首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CpG oligodeoxynucleotides (CpG ODNs) are known to induce type 1 T-helper-cell (Th1) responses. We have previously demonstrated that CpG ODNs administered during sensitization prevent Th2-mediated eosinophilic airway inflammation in vivo. We also reported that key Th1 cytokines, gamma interferon (IFN-gamma) and interleukin 12 (IL-12), are not necessary for this protection. Recent in vivo data suggest that CpG ODNs might also reverse established pulmonary eosinophilia. In order to clarify how CpG ODNs can inhibit established Th2 responses, we evaluated the cytokine production from splenocytes from antigen- and alum-immunized mice. Restimulation with antigen induced IL-5, which was clearly inhibited by coculture with CpG ODNs in a concentration-dependent manner. CpG ODNs also induced IFN-gamma, but in a concentration-independent manner. The inhibition of IL-5 production was not mediated through natural killer cells or via CD8(+) T lymphocytes. Although IFN-gamma plays an important role in inhibition of antigen-induced IL-5 production by CpG ODNs, IFN-gamma was not the sole factor in IL-5 inhibition. CpG ODNs also induced IL-10, and this induction correlated well with IL-5 inhibition. Elimination of IL-10 reduced the anti-IL-5 effect of CpG ODNs, although incompletely. This may be because IFN-gamma, induced by CpG ODNs, is also inhibited by IL-10, serving as a homeostatic mechanism for the Th1-Th2 balance. Overproduction of IFN-gamma was downregulated by CpG ODN-induced IL-10 via modulation of IL-12 production. These data suggest that CpG ODNs may inhibit established Th2 immune responses through IFN-gamma and IL-10 production, the latter serving to regulate excessive Th1 bias. These properties of CpG ODNs might be a useful feature in the development of immunotherapy adjuvants against allergic diseases such as asthma.  相似文献   

2.
Allergic airway inflammation is one of the most typical characteristic features of bronchial asthma. T(h)2 cells, which produce IL-4, IL-5 and IL-13, are well known as major effector lymphocytes of the inflammation. In the present work, we found that subcutaneous injection of Toll-like receptor-9-ligand, CpG-oligodeoxynucleotides (CpG-ODN), remarkably suppressed eosinophilia and mucus hyper-production in T(h)2 cell-dependent airway inflammation model at the effector phase. The injection of CpG-ODN significantly blocked T(h)2 cell migration into lung. The inhibitory effects of CpG-ODN were observed even when IFN-gamma-deficient T(h)2 cells were transferred into IFN-gamma(-/-) mice. In contrast, the administration of neutralizing mAbs against type I cytokines such as IFN-alpha, IFN-beta and IL-12 significantly suppressed the inhibitory effect of CpG-ODN on airway inflammation and T(h)2 cell migration into the lung. We further demonstrated that the production of T(h)2 chemokines, thymus and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC), was significantly reduced by the CpG-ODN. The reduction of both TARC and MDC was also inhibited by the blockade of IFN-alpha, IFN-beta and IL-12 with mAbs. Thus, we revealed here that IFN-alpha, IFN-beta and IL-12, but not IFN-gamma, were required for the inhibitory effect of CpG-ODN in T(h)2 cell-mediated allergic airway inflammation. The present evidence strongly suggest that induction of type I cytokines would be promising therapeutic targets in T(h)2-dependent allergic diseases such as bronchial asthma.  相似文献   

