首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rho-kinases (ROCK) are serine/threonine kinases that play an important role in fundamental processes of cell migration, proliferation and survival. Blockade of ROCK promotes axonal regeneration and neuroprotection, thereby exhibiting therapeutic potentials for clinical application to spinal cord damage and stroke. Here we explored the mechanisms of Fasudil, a ROCK inhibitor, in neuroprotection and neurogenesis by using oxygen–glucose deprivation (OGD) as an in vitro ischemia model. Fasudil stimulates astrocytes to produce granulocyte colony-stimulating factor (G-CSF). Astrocyte-conditioned medium treated with Fasudil (ACM-F) contributes to the generation of neurospheres, and decreases neuron death. Neutralization of G-CSF in ACM-F and blocking of G-CSF receptor in neuronal cell cultures revealed that Fasudil-induced neuroprotection and/or neurogenesis are mediated partially through astrocyte-derived G-CSF. Our results indicate that ROCK inhibition by Fasudil, protecting neurons and mobilizating neural stem cells, might represent a useful therapeutic perspective for various neurological disorders characterized by neuron death.  相似文献   

2.
Disease progression in amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons (MN) and their axons, but is also influenced by neighboring cells such as astrocytes and microglial cells. The role of microglia in ALS is complex as it switches from an anti‐inflammatory and neuroprotective phenotype in early disease to a proinflammatory and neurotoxic phenotype in later stages. Our previous studies in models of neurodegeneration identified rho kinase (ROCK) as a target, which can be manipulated to beneficially influence disease progression. Here, we examined the neuroprotective potential of the ROCK inhibitor Fasudil to target the central pathogenic features of ALS. Application of Fasudil to kainic acid‐lesioned primary MN in vitro resulted in a strong prosurvival effect. In vivo, SOD1G93A mice benefited from oral treatment with Fasudil showing prolonged survival and improved motor function. These findings were correlated to an improved survival of motor neurons and a pronounced alteration of astroglial and microglial cell infiltration of the spinal cord under Fasudil treatment. Modeling a proinflammatory microglial phenotype by stimulation with LPS in vitro, Fasudil decreased the release of proinflammatory cytokines and chemokines TNFα, Il6, CCL2, CCL3, and CCL5 while CXCL1 release was only transiently suppressed. In sciatic nerve motor axons, neuromuscular junction remodeling processes were increased. In conclusion, we provide preclinical and neurobiological evidence that inhibition of ROCK by the clinically approved small molecule inhibitor Fasudil may be a novel therapeutic approach in ALS combining both neuroprotection and immunomodulation for the cure of this devastating disease. GLIA 2014;62:217–232  相似文献   

3.
The dentate gyrus subregion of the mammalian hippocampus is an adult neural stem cell niche and site of lifelong neurogenesis.Hypotheses regarding the role of adult-born neuron synaptic integration in hippocampal circuit function are framed by robust estimations of adultborn versus pre/perinatally-born neuron number.In contrast,the non-neurogenic functions of adult neural stem cells and their immediate progeny,such as secretion of bioactive growth factors and expression of extracellular matrix-modifying proteins,lack similar framing due to few estimates of their number versus other prominent secretory cells.Here,we apply immunohistochemical methods to estimate cell density of neural stem/progenitor cells versus other major classes of glial and endothelial cell types that are potentially secretory in the dentate gyrus of adult mice.Of the cell types quantified,we found that GFAP+SOX2+stellate astrocytes were the most numerous,followed by CD31+endothelia,GFAP-SOX2+intermediate progenitors,Olig2+oligodendrocytes,Iba1+microglia,and GFAP+SOX2+radial glia-like neural stem cells.We did not observe any significant sex differences in density of any cell population.Notably,neural stem/progenitor cells were present at a similar density as several cell types known to have potent functional roles via their secretome.These findings may be useful for refining hypotheses regarding the contributions of these cell types to regulating hippocampal function and their potential therapeutic uses.All experimental protocols were approved by the Ohio State University Institutional Animal Care and Use Committee(protocol#2016A00000068)on July 14,2016.  相似文献   

