首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In human and mouse, most imprinted genes are arranged in chromosomal clusters. Their linked organization suggests co-ordinated mechanisms controlling imprinting and gene expression. The identification of local and regional elements responsible for the epigenetic control of imprinted gene expression will be important in understanding the molecular basis of diseases associated with imprinting such as Beckwith- Wiedemann syndrome. We have established a complete contig of clones along the murine imprinting cluster on distal chromosome 7 syntenic with the human imprinting region at 11p15.5 associated with Beckwith- Wiedemann syndrome. The cluster comprises approximately 1 Mb of DNA, contains at least eight imprinted genes and is demarcated by the two maternally expressed genes Tssc3 (Ipl) and H19 which are directly flanked by the non-imprinted genes Nap1l4 (Nap2) and Rpl23l (L23mrp), respectively. We also localized Kcnq1 (Kvlqt1) and Cd81 (Tapa-1) between Cdkn1c (p57(Kip2)) and Mash2. The mouse Kcnq1 gene is maternally expressed in most fetal but biallelically transcribed in most neonatal tissues, suggesting relaxation of imprinting during development. Our findings indicate conserved control mechanisms between mouse and human, but also reveal some structural and functional differences. Our study opens the way for a systematic analysis of the cluster by genetic manipulation in the mouse which will lead to animal models of Beckwith-Wiedemann syndrome and childhood tumours.   相似文献   

2.
A major barrier to conceptual advances in understanding the mechanisms and regulation of imprinting of a genomic region is our relatively poor understanding of the overall organization of genes and of the potentially important cis-acting regulatory sequences that lie in the nonexonic segments that make up 97% of the genome. Interspecies sequence comparison offers an effective approach to identify sequence from conserved functional elements. In this article we describe the successful use of this approach in comparing a approximately 1-Mb imprinted genomic domain on mouse chromosome 7 to its orthologous region on human 11p15.5. Within the region, we identified 112 exons of known genes as well as a novel gene identified uniquely in the mouse region, termed Msuit, that was found to be imprinted. In addition to these coding elements, we identified 33 CpG islands and 49 orthologous nonexonic, nonisland sequences that met our criteria as being conserved, and making up 4.1% of the total sequence. These conserved noncoding sequence elements were generally clustered near imprinted genes and the majority were between Igf2 and H19 or within Kvlqt1. Finally, the location of CpG islands provided evidence that suggested a two-island rule for imprinted genes. This study provides the first global view of the architecture of an entire imprinted domain and provides candidate sequence elements for subsequent functional analyses.  相似文献   

3.
4.
Genomic imprinting is the result of a gamete-specific modification leading to parental origin-specific gene expression in somatic cells of the offspring. Several embryonal tumors show loss of imprinting of genes clustered in human chromosome 11p15.5, an important tumor suppressor gene region, harboring several normally imprinted genes. TSSC3, a gene homologous to mouse TDAG51, implicated in Fas-mediated apoptosis, is also located in this region between hNAP2 and p57 (KIP2). TSSC3 is the first apoptosis-related gene found to be imprinted in placenta, liver and fetal tissues where it is expressed from the maternal allele in normal human development. This study investigated the imprinting status of TSSC3 in human normal, adult brain and in human neuroblastomas, medulloblastomas and glioblastomas. A polymorphism in exon 1 at position 54 was used to analyze the allelic expression of the TSSC3 gene by a primer oligo base extension (PROBE) assay using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found that the TSSC3 gene is not imprinted in human normal, adult brain and blood. In contrast, strong allelic bias resembling imprinting could be detected in most examined tumor specimens. The results demonstrate for the first time that the tumors under investigation are associated with a retention of imprinting of a potential growth inhibitory gene.  相似文献   

5.
We previously reported the isolation of a 2.5 Mb tumor-suppressing subchromosomal transferable fragment (STF) from human chromosome 11p15 and the identification of nine known genes and four novel genes within this STF. We now report the isolation of two novel cDNAs, designated here as TSSC4 and TSSC6 (tumor-suppressing STF cDNA 4 and 6), located within the STF. TSSC4 and TSSC6 encode predicted proteins of 329 and 290 amino acids, respectively, with no close similarity to previously reported proteins. TSSC4 and TSSC6 are both located in the center of a 1 Mb imprinted domain, which contains the imprinted genes TSSC3, TSSC5, p57(KIP2), KVLQT1, ASCL2, IGF2 and H19. However, we found that neither TSSC4 nor TSSC6 was significantly imprinted in any of the fetal or extra-embryonic tissues examined. Based on this result, the imprinted gene domain of 11p15 appears to contain at least two imprinted subdomains, between which TSSC4 and TSSC6 substantially escape imprinting, due either to lack of initial silencing or to an early developmental relaxation of imprinting.  相似文献   