3.
BACKGROUND: T(H)2 cells play a critical role in the pathogenesis of asthma, but the precise immunologic mechanisms that inhibit T(H)2 cell function in vivo are not well understood. OBJECTIVE: The purpose of our studies was to determine whether T cells producing IL-10 regulate the development of asthma. METHODS: We used gene therapy to generate ovalbumin-specific CD4 T-helper cells to express IL-10, and we examined their capacity to regulate allergen-induced airway hyperreactivity. RESULTS: We demonstrated that the CD4 T-helper cells engineered to express IL-10 abolished airway hyperreactivity and airway eosinophilia in BALB/c mice sensitized and challenged with ovalbumin and in SCID mice reconstituted with ovalbumin-specific T(H)2 effector cells. The inhibitory effect of the IL-10-secreting T-helper cells was accompanied by the presence of increased quantities of IL-10 in the bronchoalveolar lavage fluid, was antigen-specific, and was reversed by neutralization of IL-10. Moreover, neutralization of IL-10 by administration of anti-IL-10 mAb in mice sensitized and challenged with ovalbumin seriously exacerbated airway hyperreactivity and airway inflammation. CONCLUSION: Our results demonstrate that T cells secreting IL-10 in the respiratory mucosa can indeed regulate T(H)2-induced airway hyperreactivity and inflammation, and they strongly suggest that IL-10 plays an important inhibitory role in allergic asthma.  相似文献   

4.
BACKGROUND: Exposure to diisocyanates, a group of highly reactive, low-molecular-weight compounds, is a major cause of occupational asthma. In contrast to mouse models of atopic asthma, previous mouse models of diisocyanate-induced asthma have failed to show lung inflammation with characteristics of human disease. OBJECTIVE: Our goal was to establish a novel mouse model of diisocyanate-induced asthma in which lung inflammation reminiscent of that seen in human asthma is generated after inhaled antigen challenge. METHODS: BALB/c mice were epicutaneously sensitized to hexamethylene diisocyanate (HDI) and then challenged with an HDI-protein conjugate administered by means of an intranasal droplet. RESULTS: HDI sensitization resulted in development of contact hypersensitivity and HDI-specific antibody production. Most importantly, however, vigorous inflammatory responses with characteristics of human asthma were generated in the lung after inhaled HDI challenge. Challenge of sensitized, but not unsensitized, mice resulted in airway eosinophilia, mucus hypersecretion, and production of T(H)1-type (IFN-gamma) and T(H)2-type (IL-4, IL-5, and IL-13) cytokines by lung inflammatory cells. Despite the mixed T(H)1/T(H)2 response induced by HDI sensitization, use of cytokine-deficient mice revealed that airway eosinophilia was mediated by T(H)2 cytokines and not by IFN-gamma. CONCLUSION: We report a novel mouse model of diisocyanate-induced asthma that, in contrast to previous models, demonstrates antigen-induced lung inflammation with characteristics of human disease. This model will allow investigation of the immunopathogenesis of diisocyanate-induced asthma and should provide insight into this common form of occupational disease.  相似文献   

5.
BACKGROUND: Oligodeoxynucleotides containing a CpG motif (CpG ODNs), as potent inducers of T(H)1 immunity, are considered promising candidates for immune modulation in asthma. We have previously demonstrated that conjugation of a hexameric deoxyriboguanosine run to the 3' terminus (3' dG(6)-run) of phosphodiester (PE) CpG ODNs enhanced their immuno-stimulatory activities in vitro. OBJECTIVE: This study aimed to evaluate the effect of a 3' dG(6)-run conjugation to PE or phosphorothioate (PS) CpG ODNs on protection against murine allergic asthma in vivo. METHODS: Balb/c mice were sensitized to ovalbumin by intraperitoneal injection with or without CpG ODNs (PS CpG ODNs, PE CpG ODNs, and those with 3' dG(6)-run) and subsequently challenged with ovalbumin. We evaluated airway hyperresponsiveness, eosinophil proportion in bronchoalveolar lavage fluid, airway inflammation, and ovalbumin-specific antibody responses. RESULTS: The conjugation of a 3' dG(6)-run to PE CpG ODNs enhanced the production of IFN-gamma from ovalbumin-specific T(H) cells and prevented the development of asthma in terms of airway hyperresponsiveness, airway eosinophilia, and ovalbumin-specific IgE responses; these effects were comparable to those of PS CpG ODNs. Enhanced effects of the 3' dG(6)-run were also observed in PS CpG ODNs, though they were lower than those in PE CpG ODNs. CONCLUSION: This study suggests that conjugation of a 3' dG(6)-run to CpG ODNs might provide an effective method for immune modulation of allergic asthma.  相似文献   

