首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial–mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma.  相似文献   

2.
Introduction: The process of epithelial-to-mesenchymal transition (EMT) has long been advocated as a process during tumor progression and the acquisition of metastatic potential of human cancers. EMT has also been linked with resistance to cancer therapies.

Areas covered: Basic research has provided evidence connecting EMT to increased invasion, angiogenesis and metastasis of cancer cells. A number of signaling pathways such as notch, wnt, hedgehog and PI3K-AKT, and various other individual factors therein, have been intricately connected to the onset of EMT. Here, we provide latest updates on the evidences that further highlight an association between various signaling pathways and EMT, with a focus on therapeutic targets that may have the potential to reverse EMT.

Expert opinion: Our understanding of EMT and its underlying causes is rapidly evolving and a number of putative targets have been identified. It is crucial, now than ever before, to design novel translational and clinical studies for the benefit of advanced stage cancer patients with metastatic disease.  相似文献   

3.
Journal of Natural Medicines - The incidence of metastasis stage crucially contributes to high recurrence and mortality rate in lung cancer patients. Unfortunately, no available treatment inhibits...  相似文献   

4.
5.
6.
7.
Introduction: Gastric cancer is the fourth most common cancer burden worldwide; many patients show incurable disease at the time of diagnosis and prognosis remains unfavorable. Recently, new findings on gastric cancer biology led to the preclinical and clinical development of new compounds aiming to improve the overall survival and to preserve quality of life and reducing chemotherapy-related toxicities. Patients with human epidermal growth factor receptor 2 (HER2) overexpression/amplification have experienced benefit from the integration of trastuzumab to the standard chemotherapy. Ramucirumab has been recently approved in second line for treatment of gastric cancer.

Areas covered: Drugs targeting molecules such as anti c-mesenchymal-epithelial transition (MET), mammalian target of rapamycin inhibitors, polo-like kinase 1 inhibitors are under investigation or in preclinical or early clinical development. Approximately 10 – 20% of gastric cancer presented an increased MET gene copy numbers; inappropriate activation of MET promotes cellular proliferation, cell motility, invasiveness and angiogenesis and is associated with more aggressive phenotype and with a lower survival.

Expert opinion: The role of c-MET has been extensively evaluated both in Asian and Western population, even if data are far from being conclusive. The activation of MET/hepatocyte growth factor pathway is a negative prognostic factor, and it could partially explain the resistance to EGFR/HER2 inhibitors acting as a rescue pathway likewise in other tumors.  相似文献   


8.
AIM: Our previous data have shown that type II alveolar epithelial (AEII) cells express neuropeptide calcitonin gene-related peptide (CGRP), and that pro-inflammatory factor interleukin1-beta (IL-1beta) induces CGRP secretion in the A549 human AEII cell line. In the present study, we investigated the effect of endogenous and exogenous CGRP on IL-1beta-induced chemokine interleukin-8 (IL-8) secretion. METHODS: We used enzyme-linked immunosorbent assay (ELISA) and RT-PCR to detect IL-8 protein and mRNA levels, respectively. siRNA and the stably transfected cell line were used to knock down and overexpress the CGRP gene, respectively, and chemiluminescence assay was used to detect reactive oxygen species (ROS) formation. RESULTS: CGRP-1 receptor antagonist hCGRP8-37 (0.1-1 nmol/L) greatly amplified IL-1beta-induced IL-8 production. The inhibition of CGRP expression by siRNA significantly increased IL-8 secretion upon IL-1beta stimulation. However, cell clones stably transfected with CGRP showed significantly inhibited mRNA and protein levels of IL-8 induced by IL-1beta. CONCLUSION: These data imply that AEII cell-derived CGRP suppress IL-1beta-induced IL-8 secretion in an autocrine/paracrine mode. Further investigation showed that CGRP attenuated IL-1beta-aroused ROS formation, which is an early indication of pro-inflammatory factor signaling.  相似文献   

9.
RATIONALE: IFN-γ regulates inflammatory responses and also may attenuate the fibrotic process. The production of TGF-βs by bronchial epithelial cells and lung mesenchymal cells may be important in modulating both airway inflammation and remodeling. Therefore, we hypothesized that IFN-γ may regulate TGF-β production  相似文献   

10.
11.
12.
Rotenone, a toxic rotenoid compound, has anti-tumour effects on several cancers. This study aims to clarify the effect of rotenone on the proliferation, apoptosis, invasion and migration of colon cancer cells and tumourigenesis in nude mice. The present results show that rotenone significantly inhibited the proliferation, promoted the apoptosis, and suppressed the invasion and migration of colon cancer cells in a dose-dependent manner. Rotenone inhibited PI3K/AKT pathway in LoVo and SW480 cells in a dose-dependent manner. In addition, rotenone regulated the proliferation, apoptosis, invasion, migration and EMT of LoVo and SW480 cells through PI3K/AKT pathway. In colon cancer xenograft mice, rotenone inhibited tumour volume and weight in nude mice, inhibited PI3K/AKT pathway and EMT in vivo. Therefore, rotenone inhibited the proliferation, invasion and migration, promoted the apoptosis of colon cancer cells through PI3K/AKT pathway in vitro, and suppressed the tumourigenesis in nude mice in vivo.  相似文献   