6.
Genomic imprinting is the epigenetic marking of gene subsets resulting in monoallelic or predominant expression of one of the two parental alleles according to their parental origin. We describe the systematic experimental verification of a prioritized 16 candidate imprinted gene set predicted by sequence-based bioinformatic analyses. We used Quantification of Allele-Specific Expression by Pyrosequencing (QUASEP) and discovered maternal-specific imprinted expression of the Kcnk9 gene as well as strain-dependent preferential expression of the Rarres1 gene in E11.5 (C57BL/6 x Cast/Ei)F1 and informative (C57BL/6 x Cast/Ei) x C57BL/6 backcross mouse embryos. For the remaining 14 candidate imprinted genes, we observed biallelic expression. In adult mouse tissues, we found that Kcnk9 expression was restricted to the brain and also was maternal-specific. QUASEP analysis of informative human fetal brain samples further demonstrated maternal-specific imprinted expression of the human KCNK9 orthologue. The CpG islands associated with the mouse and human Kcnk9/KCNK9 genes were not differentially methylated, but strongly hypomethylated. Thus, we speculate that mouse Kcnk9 imprinting may be regulated by the maternal germline differentially methylated region in Peg13, an imprinted non-coding RNA gene in close proximity to Kcnk9 on distal mouse chromosome 15. Our data have major implications for the proposed role of Kcnk9 in neurodevelopment, apoptosis and tumourigenesis, as well as for the efficiency of sequence-based bioinformatic predictions of novel imprinted genes.  相似文献   

7.
8.
Genes subject to genomic imprinting generally occur in clusters of hundreds of kilobases. These domains exhibit several gamete of origin- dependent manifestations, including a pattern of asynchronous replication when studied by fluorescence in situ hybridization (FISH). We find a transition from asynchronous replication at the imprinted mouse H19 gene to synchronous replication at the downstream Rpl23 gene, the human homologue of which appears to be non-imprinted. Two-colour FISH demonstrates that this transition is due solely to a difference in replication timing between the upstream and downstream chromatin on the later-replicating (maternal) chromosome. This difference is lost in mice deleted for the H19 gene body and 9.9 kb of upstream DNA when this deletion is maternally inherited, with synchronous replication patterns extending over 110 kb upstream from the deleted area. No effect is seen when the deletion is paternally inherited. The presence of a boundary element in this region has been suggested by observations of position- independent expression of H19 -containing transgenes and the blocking of accessibility of downstream enhancers to the upstream Igf2 and Ins2 genes on the maternal chromosome. The FISH studies presented here demonstrate the insulation of replication patterns within the imprinted domain from downstream, non-imprinted chromatin, mediated by an element at the H19 locus which is subject to genomic imprinting.   相似文献   

9.
The genomic organization of the human protocadherin alpha, beta, and gamma gene clusters (designated Pcdh alpha [gene symbol PCDHA], Pcdh beta [PCDHB], and Pcdh gamma [PCDHG]) is remarkably similar to that of immunoglobulin and T-cell receptor genes. The extracellular and transmembrane domains of each protocadherin protein are encoded by an unusually large "variable" region exon, while the intracellular domains are encoded by three small "constant" region exons located downstream from a tandem array of variable region exons. Here we report the results of a comparative DNA sequence analysis of the orthologous human (750 kb) and mouse (900 kb) protocadherin gene clusters. The organization of Pcdh alpha and Pcdh gamma gene clusters in the two species is virtually identical, whereas the mouse Pcdh beta gene cluster is larger and contains more genes than the human Pcdh beta gene cluster. We identified conserved DNA sequences upstream of the variable region exons, and found that these sequences are more conserved between orthologs than between paralogs. Within this region, there is a highly conserved DNA sequence motif located at about the same position upstream of the translation start codon of each variable region exon. In addition, the variable region of each gene cluster contains a rich array of CpG islands, whose location corresponds to the position of each variable region exon. These observations are consistent with the proposal that the expression of each variable region exon is regulated by a distinct promoter, which is highly conserved between orthologous variable region exons in mouse and human.  相似文献   