6.
BACKGROUND: We have previously demonstrated that CpG oligodeoxynucleotides (CpG-ODNs) protect against eosinophilia and airway hyperresponsiveness in murine models of allergen-induced asthma. Acute inflammation is hypothesized to induce chronic airway responses, but no previous studies have evaluated the effects of CpG-ODNs on allergen-induced airway remodeling. Because remodeling is thought to be responsible for many of the long-term adverse effects on asthmatic patients, we evaluated whether CpG-ODNs might similarly prevent these changes using a murine model of recurrent allergen exposure. OBJECTIVE: The purpose of this study was to evaluate the effect of CpG-ODNs on chronic inflammatory changes and airway remodeling by using a murine model of chronic allergen-induced asthma. METHODS: C57BL/6 mice were sensitized to ovalbumin (OVA) and subsequently exposed to nebulized OVA by means of inhalation 3 times weekly for 6 weeks. Some mice received CpG-ODNs by means of intraperitoneal injection at the time of sensitization. At the end of the exposure period, mice were evaluated for the development of airway inflammation, airway hyperresponsiveness, and airway remodeling. RESULTS: OVA-sensitized mice exposed to recurrent airway challenge with OVA have chronic inflammation, persistent airway hyperresponsiveness, and evidence of airway remodeling, including subepithelial collagen deposition and goblet cell hyperplasia-metaplasia. These changes are significantly reduced in mice treated with CpG-ODNs. Interestingly, mice treated with CpG-ODNs exhibit increased levels of bronchoalveolar lavage transforming growth factor beta, suggesting that regulatory T cells might be responsible for some of these protective effects. CONCLUSION: CpG-ODNs are effective not only in preventing acute inflammation but also appear to reduce markers of airway remodeling that develop after chronic allergen exposure.  相似文献   

7.
Human bronchial asthma is characterized by airway hyperresponsiveness (AHR), eosinophilic airway inflammation, mucus hypersecretion and high serum level of IgE. IL-18 was originally regarded to induce T(h)1-related cytokines from Th1 cells in the presence of IL-12. However, our previous reports clearly demonstrated that IL-18 with IL-2 promotes Th2 cytokines production from T cells and NK cells. Furthermore, IL-18 with IL-3 stimulates basophils and mast cells to produce Th2 cytokines. Thus, we examined the capacity of IL-2 and IL-18 to induce AHR, airway eosinophilic inflammation and goblet cell metaplasia. Intranasal administration of IL-2 and IL-18 induces AHR, mucus hypersecretion and eosinophilic inflammation in the lungs of naive mice. CD4+ T cells are prerequisite for this IL-2 plus IL-18-induced bronchial asthma, because CD4+ T cells-depleted or Rag-2-deficient (Rag-2-/-) mice did not develop bronchial asthma after IL-2 plus IL-18 treatment. Both STAT6-/- mice and IL-13-neutralized wild-type mice failed to develop AHR, goblet cell metaplasia and airway eosinophilic inflammation, while IL-4-/- mice almost normally developed, suggesting that IL-13 is a major causative factor and IL-4 mainly enhances the degree of AHR and eosinophilic inflammation. Both IL-4 and IL-13 equally induce eotaxin in mouse embryonic fibroblasts. However, only IL-13 blockade inhibited asthma symptoms, suggesting that IL-13 but not IL-4 is produced abundantly and plays a critical role in the pathogenesis of bronchial asthma in this model. As airway epithelial cells store robust IL-18, IL-18 might be critically involved in pathogen-induced bronchial asthma, in which pathogens stimulate epithelial cells to produce IL-18 without IL-12 induction.  相似文献   