4.
5.
Adult neurogenesis is the process of generating new neurons throughout life in the olfactory bulb and hippocampus of most mammalian species, which is closely related to aging and disease. Nicotinamide phosphoribosyltransferase (NAMPT), also an adipokine known as visfatin, is the rate‐limiting enzyme for mammalian nicotinamide adenine dinucleotide (NAD) salvage synthesis by generating nicotinamide mononucleotide (NMN) from nicotinamide. Recent findings from our laboratory and other laboratories have provided much evidence that NAMPT might serve as a therapeutic target to restore adult neurogenesis. NAMPT‐mediated NAD biosynthesis in neural stem/progenitor cells is important for their proliferation, self‐renewal, and formation of oligodendrocytes in vivo and in vitro. Therapeutic interventions by the administration of NMN, NAD, or recombinant NAMPT are effective for restoring adult neurogenesis in several neurological diseases. We summarize adult neurogenesis in aging, ischemic stroke, traumatic brain injury, and neurodegenerative disease and review the advances of targeting NAMPT in restoring neurogenesis. Specifically, we provide emphasis on the P7C3 family, a class of proneurogenic compounds that are potential NAMPT activators, which might shed light on future drug development in neurogenesis restoration.  相似文献   

6.
Summary Serotonin (5-HT) is a regulator of morphogenetic activities during early brain development and neurogenesis, including cell proliferation, migration, differentiation, and synaptogenesis. The 5-HT transporter (5-HTT, SLC6A4) mediates high-affinity reuptake of 5-HT into presynaptic terminals and thereby fine-tunes serotonergic neurotransmission. Inactivation of the 5-HTT gene in mice reduces 5-HT clearance resulting in persistently increased concentrations of synaptic 5-HT. In the present study, we investigated the effects of elevated 5-HT levels on adult neurogenesis in the hippocampus of 5-HTT deficient mice, including stem cell proliferation, survival, and differentiation. Using an in vivo approach, we showed an increase in proliferative capacity of hippocampal adult neural stem cells in aged 5-HTT knockout mice (∼14.5 months) compared to wildtype controls. In contrast, in vivo and additional in vitro analyses of younger adult 5-HTT knockout mice (∼7 weeks and ∼3.0 months) did not reveal significant changes in proliferation of neural stem cells or survival of newborn cells. We showed that the cellular fate of newly generated cells in 5-HTT knockout mice is not different with respect to the total number and percentage of neurons or glial cells from wildtype controls. Our findings indicate that elevated synaptic 5-HT concentration throughout early development and later life of 5-HTT deficient mice does not induce adult neurogenesis in adult mice, but that elevated 5-HT levels in aged mice influence stem cell proliferation. First two authors contributed equally to this work  相似文献   

7.
New neurons are continuously produced by neural stem cells (NSCs) within the adult hippocampus. Numerous diseases, including major depressive disorder and HIV-1 associated neurocognitive disorder, are associated with decreased rates of adult neurogenesis. A hallmark of these conditions is a chronic release of neuroinflammatory mediators by activated resident glia. Recent studies have shown a neuroprotective role on NSCs of cannabinoid receptor activation. Yet, little is known about the effects of GPR55, a candidate cannabinoid receptor, activation on reductions of neurogenesis in response to inflammatory insult. In the present study, we examined NSCs exposed to IL-1β in vitro to assess inflammation-caused effects on NSC differentiation and the ability of GPR55 agonists to attenuate NSC injury. NSC differentiation and neurogenesis was determined via immunofluorescence and flow cytometric analysis of NSC markers (Nestin, Sox2, DCX, S100β, βIII Tubulin, GFAP). GPR55 agonist treatment protected against IL-1β induced reductions in neurogenesis rates. Moreover, inflammatory cytokine receptor mRNA expression was down regulated by GPR55 activation in a neuroprotective manner. To determine inflammatory responses in vivo, we treated C57BL/6 and GPR55−/− mice with LPS (0.2 mg/kg/day) continuously for 14 days via osmotic mini-pump. Reductions in NSC survival (as determined by BrdU incorporation), immature neurons, and neuroblast formation due to LPS were attenuated by concurrent direct intrahippocampal administration of the GPR55 agonist, O-1602 (4 µg/kg/day). Molecular analysis of the hippocampal region showed a suppressed ability to regulate immune responses by GPR55−/− animals manifesting in a prolonged inflammatory response (IL-1β, IL-6, TNFα) after chronic, systemic inflammation as compared to C57BL/6 animals. Taken together, these results suggest a neuroprotective role of GPR55 activation on NSCs in vitro and in vivo and that GPR55 provides a novel therapeutic target against negative regulation of hippocampal neurogenesis by inflammatory insult.  相似文献   

