated the ocular response in the epoch from 25 to 80 ms after movement onset. As with sinusoidal rotations, pseudorandom eccentric head rotation in the presence of a near, earth-fixed target was associated with enhancement of VVOR and VOR gains in the interval from 25 to 80 ms from movement onset. Despite the inability of visual tracking to contribute to these responses, VVOR gain significantly exceeded VOR gain for pseudorandom accelerations. This gain enhancement indicates that target distance and linear motion of the head are considered by the human ocular motor system in adjustment of performance of the early VOR, prior to a contribution by visual following reflexes. Vergence was appropriate to target distance during all VVOR rotations, but varied during VOR rotations with remembered targets. For the 3-m target distance, vergence during the VOR was stable over each entire trial but slightly exceeded the ideal value. For the 0.1-m near target, instantaneous vergence during the VOR typically declined gradually in a manner not corresponding to the time course of instantaneous VOR gain change; mean vergence over entire trials ranged from 60 to 90% of ideal, corresponding to target distances for which ideal gain would be much higher than actually observed. These findings suggest a dissociation between vergence and VOR gain during eccentric rotation with near targets in the frequency range from 0.8 to 2.0 Hz.  相似文献   

10.
A method is described to monitor the motion of the head during neurological positron emission tomography (PET) acquisitions and to correct the data post acquisition for the recorded motion prior to image reconstruction. The technique uses an optical tracking system, Polaris, to accurately monitor the position of the head during the PET acquisition. The PET data are acquired in list mode where the events are written directly to disk during acquisition. The motion tracking information is aligned to the PET data using a sequence of pseudo-random numbers, which are inserted into the time tags in the list mode event stream through the gating input interface on the tomograph. The position of the head is monitored during the transmission acquisition, and it is assumed that there is minimal head motion during this measurement. Each event, prompt and delayed, in the list mode event stream is corrected for motion and transformed into the transmission space. For a given line of response, normalization, including corrections for detector efficiency, geometry and crystal interference and dead time are applied prior to motion correction and rebinning in the sinogram. A series of phantom experiments were performed to confirm the accuracy of the method: (a) a point source located in three discrete axial positions in the tomograph field of view, 0 mm, 10 mm and 20 mm from a reference point, (b) a multi-line source phantom rotated in both discrete and gradual rotations through +/- 5 degrees and +/- 15 degrees, including a vertical and horizontal movement in the plane. For both phantom experiments images were reconstructed for both the fixed and motion corrected data. Measurements for resolution, full width at half maximum (FWHM) and full width at tenth maximum (FWTM), were calculated from these images and a comparison made between the fixedand motion corrected datasets. From the point source measurements, the FWHM at each axial position was 7.1 mm in the horizontal direction, and increasing from 4.7 mm at the 0 mm position, to 4.8 mm, 20 mm offset, in the vertical direction. The results from the multi-line source phantom with +/- 5 degrees rotations showed a maximum degradation in FWHM, when compared with the stationary phantom, of 0.6 mm, in the horizontal direction, and 0.3 mm in the vertical direction. The corresponding values for the larger rotation, +/- 15 degrees, were 0.7 mm and 1.1 mm, respectively. The performance of the method was confirmed with a Hoffman brain phantom moved continuously, and a clinical acquisition using [11C]raclopride (normal volunteer). A visual comparison of both the motion and non-motion corrected images of the Hoffman brain phantom clearly demonstrated the efficacy of the method. A sample time-activity curve extracted from the clinical study showed irregularities prior to motion correction, which were removed after correction. A method has been developed to accurately monitor the motion of the head during a neurological PET acquisition, and correct for this motion prior to image reconstruction. The method has been demonstrated to be accurate and does not add significantly to either the acquisition or the subsequent data processing.  相似文献   