8.
BACKGROUND: The role of bacterial enterotoxins like Staphylococcus aureus enterotoxin B (SEB) in allergic asthma remains unknown. We used a mouse model of airway allergy to study the effects of nasal or bronchial contact with SEB on bronchial allergic inflammation. METHODS: The features of allergic asthma were induced in ovalbumin (OVA)-sensitized mice (days 1-13) by repeated exposures to nebulized OVA (days 33-37). Nasal or bronchial application of SEB was performed on three occasions (days 33-35-37), and the effects on bronchial inflammation, IgE titres and expression levels of mRNA for T helper type 2 cytokines and other inflammatory mediators were evaluated. RESULTS: Both nasal and bronchial SEB enhanced the allergen-induced bronchial inflammation, as reflected by more eosinophilic inflammation in the airway lumen and in bronchial tissue. Aggravation of experimental asthma correlated with higher expression of mRNA for IL-5, IL-4, IFN-gamma, IL-12 p40, eotaxin-1 and TGF-beta in bronchi. In addition, nasal SEB elevated concentrations of IL-4, IL-5 and IFN-gamma in serum and bronchial SEB increased titres of OVA-specific and total IgE in serum. CONCLUSION: Our data illustrate the potential of both nasal as well as bronchial SEB to aggravate several features of allergic asthma in a mouse model.  相似文献   

9.
The pathogenesis of asthma has been linked to the production of type 2 cytokines, which can be expressed by several cell types in the lung. These studies investigated CD8(+) T cell responses in a murine cockroach antigen (CRA) model of asthma. The results from these present studies show that depletion of CD8(+) T cells after allergen sensitization to CRA significantly reduces airway hyperreactivity, airway eosinophilia and pulmonary type 2 cytokine levels. The data demonstrate that CD8(+) T cells from CRA-sensitized mice can produce type 2 cytokines IL-4, IL-5 and IL-13 upon antigen challenge, and that the transfer of these cells into naive mice will cause airway hyperreactivity when exposed to CRA. We found that the transferred airway response is dependent on both IL-4 and IL-13 from CD8(+) T cells using cytokine knockout mice. Compared to CD4(+) T cells, CD8(+) T cells were not as numerous in the lungs of sensitized and challenged mice, but were as efficacious in the transfer of airway disease. The most severe airway response was observed when both CD4(+) and CD8(+) T cells were transferred at the same time. Altogether, these studies highlight a role for CD8(+) T lymphocytes in the development of allergen-induced airway responses.  相似文献   

10.
BACKGROUND: Immunostimulatory DNA sequences (ISS) inhibit eosinophilic inflammation and airway hyperreactivity in mouse models of asthma. In vitro ISS activate natural killer (NK) cells to secrete IFN-gamma, and this cytokine is hypothesized to contribute to the antiallergic effect of ISS in vivo. OBJECTIVE: We investigated whether ISS activation of NK cells is important in mediating the reduction in airway hyperreactivity and the antieosinophilic effect of ISS in vivo. METHODS: We assessed whether ISS modulated the development of eosinophilic airway inflammation and airway hyperreactivity to methacholine in ovalbumin (OVA)-sensitized and OVA allergen-challenged mice pretreated with an antibody to deplete NK cells. RESULTS: Mice sensitized and challenged with OVA had significant bronchoalveolar lavage and lung eosinophilia, as well as airway hyperresponsiveness. ISS induced significant inhibition of bronchoalveolar lavage and lung eosinophilia, as well as airway hyperresponsiveness, in OVA-sensitized mice pretreated before OVA challenge with an NK cell-depleting antibody (NK(-) mice), as well as in mice pretreated with a control non-NK cell-depleting antibody (NK(+) mice). The NK cell-depleting antibody inhibited ISS-induced IFN-gamma production by spleen cells. CONCLUSION: These studies demonstrate that depletion of NK cells has no significant effect on ISS-mediated inhibition of airway eosinophilia and airway hyperresponsiveness in vivo, suggesting that non-NK cells and cytokines other than IFN-gamma derived from NK cells mediate the majority of the ISS-inhibitory effect on eosinophilic inflammation and airway hyperresponsiveness in vivo.  相似文献   