10.
11.
BACKGROUND: The paternal duplication of mouse distal chromosome 12 leads to late embryonal/neonatal lethality and growth promotion, whereas maternal duplication leads to late embryonal lethality and growth retardation. Human paternal or maternal uniparental disomies of chromosome 14q that are syntenic to mouse distal chromosome 12 have also been reported to show some imprinting effects on growth, mental activity and musculoskeletal morphology. For the isolation of imprinted genes in this region, a systematic screen of maternally expressed genes (Megs) was carried out by our subtraction-hybridization method using androgenetic and normally fertilized embryos. RESULTS: We have isolated seven candidate clones of the mouse Meg gene. Among them, we identified a novel maternally expressed imprinted gene, Meg3, on mouse distal chromosome 12 and showed that it was identical to the Gtl2 gene. We also found that the human homologue MEG3 on chromosome 14q was also monoallelically expressed. CONCLUSIONS: This is the first identification of the imprinting gene, both on mouse distal chromosome 12 and on human chromosome 14q, respectively. Because there are no obvious open reading frames in either the mouse Meg3/Gtl2 or human MEG3, the function of these genes remains unclear. However, this result will provide a good basis for the further investigation of several important imprinted genes in this chromosomal region.  相似文献   

12.
An understanding of the role of imprinted genes in primate development requires the identification of suitable genetic markers that allow analysis of allele-specific expression and methylation status. Four genes, NDN (Necdin), H19, SNRPN and IGF2, known to be imprinted in mice and humans, were selected for study in rhesus monkeys along with two imprinting centres (ICs) associated with the regulation of H19/IGF2, NDN and SNRPN. GAPD was employed as a non-imprinted control gene. Primers designed to amplify polymorphic regions in these genes and ICs were based on human sequences. Genomic DNA was isolated from peripheral blood leukocytes of 93 rhesus macaques of Indian or Chinese-origin. Sequence analysis of amplicons resulted in the identification of 32 unique SNPs. Country-of-origin related differences in SNP distributions were evident. Since disruptions in imprinted gene expression and associated developmental abnormalities may result from in vitro embryo manipulation, we also examined imprinting in NDN, H19, SNRPN and IGF2 in rhesus monkey infants produced by natural mating or by ICSI. Muscle biopsies followed by RT-PCR and sequence analysis were performed in four heterozygous animals produced by natural mating and all four genes were expressed monoallelically supporting the conclusion that these genes are normally imprinted in monkeys. In the case of ICSI, five informative infants were selected based on parental analysis. Allele-specific studies indicated that the expected uniparental expression patterns were retained in animals produced from manipulated embryos. Moreover, methylation analysis revealed that CpG islands within H19/IGF2 and SNURF/SNRPN ICs were differentially methylated. The approach described here will allow examination of imprinting in the embryos and embryonic stem cells of the monkey.  相似文献   

13.
BACKGROUND: Genomic imprinting significantly influences development, growth and behaviour in mammals. Systematic screening of imprinted genes has been extensively carried out to identify the genes responsible for imprinted phenotypes and to elucidate the biological significance of this phenomenon. In this study, we applied DNA chip technology for isolating paternally expressed imprinted genes (Pegs). We compared the resulting expression profiles of parthenogenetic and fertilized control embryos to identify novel imprinted genes. RESULTS: A novel paternally expressed mouse imprinted gene, Peg9/Dlk1, was identified. Consistent with this finding, the paternal expression of its human homologue, PEG9/DLK1, was also confirmed. These two genes form imprinted gene clusters with the reciprocally imprinted mouse Meg3/Gtl2 and human MEG3 genes that we first identified on distal chromosome 12 and chromosome 14q32, respectively. CONCLUSIONS: As DNA chip technology allows us to quickly screen a large number of genes, using this technology to search for imprinted genes could accelerate the identification of genes responsible for human and mouse genetic diseases. Dlk1 and DLK1, which encode transmembrane proteins, have six EGF-like repeats and show homology to the Delta gene in Drosophila melanogaster. Because of its homology to mammalian Delta homologues, PEG9/DLK1 may contribute to the scoliosis phenotype observed in maternal uniparental disomy 14 (mUPD14) patients.  相似文献   