11.
Horizontal and vertical eye movements were recorded in alert pigmented rats using chronically implanted scleral search coils or temporary glue-on coils to test the dependence of the vestibulo-ocular reflex (VOR) upon rotation axis and body orientation. The contributions of semicircular-canal versus otolith-organ signals to the VOR were investigated by providing canal-only (vertical axis) and canal plus otolith (horizontal axis) stimulation conditions. Rotations that stimulated canals only (upright yaw and nose-up roll) produced an accurate VOR during middle- and high-frequency rotations (0.2-2 Hz). However, at frequencies below 0.2 Hz, the canal-only rotations elicited a phase-advanced VOR. The addition of a changing gravity stimulus, and thus dynamic otolith stimulation, to the canal signal (nose-up yaw, on-side yaw, and upright roll) produced a VOR response with accurate phase down to the lowest frequency tested (0.02 Hz). In order to further test the dependence of the VOR on gravitational signals, we tested vertical VOR with the head in an inverted posture (inverted roll). The VOR in this condition was advanced in phase across all frequencies tested. At low frequencies, the VOR during inverted roll was anticompensatory, characterized by slow-phase eye movement in the same direction as head movement. The substantial differences between canalonly VOR and canal plus otolith VOR suggest an important role of otolith organs in rat VOR. Anticompensatory VOR during inverted roll suggests that part of the otolith contribution arises from static tilt signals that are inverted when the head is inverted.  相似文献   

12.
Movement of the marker positions relative to the body segments obscures in vivo joint level motion. Alternatively, tracking bones from radiography images can provide precise motion of the bones at the knee but is impracticable for measurement of body segment motion. Consequently, researchers have combined marker-based knee flexion with kinematic splines to approximate the translations and rotations of the tibia relative to the femur. Yet, the accuracy of predicting six degree-of-freedom joint kinematics using kinematic splines has not been evaluated. The objectives of this study were to (1) compare knee kinematics measured with a marker-based motion capture system to kinematics acquired with high speed stereo radiography (HSSR) and describe the accuracy of marker-based motion to improve interpretation of results from these methods, and (2) use HSSR to define and evaluate a new set of knee joint kinematic splines based on the in vivo kinematics of a knee extension activity. Simultaneous measurements were recorded from eight healthy subjects using HSSR and marker-based motion capture. The marker positions were applied to three models of the lower extremity to calculate tibiofemoral kinematics and compared to kinematics acquired with HSSR. As demonstrated by normalized RMSE above 1.0, varus–valgus rotation (1.26), medial–lateral (1.26), anterior–posterior (2.03), and superior–inferior translations (4.39) were not accurately measured. Using kinematic splines improved predictions in varus–valgus (0.81) rotation, and medial–lateral (0.73), anterior–posterior (0.69), and superior–inferior (0.49) translations. Using splines to predict tibiofemoral kinematics as a function knee flexion can lead to improved accuracy over marker-based motion capture alone, however this technique was limited in reproducing subject-specific kinematics.  相似文献   

13.
Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.  相似文献   

14.
We evaluated the human binocular response to roll motion in the dark and during visual fixation with horizontal convergence. Six normal human subjects were exposed to manually driven, whole-body rotation about an earth-vertical, naso-occipital axis, under two conditions: (I) oscillation at 0.4 Hz (peak velocity 69+/-3.8 degree/s) in the dark, and whilst fixating an axial light-emitting diode at 48 cm ('near') and at 206 cm ('far'); (II) constant velocity rotation (56.5+/-3.1 degree/s) for 40 s, clockwise and counter-clockwise, in the dark, and sudden stops. Eye and head movements were monitored using scleral search coils. In head-fixed, angular velocity coordinates roll motion always evoked conjugate ocular torsion, with small conjugate horizontal and disconjugate vertical components. The resultant binocular eye responses were rotations about convergent axes. During oscillation with target fixation the convergence of the rotation axes was larger than that predicted by target geometry, producing disconjugate oscillations of vertical gaze about the target ('skewing'). Fast-phase eye movements were primarily resetting rotations about the same convergent rotation axes as the slow phases, but the small vertical velocity components had oscillatory, asymmetrical profiles. In response to velocity steps the slow-phase eye velocity decayed exponentially with time constants of 4.5+/-1.5 s for the torsional component and 5.8+/-1.9 s for the 'vertical vergence' component (right eye-left eye recordings). We conclude that in normal human subjects dynamic vertical canal stimulation with horizontal gaze convergence evokes rotation of the eyes about convergent axes and a small skewing of the eyes.  相似文献   