11.
Oligodeoxynucleotides containing CpG motifs (CpG-ODNs) can protect against eosinophilic airway inflammation in asthma. Previously we have found that parenteral or mucosal administration of CpG-ODNs is effective in preventing (as well as reversing established) disease. In this study, we examined the effect of oral CpG-ODNs on the development of immune tolerance. Using an ovalbumin (OVA)-induced murine model of asthma, we found that CpG-ODNs, administered orally around the time of sensitization, prevented eosinophilic airway inflammation in a dose-dependent manner. Although oral co-administration of CpG-ODNs with OVA (known to induce tolerance) did not significantly change the inhibition of OVA-induced airway eosinophilia, it did modulate OVA-specific immunoglobulin responses: oral administration of OVA alone suppressed OVA-specific IgG1 production, but only mice that received CpG-ODNs demonstrated enhanced levels of OVA-specific IgG2c. Finally, we examined whether oral administration of CpG-ODNs, alone or with OVA, could reverse established eosinophilic airway inflammation. Again, neither OVA nor CpG-ODNs alone modulated established eosinophilic airway inflammation, but a combination of the OVA and CpG-ODNs successfully desensitized the mice. This desensitization was associated with suppression of OVA-specific IgE and enhancement of OVA-specific IgG2c production. These findings provide the first indication that oral administration of CpG-ODNs is effective in preventing and reversing antigen-induced eosinophilic airway inflammation. CpG-ODNs may be useful as a component of oral immunotherapy to promote tolerance in established asthma.  相似文献   

12.
BACKGROUND: Asthma is characterized by variable airflow obstruction and airway hyperresponsiveness in association with airway inflammation under the influence of T(H)2 cytokines. Eosinophilic bronchitis has similar immunopathology to asthma but without disordered airway physiology. Whether eosinophilic bronchitis is associated with increased expression of T(H)2 cytokines is unknown. OBJECTIVE: We sought to assess the expression of T(H)2 cytokines in eosinophilic bronchitis. METHODS: Expression of activation markers and chemokine receptors from blood and bronchoalveolar lavage (BAL) fluid T cells and the T(H)2 cytokine expression from these T cells and bronchial mucosa biopsy specimens were assessed from subjects with eosinophilic bronchitis, subjects with asthma, and healthy control subjects. RESULTS: The proportion of resting (stimulated) CD4 BAL fluid T cells expressing intracellular IL-4 was significantly higher in the subjects with eosinophilic bronchitis 7.2% (11.4%) and subjects with asthma 5.3% (5.5%) than in healthy control subjects 2.8% (3.9%) (P =.03). The number of IL-4(+) (P <.001) and IL-5(+) (P =.003) cells per square millimeter of bronchial submucosa was significantly higher in the disease groups than in the healthy control subjects. Expression of intracellular IFN-gamma was significantly higher in stimulated blood CD8 T cells from subjects with eosinophilic bronchitis (24%) and asthma (17%) than in the healthy control subjects (5%; P =.003). There were no between-group differences in expression of IFN-gamma in the BAL fluid T cells or in the bronchial submucosa and no differences in expression of activation markers or chemokine receptors. CONCLUSION: These findings support the concept of asthma as a disease associated with activation of T(H)2 lymphocytes in the airway and provide evidence that these cytokines play a role in the development of airway inflammation in eosinophilic bronchitis but suggest that the release of T(H)2 cytokines is not sufficient for the elaboration of disordered airway physiology in asthma.  相似文献   