8.
Alzheimer's disease (AD) is one of the most threatening diseases to the elderly population at present. However, there is no yet efficient therapeutic method to AD. Recently, accumulating evidence indicates that valproic acid (VPA), a widely used mood stabilizer and antiepileptic drug, has neuroprotective potential relevant to AD. Moreover, VPA can induce neurogenesis of neural progenitor/stem cells both in vitro and in vivovia multiple signaling pathways. Therefore, it is suggested that VPA is a promising agent to combat AD.  相似文献   

9.
Positive modulation of adult hippocampal neurogenesis may contribute to the therapeutic effects of clinically relevant antidepressant drugs, including atypical antipsychotics. Quetiapine, an antipsychotic which represents a therapeutic option in patients who are resistant to classical antidepressants, promotes adult hippocampal neurogenesis in preclinical studies. Norquetiapine, the key active metabolite of quetiapine in humans, has a distinctive receptor profile than the parent compound. The drug is indeed a high affinity norepinephrine transporter inhibitor and such activity has been proposed to contribute to its antidepressant effect. At present, no information is available on the effects of norquetiapine on adult neurogenesis. We extensively investigated the activity of quetiapine and norquetiapine on adult murine neural stem/progenitor cells and their progeny. Additionally, selective antagonists for β22 adrenergic receptors allowed us to evaluate if these receptors could mediate quetiapine and norquetiapine effects. We demonstrated that both drugs elicit in vitro proneurogenic effects but also that norquetiapine had distinctive properties which may depend on its ability to inhibit norepinephrine transporter and involve β22 adrenergic receptors. Animal care and experimental procedures were approved by the Institutional Animal Care and Use Committees (IACUC) at University of Piemonte Orientale, Italy (approval No. 1033/2015PR) on September 29, 2015.

Chinese Library Classification No. R453; R364; R741  相似文献   

10.
Fingolimod (FTY720) was the first per os administered disease-modifying agent approved for the treatment of relapsing–remitting multiple sclerosis. It is thought that fingolimod modulates the immune response by activating sphingosine-1 phosphate receptor type 1 (S1P1) on lymphocytes following its in vivo phosphorylation. In addition to its immune-related effects, there is evidence that fingolimod exerts several other effects in the central nervous system, including regulation of the proliferation, survival and differentiation of various cell types and their precursors. In the present study, we have investigated the effect of fingolimod on the production of new neurons in the adult mouse hippocampus and the association of this effect with the ability for pattern separation, an established adult neurogenesis-dependent memory function. Immunofluorescence analysis after chronic administration of a physiologic dose of fingolimod (0.3 mg kg−1) revealed a significant increase in both the proliferation and the survival of neural progenitors in the area of dentate gyrus of hippocampus, compared with control animals. These effects were replicated in vitro, in cultures of murine hippocampal neural stem/precursor cells that express S1P1 receptor, suggesting cell-autonomous actions. The effects of fingolimod on neurogenesis were correlated to enhanced ability for context discrimination after fear conditioning. Since impairment of adult hippocampal neurogenesis and memory is a common feature of many neuropsychiatric conditions, fingolimod treatment may be beneficial in therapeutic armamentarium of these disorders.  相似文献   

11.
12.
Adult neurogenesis and synaptic remodeling persist as a unique form of structural and functional plasticity in the hippocampal dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles due to the existence of neural stem cells (NSCs). Transplantation of NSCs may represent a promising approach for the recovery of neural circuits. Here, we aimed to examine effects of highly neuronal differentiation of NSCs transplantation on hippocampal neurogenesis, metabolic changes and synaptic formation in APP/PS1 mice. 12‐month‐old APP/PS1 mice were used for behavioral tests, immunohistochemistry, western blot, transmission electron microscopy and proton magnetic resonance spectroscopy (1H‐MRS). The results showed that N‐acetylaspartate (NAA) and Glutamate (Glu) levels were increased in the Tg‐NSC mice compared with the Tg‐PBS and Tg‐AD mice 10 weeks after NSCs transplantation. NSC‐induced an increase in expression of synaptophysin and postsynaptic protein‐95, and the number of neurons with normal synapses was significantly increased in Tg‐NSC mice. More doublecortin‐, BrdU/NeuN‐ and Nestin‐positive neurons were observed in the hippocampal DG and SVZ of the Tg‐NSC mice. This is the first demonstration that engrafted NSCs with a high differentiation rate to neurons can enhance neurogenesis in a mouse model of AD and can be detected by 1H‐MRS in vivo. It is suggested that engraft of NSCs can restore memory and promote endogenous neurogenesis and synaptic remodeling, moreover, 1H‐MRS can detect metabolite changes in AD mice in vivo. The observed changes in NAA/creatine (Cr) and glutamate (Glu)/Cr may be correlated with newborn neurons and new synapse formation.  相似文献   