15.
During linear accelerations, compensatory reflexes should continually occur in order to maintain objects of visual interest as stable images on the retina. In the present study, the three-dimensional organization of the vestibulo-ocular reflex in pigeons was quantitatively examined during linear accelerations produced by constant velocity off-vertical axis yaw rotations and translational motion in darkness. With off-vertical axis rotations, sinusoidally modulated eye-position and velocity responses were observed in all three components, with the vertical and torsional eye movements predominating the response. Peak torsional and vertical eye positions occurred when the head was oriented with the lateral visual axis of the right eye directed orthogonal to or aligned with the gravity vector, respectively. No steady-state horizontal nystagmus was obtained with any of the rotational velocities (8–58°/s) tested. During translational motion, delivered along or perpendicular to the lateral visual axis, vertical and torsional eye movements were elicited. No significant horizontal eye movements were observed during lateral translation at frequencies up to 3 Hz. These responses suggest that, in pigeons, all linear accelerations generate eye movements that are compensatory to the direction of actual or perceived tilt of the head relative to gravity. In contrast, no translational horizontal eye movements, which are known to be compensatory to lateral translational motion in primates, were observed under the present experimental conditions. Received: 29 January 1999 / Accepted: 14 June 1999  相似文献   

16.
Three-dimensional joint rotations in human movement analysis have been mainly described by Euler/Cardan angles. Due to sequence dependence, each combination of three Euler/Cardan angles defines a single pattern of joint rotation. When the rotation pattern is unknown, it needs to be considered using a particular sequence of Euler/Cardan angles to represent joint rotations. In this paper a spherical rotation coordinate system is developed for describing three-dimensional joint rotations using a method of rotation involving two steps: a long axis rotation and a pure axial rotation. Two angles of the classical spherical coordinate system--longitude and latitude--are used to describe long axis rotations in this newly proposed coordinate system. The spherical rotation coordinate system uses a radial rotation angle to describe pure axial rotation of a limb segment whereas the classical spherical coordinate system uses a radial displacement to describe motion of a point. An application of the spherical rotation coordinate system is given to define three-dimensional rotations of the glenohumeral joint. A mathematical proof shows that the long axis rotation and axial rotation are sequence independent. Two numerical examples are investigated which demonstrate that the spherical rotation angles can be uniquely determined in both forward and inverse kinematics without considering sequences rotations.  相似文献   

17.
Numerous studies of motor learning have focused on how people adapt their reaching movements to novel dynamic and visuomotor perturbations that alter the actual or visually perceived motion of the hand. An important finding from this work is that learning of novel dynamics generalizes across different movement tasks. Thus adaptation to an unusual force field generalizes from center-out reaching movements to circular movements (Conditt et al. 1997). This suggests that subjects acquired an internal model of the dynamic environment that could be used to determine the motor commands needed for untrained movements. Using a task interference paradigm, we investigated whether transfer across tasks is also observed when learning visuomotor transformations. On day 1, all subjects adapted to a +30 degrees rotation while making center-out-and-back reaching movements. After a delay of 5 min, different groups of subjects then adapted to a -30 degrees rotation while performing either a continuous tracking task, a figure-eight drawing task, or the center-out-and-back reaching task. All subjects were then retested the next day on the +30 degrees rotation in the reaching task. As expected, subjects who experienced the opposing rotations while performing the same reaching tasks showed no retention of learning for the first rotation when tested on day 2 (Krakauer et al. 1999). In contrast, such retrograde interference was not observed in the two groups of subjects who experienced the opposing rotations while performing different tasks. In fact, their performance on day 2 was similar to that of control subjects who never experienced the opposite rotation. This lack of interference suggests that memory resources for visuomotor rotations are task specific.  相似文献   