13.
BACKGROUND: Aeroallergens continuously enter the respiratory tract of atopic individuals and provoke the development of asthma characterized by airway hyperreactivity (AHR) and inflammation. By contrast, nonatopic individuals are exposed to the same aeroallergens, but airway inflammation does not develop. However, the mechanisms that prevent allergen-induced respiratory diseases in nonatopic subjects are poorly characterized. OBJECTIVE: In this study we compared the role of allergen-specific T-cell tolerance and immune deviation in conferring protection against the development of allergen-induced AHR. METHODS: We exposed mice to intranasal ovalbumin (OVA) to induce T-cell tolerance and examined its effects on the subsequent development of AHR and inflammation. RESULTS: We demonstrated that exposure of mice to intranasal OVA resulted in peripheral CD4(+) T-cell unresponsiveness that very efficiently prevented not only the development of AHR but also greatly inhibited airway inflammation and OVA-specific IgE production. The induction of peripheral T-cell tolerance and protection against AHR were not dependent on the presence of IFN-gamma or IL-4. The development of AHR was also prevented by an OVA-specific T(H)1-biased immune response induced by inhalation of OVA in the presence of IL-12. However, the OVA-specific T(H)1 response was associated with a significant degree of pulmonary inflammation. CONCLUSION: These results indicate that both allergen-specific T-cell tolerance and T(H)1-biased immune deviation prevent the development of AHR, but T(H)1 responses are associated with significantly greater inflammation in the lung than is associated with T-cell unresponsiveness. Therefore CD4(+) T-cell unresponsiveness critically regulates immune responses to aeroallergens and protects against the development of allergic disease and asthma.  相似文献   

14.
BACKGROUND: Plasmids encoding cytokines such as IFN-gamma and IL-12 are potential genetic adjuvants that might increase the effectiveness of allergen vaccines. OBJECTIVE: The role of plasmids expressing the cytokines IFN-gamma (pIFN-gamma) and/or IL-12 (pIL-12) as adjuvants in modulating allergic immune responses, inflammation, and asthma was investigated in a murine model of Kentucky blue grass (KBG) allergy. METHODS: Groups of naive B6D2F1 mice were vaccinated subcutaneously with KBG allergens and administered intramuscularly with pIFN-gamma, pIL-12, pIFN-gamma plus pIL-12, or a vector control. Mice were then sensitized with KBG allergens in alum (intraperitoneally) and later challenged intranasally. Mice were examined for modulation of specific immunity, prevention of the development of airway hyperresponsiveness, and inflammation. RESULTS: Mice vaccinated with cytokine plasmid adjuvants had relatively lower levels of total serum IgE and higher levels of grass allergen-specific IgG2a in comparison with control mice. The lowest IgE and highest IgG2a levels were found in mice vaccinated with the combination of pIFN-gamma and pIL-12 as an adjuvant. The vaccination of mice with both pIFN-gamma and pIL-12 as an adjuvant induced the highest level of T(H)1 cytokines, IFN-gamma, and IL-2 in comparison with mice given either of the plasmids alone. The most profound decrease in airway hyperresponsiveness and pulmonary inflammation was observed in mice receiving both pIFN-gamma and pIL-12 as an adjuvant. CONCLUSION: These results demonstrate that pIFN-gamma and pIL-12 together provide an effective adjuvant to parenteral grass allergen vaccines and show that this adjuvant can significantly enhance the effectiveness of allergen immunotherapy in human beings.  相似文献   