13.
Stroke is a leading cause of long-term disability worldwide; survivors often show sensorimotor and cognitive deficits. Therapeutic exercise is the most common treatment strategy for rehabilitating patients with stroke via augmentation of neurogenesis, angiogenesis, neurotrophic factors expression, and synaptogenesis. Neurogenesis plays important roles in sensorimotor and cognitive functional recovery, and can be promoted by exercise; however, the mechanism underlying this phenomenon remains unclear. In this study, we explored the effects of treadmill exercise on sensorimotor and cognitive functional recovery, as well as the potential molecular mechanisms underlying the promotion of neurogenesis in a rat model of transient middle cerebral artery occlusion (tMCAO). We found that treadmill exercise facilitated sensorimotor and cognitive functional recovery after tMCAO, and that neural stem/progenitor cell proliferation, differentiation, and migration were enhanced in the ipsilateral subventricular and subgranular zones after tMCAO. Meanwhile, the newborn neurons induced by treadmill exercise after tMCAO had the similar function with pre-existing neurons. Treadmill exercise significantly increased CD200 and CD200 receptor (CD200R) levels in the ipsilateral hippocampus and cortex. Further study revealed that treadmill exercise-induced neurogenesis and functional recovery were clearly inhibited, while Il-β and Tnf-α expression were upregulated, following lentivirus (LV)-induced suppression of post-stroke CD200R expression. Consistent with the effect of treadmill exercise, CD200Fc (a CD200R agonist) markedly promoted neurogenesis and functional recovery after stroke. In addition, CD200Fc could further enhance the functional recovery induced by treadmill exercise after stroke. Our results demonstrate the beneficial role of treadmill exercise in promoting neurogenesis and functional recovery via activating the CD200/CD200R signaling pathway and improving the inflammatory environment after stroke. Thus, the CD200/CD200R signaling pathway is a potential therapeutic target for functional recovery after stroke.  相似文献   

14.
Since the generation of induced pluripotent stem cells in 2006, cellular reprogramming has attracted increasing attention as a revolutionary strategy for cell replacement therapy. Recent advances have revealed that somatic cells can be directly converted into other mature cell types, which eliminates the risk of neoplasia and the generation of undesired cell types. Astrocytes become reactive and undergo proliferation, which hampers axon regeneration following injury, stroke, and neurodegenerative diseases. An emerging technique to directly reprogram astrocytes into induced neural stem cells(i NSCs) and induced neurons(i Ns) by neural fate determinants brings potential hope to cell replacement therapy for the above neurological problems. Here, we discuss the development of direct reprogramming of various cell types into i Ns and i NSCs, then detail astrocyte-derived i NSCs and i Ns in vivo and in vitro. Finally, we highlight the unsolved challenges and opportunities for improvement.  相似文献   