13.
Arsenic is a well established human carcinogen that causes diseases of the lung. Some studies have suggested a link between inflammation and lung cancer; however, it is unknown if arsenite-induced inflammation causally contributes to arsenite-caused malignant transformation of cells. In this study, we investigated the molecular mechanisms underlying inflammation during neoplastic transformation induced in human bronchial epithelial (HBE) cells by chronic exposure to arsenite. The results showed that, on acute or chronic exposure to arsenite, HBE cells over-expressed the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 (IL-8), and interleukin-1β (IL-1β). The data also indicated that HIF-2α was involved in arsenite-induced inflammation. Moreover, IL-6 and IL-8 were essential for the malignant progression of arsenite-transformed HBE cells. Thus, these experiments show that HIF-2α mediates arsenite-induced inflammation and that such inflammation is involved in arsenite-induced malignant transformation of HBE cells. The results provide a link between the inflammatory response and the acquisition of a malignant transformed phenotype by cells chronically exposed to arsenite and thus establish a previously unknown mechanism for arsenite-induced carcinogenesis.  相似文献   

14.
15.
16.
The Src family of nonreceptor tyrosine kinases regulates numerous cellular processes, including proliferation, differentiation, migration, survival and angiogenesis. In solid tumors, Src is frequently aberrantly active, and promotes tumor progression and metastasis. Although multiple Src functions may contribute to metastasis, recently Src has been shown to play a role in epithelial to mesenchymal transition. Increased Src activity promotes this process and inhibition of Src suppresses epithelial to mesenchymal transition. Although the molecular events causing epithelial to mesenchymal transition are becoming well defined, the processes in tumor cells that trigger the onset of this phenotype remain unclear. Recent studies have associated epithelial to mesenchymal transition with the development of chemoresistance. Src has also been shown to be involved in chemoresistance of cancer cells. The activation of Src in chemoresistant cells is related to an increase in motility, invasiveness and detachment, all phenotypes characteristic both of Src activation and of epithelial to mesenchymal transition. This review focuses on upregulation of Src in cancer as it relates to chemoresistance and epithelial to mesenchymal transition.  相似文献   

17.
Cigarette smoking is strongly correlated with many diseases like cancer, cardiovascular disease and macular degeneration. Nicotine, the main active and addictive component of tobacco smoke has recently been shown to enhance angiogenesis in many experimental systems and animal models. The pro-angiogenic activity of nicotine is mediated by nicotinic acetylcholine receptors, particularly the alpha 7 subunit, that are expressed on a variety of non-neuronal cells including those in the vasculature such as endothelial cells and smooth muscle cells. The present review focuses on the role of α7nAChR in mediating the pro-angiogenic effects of nicotine and describes the molecular mechanisms involved in nicotine-induced angiogenesis as well as epithelial to mesenchymal transition. These observations on nicotine function highlight the therapeutic potential of α7nAChR agonists and antagonists for combating angiogenesis related diseases.  相似文献   

18.
The epithelial–mesenchymal transition (EMT) is a phenotype transdifferentiation of epithelial into mesenchymal cells and contributes to pulmonary fibrotic disease. SMAD-dependent pathway has been reported to play a key role in the multiple fibrotic diseases. We hypothesized that TGF-β/SMAD signaling could cross-interact with BMP/SMAD signaling pathways in silica-induced EMT in A549 cells. We investigated that the ability of silica-induced EMT in A549 cells, and this process was significantly inhibited by SB431542 through up-regulation of Vimentin, α-SMA and collagen type I expression and down-regulation of E-cadherin expression. Whereas BMP/SMAD inhibition using LDN193189 enhanced EMT. In addition, we also demonstrated that SB431542 could enhance BMP/SMAD signaling pathways in silica-induced EMT and vice versa. Therefore, our study provides evidence that the TGF-β/SMAD pathway was a crucial regulator in silica-induced EMT and that SB431542 could prevent the EMT. More importantly, we have identified that the interplay of TGF-β/SMAD and BMP/SMAD pathways in silica-induced EMT in A549 cells.  相似文献   

19.
20.
2,3,7,8-Tetrachloro-dibenzo- p-dioxin (TCDD) is a ubiquitously distributed xenobiotic. The adverse effects of TCDD on the mammalian immune system have been studied for decades, but it is still unclear whether TCDD has direct effects on T-lymphocytes or whether it acts via the thymic microenvironment. We have studied the effects of TCDD on primary cultures of human thymic epithelial cells (TEC) focusing on differentiation markers, integrins and adhesion molecules involved in cell-cell and in cell-matrix interactions. TEC were treated with TCDD at concentrations of 0.001, 0.01, 0.1, 1.0 or 10.0 nM or with 100 nM PCB 126 (3,3',4,4',5-pentachlorobiphenyl) for 3 days, and were then analysed by flow cytometry for expression of surface antigens using monoclonal antibodies against Hassall's bodies (TE-8, TE-16) or against surface structures such as CD29, CD49b, CD49e, CD49f, CD51, CD54, CD58, CD61 and CD106. At TCDD concentrations as low as 0.01 nM we found a significant increase in terminally differentiated, TE-16-positive TEC; at a ten-fold greater concentration the number of cells marked with the TE-8 antibody was also increased. With both markers the most pronounced effect (approximately +15%) was observed at 1 nM TCDD. An increase of cells expressing the integrin alpha-chains CD49b, CD49e and CD51 as well as CD54 was observed at concentrations of 0.1 nM TCDD or higher. The proportion of cells expressing CD106 or CD49f decreased significantly upon treatment with TCDD. No effects on the integrin beta-chains CD29 and CD61 could be detected. Overall, PCB 126 induced similar changes to TCDD. In summary, TCDD and a coplanar PCB induced terminal differentiation of human TEC along with changes of integrins and other adhesion molecules. These receptors and their interplay with the extracellular matrix have key functions in the maturation of T-lymphocytes and it is plausible that their alteration would be involved in TCDD-induced immunotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号