14.
The CC chemokines are a closely related subfamily of the chemokine superfamily. Most of the CC chemokine genes form a cluster on chromosome 11 in mice and chromosome 17 in humans. To date, 11 and 16 functional genes have been localized within the mouse and human clusters, respectively. Notably, some of the genes within these clusters appear to have no counterparts between the two species, and the orthologous relationships of some of the genes are difficult to establish solely on the basis of amino acid similarity. In this study, we have taken a comparative genomic approach to reveal some of the features that may be involved in the dynamic evolution of these gene clusters. We sequenced a 122-kb region containing five chemokine genes of the mouse CC cluster. This mouse sequence was combined with those determined by the Mouse Genome Sequencing Project, and the entire sequence of the mouse CC cluster was compared with that of the corresponding cluster in the human genome by percent identity plot and dot-plot analyses. Although no additional chemokine genes have been found in these clusters, our analysis has revealed that numerous gene rearrangements have occurred even after the diversification of rodents and primates, resulting in several species-specific chemokine genes and pseudogenes. In addition, phylogenetic analysis and comparison of the genomic sequences unambiguously identified the orthologous relationships of some of the chemokine genes in the mouse and human CC gene clusters.  相似文献   

15.
16.
17.
Human chromosome 11p15.5 harbors an intriguing imprinted gene cluster of 1 Mb. This imprinted domain is implicated in a wide variety of malignancies and Beckwith-Wiedemann syndrome (BWS). Recently, several lines of evidence have suggested that the BWS-associated imprinting cluster consists of separate chromosomal domains. We have previously identified LIT1, a paternally expressed antisense RNA within the KvLQT1 locus through a positional screening approach using human monochromosomal hybrids. KvLQT1 encompasses the translocation breakpoint cluster in BWS and patients exhibit frequent loss of maternal methylation at the LIT1 CpG island, implying a regulatory role for the LIT1 locus in coordinate control of the imprinting cluster. Here we generated modified human chromosomes carrying a targeted deletion of the LIT1 CpG island using recombination-proficient chicken DT40 cells. Consistent with the prediction, this mutation abolished LIT1 expression on the paternal chromosome, accompanied by activation of the normally silent paternal alleles of multiple imprinted loci at the centromeric domain including KvLQT1 and p57(KIP2). The deletion had no effect on imprinting of H19 located at the telomeric end of the cluster. Our findings demonstrate that the LIT1 CpG island can act as a negative regulator in cis for coordinate imprinting at the centromeric domain, thereby suggesting a role for the LIT1 locus in a BWS pathway leading to functional inactivation of p57(KIP2). Thus, the targeting and precise modification of human chromosomal alleles using the DT40 cell shuttle system can be used to define regulatory elements that confer long-range control of gene activity within chromosomal domains.  相似文献   

18.
19.
Chromosomal regions subject to genomic imprinting comprise a functional domain exhibiting parental-specific expression of genes and hence may take a unique chromatin structure. Here we have examined the chromatin packaging state of allelic sites in the Zfp127/Snrpn locus on mouse chromosome 7 and in the Igf2r locus on mouse chromosome 17 with an assay consisting of chromatin fractionation and allele-specific detection. The results showed that non-transcribed alleles of Igf2r are packaged more compactly than transcribed alleles in F(1) hybrid mice of both types of cross between C57BL/6 and MSM strains, whereas a non-imprinted gene, Sod-2, in the vicinity of Igf2r does not show such a difference. This indicates a close correlation between imprinting and the differential packaging of chromatin. On the other hand, the Zfp127/Snrpn locus showed such an allele-specific fractionation pattern only in F(1) hybrid mice of a cross but not in those of the reciprocal cross. Analysis of the congenic mice produced for this locus did not provide any difference. These results suggest that chromatin of imprinted domains in different compaction levels is affected by distinct blueprints in homologous chromosomes that are heritable through the germ line.  相似文献   

20.
We searched for novel imprinted genes in a region of human chromosome 11p15.5, which contains several known imprinted genes. Here we describe the cloning and characterization of the IPL ( I mprinted in P lacenta and L iver) gene, which shows tissue-specific expression and functional imprinting, with the maternal allele active and the paternal allele relatively inactive, in many human and mouse tissues. Human IPL is highly expressed in placenta and shows low but detectable expression in fetal and adult liver and lung. Mouse Ipl maps to the region of chromosome 7 which is syntenic with human 11p15.5 and this gene is expressed in placenta and at higher levels in extraembryonic membranes (yolk sac), fetal liver and adult kidney. Mouse and human IPL show sequence similarity to TDAG51 , a gene which was shown to be essential for Fas expression and susceptibility to apoptosis in a T lymphocyte cell line. Like several other imprinted genes, mouse and human IPL genes are small and contain small introns. These data expand the repertoire of known imprinted genes and will be helpful in testing the mechanism of genomic imprinting and the role of imprinted genes in growth regulation.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号