15.
BackgroundIschemic stroke represents a major factor causing global morbidity and death. Bone marrow mesenchymal stem cell (BMSC)-derived exosomes (Exos) have important effects on treating ischemic stroke. Here, we investigated the therapeutic mechanism by which BMSC-derived exosomal miR-193b-5p affects ischemic stroke.Methodsluciferase assay was performed to evaluate the regulatory relationship of miR-193b-5p with absent in melanoma 2 (AIM2). Additionally, an oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed for the in vitro assay, while a middle cerebral artery occlusion (MCAO) model was developed for the in vivo assay. After exosome therapy, lactate dehydrogenase and MTT assays were conducted to detect cytotoxicity and cell viability, while PCR, ELISA, western blotting assay, and immunofluorescence staining were performed to detect changes in the levels of pyroptosis-related molecules. TTC staining and TUNEL assays were performed to assess cerebral ischemia/reperfusion (I/R) injury.ResultsIn the luciferase assay, miR-193b-5p showed direct binding to the 3ʹ-untranslated region of AIM2. In both in vivo and in vitro assays, the injected exosomes could access the sites of ischemic injury and could be internalized. In the in vitro assay, compared to normal BMSC-Exos, miR-193b-5p-overexpressing BMSC-Exos showed greater effects on increasing cell viability and attenuating cytotoxicity; AIM2, GSDMD-N, and cleaved caspase-1 levels; and IL-1β/IL-18 generation. In the in vivo assay, compared to normal BMSC-Exos, miR-193b-5p-overexpressing BMSC-Exos showed greater effects on decreasing the levels of these pyroptosis-related molecules and infarct volume.ConclusionBMSC-Exos attenuate the cerebral I/R injury in vivo and in vitro by inhibiting AIM2 pathway-mediated pyroptosis through miR-193b-5p delivery.  相似文献   

16.
5-Bromo-2′-deoxyuridine(BrdU)is a halogenated pyrimidine that can be incorporated into newly synthesized DNA during the S phase of the cell cycle.BrdU is widely used in fate-mapping studies of embryonic and adult neurogenesis to identify newborn neurons,however side effects on neural stem cells and their progeny have been reported.In vivo astrocyte-to-neuron(AtN)conversion is a new approach for generating newborn neurons by directly converting endogenous astrocytes into neurons.The BrdU-labeling strategy has been used to trace astrocyte-converted neurons,but whether BrdU has any effect on the AtN conversion is unknown.Here,while conducting a NeuroD1-mediated AtN conversion study using BrdU to label dividing reactive astrocytes following ischemic injury,we accidentally discovered that BrdU inhibited AtN conversion.We initially found a gradual reduction in BrdU-labeled astrocytes during NeuroD1-mediated AtN conversion in the mouse cortex.Although most NeuroD1-infected astrocytes were converted into neurons,the number of BrdU-labeled neurons was surprisingly low.To exclude the possibility that this BrdU inhibition was caused by the ischemic injury,we conducted an in vitro AtN conversion study by overexpressing NeuroD1 in cultured cortical astrocytes in the presence or absence of BrdU.Surprisingly,we also found a significantly lower conversion rate and a smaller number of converted neurons in the BrdU-treated group compared with the untreated group.These results revealed an unexpected inhibitory effect of BrdU on AtN conversion,suggesting more caution is needed when using BrdU in AtN conversion studies and in data interpretation.  相似文献   

17.
Fasudil, a Rho-associated protein kinase (ROCK) inhibitor, has a protective effect on the central nervous system. In addition, environmental enrichment is a promising technique for inducing the recovery of motor impairments in ischemic stroke models. The present study aimed to explore whether environmental enrichment combined with fasudil can facilitate motor function recovery and induce cortical axonal regeneration after stroke. First, a mouse model of ischemic cerebral stroke was established by photochemical embolization of the left sensorimotor cortex. Fasudil solution (10 mg/kg per day) was injected intraperitoneally for 21 days after the photothrombotic stroke. An environmental enrichment intervention was performed on days 7–21 after the photothrombotic stroke. The results revealed that environmental enrichment combined with fasudil improved motor function, increased growth-associated protein 43 expression in the infarcted cerebral cortex, promoted axonal regeneration on the contralateral side, and downregulated ROCK, p-LIM domain kinase (LIMK)1, and p-cofilin expression. The combined intervention was superior to monotherapy. These findings suggest that environmental enrichment combined with fasudil treatment promotes motor recovery after stroke, at least partly by stimulating axonal regeneration. The underlying mechanism might involve ROCK/LIMK1/cofilin pathway regulation. This study was approved by the Institutional Animal Care and Use Committee of Fudan University, China (approval No. 20160858A232) on February 24, 2016.