15.
Yang J  Zhao J  Yang Y  Zhang L  Yang X  Zhu X  Ji M  Sun N  Su C 《Immunology》2007,120(1):8-18
A number of epidemiological and clinical studies have suggested an inverse association between allergy and helminth infection, such as Schistosomiasis. Therefore, we hypothesize that Schistosoma japonicum egg antigens, a type of native antigen, can induce production of CD4(+) CD25(+) T cells with regulatory activity, modulating airway inflammation and inhibiting asthma development. The frequency of CD4(+) CD25(+) T cells was determined by flow cytometry for mice treated with ovalbumin (OVA), CD25(+) depletion/OVA, schistosome egg antigens, schistosome egg antigens/OVA and for control mice. The ability of CD25(+) T cells from these mice to suppress T-cell proliferation and cytokine production was investigated both in vivo and in vitro. Results showed that the CD4(+) CD25(+) T cells of OVA-treated mice exhibited impaired control of dysregulated mucosal T helper 2 responses compared to the controls (P < 0.05). Depletion of CD25(+) cells accelerated OVA-induced airway inflammation and increased the expression of interleukin (IL)-5 and IL-4. Treatment with schistosome egg antigens increased the number and suppressive activity of CD4(+) CD25(+) T cells, which made IL-10, but little IL-4. In a murine model of asthma, S. japonicum egg antigens decreased the expression of Th2 cytokines, relieved antigen-induced airway inflammation, and inhibited asthma development. Thus, we provided evidence that S. japonicum egg antigens induced the production of CD4(+) CD25(+) T cells, resulting in constitutive immunosuppressive activity and inhibition of asthma development. These results reveal a novel form of protection against asthma and suggest a mechanistic explanation for the protective effect of helminth infection on the development of allergy.  相似文献   

16.
BACKGROUND: Sex hormones might affect the severity and evolution of bronchial asthma. From existing literature, there exists, however, no convincing evidence for either exacerbation or improvement of allergic symptoms by progesterone. OBJECTIVE: This study was aimed to explore the effect of exogenously administered progesterone in a mouse model of allergic asthma. METHODS: BALB/c mice were sensitized to ovalbumin (OVA) by intraperitoneal injections with OVA followed by chronic inhalation of nebulized OVA or physiologic saline (Sal). Medroxyprogesterone acetate or placebo was instilled daily into the oesophagus before and during the inhalatory OVA challenge phase. RESULTS: Progesterone worsened allergic airway inflammation in OVA-challenged mice, as evidenced by enhanced bronchial responsiveness to inhaled metacholine and increased bronchial eosinophilia. Elevated airway eosinophilia corresponded with higher bronchial and systemic IL-5 levels in the progesterone group. The ratio of IL-4/IFN-gamma levels in bronchoalveolar lavage fluid and numbers of eosinophil colony-forming units in the bone marrow were also elevated in the latter group. Progesterone, however, did not influence allergen-specific IgE production, nor did it affect bronchial responses in Sal-challenged mice. CONCLUSION: Our data show that exogenously administered progesterone aggravates the phenotype of eosinophilic airway inflammation in mice by enhancing systemic IL-5 production. Progesterone also increases bronchial hyper-reactivity.  相似文献   

17.
Tropical pulmonary eosinophilia (TPE) is a severe asthmatic syndrome of lymphatic filariasis, in which an allergic response is induced to microfilariae (Mf) in the lungs. Previously, in a murine model for TPE, we have demonstrated that recombinant interleukin-12 (IL-12) suppresses pulmonary eosinophilia and airway hyperresponsiveness (AHR) by modulating the T helper (Th) response in the lungs from Th2- to Th1-like, with elevated gamma-interferon (IFN-gamma) production and decreased IL-4 and IL-5 production. The present study examined the immunomodulatory roles of IL-4 and IFN-gamma in filaria-induced AHR and pulmonary inflammation using mice genetically deficient in these cytokines. C57BL/6, IL-4 gene knockout (IL-4(-/-)), and IFN-gamma(-/-) mice were first immunized with soluble Brugia malayi antigens and then inoculated intravenously with 200,000 live Mf. Compared with C57BL/6 mice, IL-4(-/-) mice exhibited significantly reduced AHR, whereas IFN-gamma(-/-) mice had increased AHR. Histopathologically, each mouse strain showed increased cellular infiltration into the lung parenchyma and bronchoalveolar space compared with na?ve animals. However, consistent with changes in AHR, IL-4(-/-) mice had less inflammation than C57BL/6 mice, whereas IFN-gamma(-/-) mice had exacerbated pulmonary inflammation with the loss of pulmonary architecture. Systemically, IL-4(-/-) mice produced significantly higher IFN-gamma levels compared with C57BL/6 mice, whereas IFN-gamma(-/-) mice produced significantly higher IL-4 levels. These data indicate that IL-4 is required for the induction of filaria-induced AHR, whereas IFN-gamma suppresses AHR.  相似文献   