18.
Geometry dictates that when subjects view a near target during head rotation the eyes must rotate more than the head. The relative contribution to this compensatory response by adjustment of the vestibulo-ocular reflex gain (Gvor), visual tracking mechanisms including prediction, and convergence is debated. We studied horizontal eye movements induced by sinusoidal 0.2–2.8 Hz, en-bloc yaw rotation as ten normal humans viewed a near target that was either earth-fixed (EFT) or head-fixed (HFT). For EFT, group median gain was 1.49 at 0.2 Hz declining to 1.08 at 2.8 Hz. For HFT, group median gain was 0.03 at 0.2 Hz increasing to 0.71 at 2.8 Hz. By applying transient head perturbations (peak acceleration >1,000° s–2) during sinusoidal rotation, we determined that Gvor was similar during either EFT or HFT conditions, and contributed only ~75% to the compensatory response. We confirmed that retinal image slip contributed to the compensatory response by demonstrating reduced gain during EFT viewing under strobe illumination. Gain also declined during sum-of-sines head rotations, confirming the contribution of predictive mechanisms. The gain of compensatory eye movements was similar during monocular or binocular viewing, although vergence angle was greater during binocular viewing. Comparison with previous studies indicates that mechanisms for generation of eye rotations during near viewing depend on head stimulus type (rotation or translation), waveform (transient or sinusoidal), and the species being tested.  相似文献   

19.
【摘要】目的:探讨自制T形口腔固定器在鼻咽癌放疗中对摆位误差,以及对靶区和危及器官受照剂量的影响。方法:选择40例鼻咽癌放疗患者,随机分成两组,每组20例。A组为常规热塑膜固定器组,B组为热塑膜联合自制T形口腔固定器组,应用锥形束CT(CBCT)比较两组头部和颈部的平移误差及旋转误差;将误差带入计划系统重新计算模拟计划,得到靶区和危及器官体积剂量参数,与原始计划比较。结果:两组平移误差接近,而旋转误差明显减少,其中颈部≤2°的误差,A组在Cor、Sag、Tra方向上分别占88.7%、83.4%、80.5%;B组占98.4%、95.3%、96.9%,且具有统计学意义(P均<0.01)。靶区体积剂量百分比,A组的GTVnx-D98%、GTVnd-D98%、CTV1-D95%、CTV2-D95%在±3%内占87.5%、88.3%、98.5%、98.5%,B组占100%、96.8%、100%、100%,B组剂量变化范围明显变小且全部具有统计学意义(P均<0.01)。结论:热塑膜联合自制T形口腔固定器可有效减少摆位误差,提高摆位重复性,提高靶区剂量准确性,尤其对于颈部,保障调强放疗的疗效,可在临床中推广应用。  相似文献   

20.
Hypofractionated stereotactic body radiotherapy (SBRT) has been tested for prostate cancer radiotherapy. This study aims to investigate the dosimetric effects of intrafraction prostate motion on the target and the normal structures for SBRT. For prostate cancer patients treated with an image-tracking CyberKnife system, the intrafraction prostate movements were recorded during 50-70 min treatment time. Based on the recorded intrafraction prostate movements, treatment plans were created for these cases using intensity modulated beams while scaling the average time patterns from the CyberKnife treatment to simulate hypofractionated intensity modulated radiotherapy (IMRT) delivery. The effect of delivery time on the intrafraction organ motion was investigated. For a nominal single fraction delivery of 9.5 Gy with IMRT, we found that the dosimetric effect of the intrafraction prostate movement is case dependent. For most cases, the dose volume histograms exhibited very small changes from the treatment plans that assumed no intrafractional prostate motion when the maximum intrafraction movements were within +/-5 mm. However, when sporadic prostate movements greater than 5 mm were present in any one direction, significant changes were found. For example, the V100, for the prostate could be reduced by more than 10% to less than 85% of the prostate volume coverage. If these large movements could be excluded by some active correction strategies, then the average V100% for the simulated plan could be restored to within approximately 2% of the ideal treatment plans. On average, the sporadic intrafraction motion has less dosimetric impact on the prolonged treatment delivery versus fast treatment delivery. For example, the average V100% for the clinical target volume was reduced from the original 95.1% to 92.1 +/- 3.7% for prolonged treatment, and to 91.3 +/- 5.4% when the treatment time was shortened by 50%. Due to the observed large sporadic prostate motions, we conclude that an on-line target motion monitoring and correction strategy is necessary to implement hypofractionated SBRT with intensity modulated beams for prostate cancer treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号