Chinese Library Classification No. R454; R453; R741  相似文献   

18.
Acute inflammation in the poststroke period exacerbates neuronal damage and stimulates reparative mechanisms, including neurogenesis. However, only a small fraction of neural stem/progenitor cells survives. In this report, by using a highly reproducible model of cortical infarction in SCID mice, we examined the effects of immunodeficiency on reduction of brain injury, survival of neural stem/progenitor cells, and functional recovery. Subsequently, the contribution of T lymphocytes to neurogenesis was evaluated in mice depleted for each subset of T lymphocyte. SCID mice revealed the reduced apoptosis and enhanced proliferation of neural stem/progenitor cells induced by cerebral cortex after stroke compared with the immunocompetent wild‐type mice. Removal of T lymphocytes, especially the CD4+ T‐cell population, enhanced generation of neural stem/progenitor cells, followed by accelerated functional recovery. In contrast, removal of CD25+ T cells, a cell population including regulatory T lymphocytes, impaired functional recovery through, at least in part, suppression of neurogenesis. Our findings demonstrate a key role of T lymphocytes in regulation of poststroke neurogenesis and indicate a potential novel strategy for cell therapy in repair of the central nervous system. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The neurotransmitter dopamine acts on the subventricular zone (SVZ) to regulate both prenatal and postnatal neurogenesis, in particular through D3 receptor (D3R) subtype. In this study, we explored the cellular mechanism(s) underlying D3R‐mediated cell proliferation and tested if systemic delivery of a D3R agonist would induce SVZ multipotent neural stem/precursor cell (NSC/NPC) proliferation in vivo. We found that treatment with the D3R agonist, 7‐OH‐DPAT, enhances cell proliferation in a dose‐dependent manner in cultured SVZ neurospheres from wild‐type, but not D3R knock‐out mice. Furthermore, D3R activation also stimulates S‐phase and enhances mRNA and protein levels of cyclin D1 in wild‐type neurospheres, a process which requires cellular Akt and ERK1/2 signaling. Moreover, chronic treatment with low dose 7‐OH‐DAPT in vivo increases BrdU+ cell numbers in the adult SVZ, but this effect was not seen in D3R KO mice. Additionally, we probed the cell type specificity of D3R agonist‐mediated cell proliferation. We found that in adult SVZ, GFAP+ astrocytes, type‐B GFAP+/nestin+ and type‐C EGF receptor (EGFR+)/nestin+ cells express D3R mRNA, but type‐A Doublecortin (Dcx)+ neuroblasts do not. Using flow cytometry and immunofluorescence, we demonstrated that D3R activation increases GFAP+ type‐B and EGFR+ type‐C cell numbers, and the newly divided Dcx+ type‐A cells. However, BrdU+/Dcx+ cell numbers were decreased in D3R KO mice compared to wildtype, suggesting that D3R maintains constitutive NSC/NPCs population in the adult SVZ. Overall, we demonstrate that D3R activation induces NSC/NPC proliferation through Akt and ERK1/2 signaling and increases the numbers of type‐B and ‐C NSC/NPCs in the adult SVZ. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Hydrogen sulfide (H2S) is regarded to be a protectant against diseases of the central nervous system and cardiovascular system. However, the mechanism by which H2S elicits neuroprotective effects in the progression of Parkinson’s disease (PD) remains unclear. To investigate the role of H2S in delaying the pathological process of PD, we used the most common sodium hydrosulfide (NaHS) as an H2S donor and established a mouse model of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) in the present study. Our results show that H2S reduced neuronal loss during the progression of PD. Notably, we found that H2S exhibited protective effects on dopaminergic neurons. Excitingly, H2S also increased the proliferation of neural stem cells in the subventricular zone. Next, we evaluated whether the neuroprotective effects of H2S on dopaminergic neurons in PD are dependent on adult nerve regeneration by treating primary adult neural stem cells cultured ex vivo with 1-methyl-4-phenylpyridine. Our results show that H2S could prevent nerve injury induced by 1-methyl-4-phenylpyridine, promote the growth of neurospheres, and promote neurogenesis by regulating Akt/glycogen synthase kinase-3β/β-catenin pathways in adult neural stem cells. These findings confirm that H2S can increase neurogenesis in an adult mouse model of PD by regulating the Akt/glycogen synthase kinase-3β/β-catenin signaling pathway. This study was approved by the Animal Care and Use Committee of Nanjing Medical University, China (IACUC Approval No. 1601153-3).

Chinese Library Classification No. R453; R741; TQ125.1+2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号