18.
The role of CD8(+) T cells in the development of allergic airway disease is controversial. On the one hand, CD8(+) T cells are known to inhibit the development of airway hyperreactivity (AHR) in murine models of asthma. In humans, IL-10-producing CD8(+) T cells were shown to act as regulatory cells, inhibiting both proliferation and cytokine secretion of T cells. On the other hand, CD8(+) T cells can promote IL-5-mediated eosinophilic airway inflammation and the development of AHR in animal models. To examine this, we investigated the role of CD8(+) T cells during the induction of allergen-induced AHR and demonstrated a protective effect of CD8(+) T cells. Depletion of CD8(+) T cells prior to the immunization led to increased Th2 responses and increased allergic airway disease. However, after development of AHR, CD8(+) T cells that infiltrated the lungs secreted high levels of IL-4, IL-5 and IL-10, but little IFN-gamma, whereas CD8(+) T cells in the peribronchial lymph nodes or spleen produced high levels of IFN-gamma, but little or no Th2 cytokines. These data demonstrate protective effects of CD8(+)T cells against the induction of immune responses and show a functional diversity of CD8(+) T cells in different compartments of sensitized mice.  相似文献   

19.
OVA-Fc融合基因疫苗对哮喘小鼠的疗效观察   总被引:2,自引:1,他引:1  
目的探讨OVA-Fc融合基因疫苗治疗哮喘小鼠气道炎症和气道高反应性的效果。方法分别将制备的OVA-Fc-pcDNA3.1质粒、OVA-pcDNA3.1质粒、pcDNA3.1质粒,皮下免疫Balb/c哮喘小鼠模型,40d后,观察肺组织的病理变化,并检测肺泡灌洗液中细胞总数及嗜酸粒细胞计数,细胞因子的含量以及血清中OVA特异的IgE抗体的水平。结果OVA-Fc-pcDNA3.1基因修饰的DNA疫苗免疫小鼠后,能有效抑制哮喘小鼠肺组织的炎细胞浸润,肺泡灌洗液中细胞总数明显下降(P〈0.05),嗜酸性粒细胞的总数明显下降(P〈0.05),肺泡灌洗液中IL-10、INF-Y的分泌增加(P〈0.05),血清中OVA特异的IgE抗体能有效的得以控制(P〈0.05)。结论OVA-Fc-pcDNA3.1基因修饰的DNA疫苗可较OVA变应原基因更强的特异性地抑制哮喘小鼠的气道炎症,有望对哮喘的治疗具有重要的价值。  相似文献   

20.
Asthma is an inflammatory lung disease, in which CD1d-restricted natural killer T (NKT) cells play an important pathogenic role. Also, recent reports indicated that a cytokine, thymic stromal lymphopoietin (TSLP), is essential for the development of antigen-induced asthma. Here we examined the relationship between NKT cells and TSLP in a mouse model of asthma. NKT cells express TSLP receptor as well as IL-7 receptor alpha-chain. TSLP acts on NKT cells to preferentially increase their IL-13 production but not IFN-gamma and IL-4. In an allergen-induced asthma model, the development of airway hyperreactivity, a cardinal feature of asthma, was increased in TSLP transgenic mice, whereas this effect was not observed in TSLP transgenic mice lacking NKT cells. Interestingly, in the NKT cell-lacking TSLP transgenic mice, pulmonary eosinophilia and increase in IgE did not improve. Pulmonary lymphocytes from the NKT cell-lacking TSLP transgenic mice produced much less IL-13 upon CD3 stimulation than those from NKT cell-competent TSLP transgenic mice. These resultssuggest that, in allergen-induced asthma, TSLP acts on NKT cells to enhance airway hyperreactivity by upregulating their IL-13 production, whereas eosinophilia and IgE production are not influenced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号