首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
There is a growing interest in the development of methods to characterize the allergenic properties of novel proteins, particularly those expressed by transgenic crop plants. Approaches to the direct evaluation of allergenic potential have focused generally on the ability of proteins to induce antibody (particularly IgE antibody) after systemic (intraperitoneal; i.p.) or gavage administration to high IgE responder strain rodents. To date there has been no systematic comparison of the reliability, sensitivity or selectivity of these approaches. We have, therefore, compared antibody (IgG and IgE) responses induced in Brown Norway (BN) rats by daily gavage administration and in BALB/c strain mice following intraperitoneal or gavage exposure to food proteins of varying allergenic potential. Animals were exposed to the allergens peanut agglutinin and ovalbumin (OVA) or to a crude potato protein extract (PPE) containing acid phosphatase activity, a common foodstuff which appears to be of low allergenicity. All test proteins were clearly immunogenic when administered by gavage to BN rats, with measurable, and in some cases very vigorous, IgG antibody responses recorded for all animals. Identical exposure of BALB/c strain mice also stimulated detectable IgG antibody responses, with particularly high titers recorded following treatment with peanut agglutinin and somewhat less vigorous responses induced by OVA and PPE. Despite these high titer IgG antibody responses, however, none of the proteins provoked detectable IgE antibody following gavage administration to BN rats. In contrast, in BALB/c mice oral exposure to peanut agglutinin elicited high titer IgE antibody, although IgE antibody responses to both OVA and PPE were much weaker. Parenteral (i.p.) treatment of BALB/c strain mice with each of the test materials induced relatively high titer IgG antibody and a differential potential to stimulate IgE antibody was observed. High titer IgE responses were provoked by i.p. administration of peanut agglutinin and OVA, whereas PPE stimulated little or no detectable IgE antibody. It would appear, therefore, that while it is possible to elicit robust IgE responses by gavage exposure of BALB/c strain mice to some protein allergens, such as peanut agglutinin, such responses are generally weaker and less consistent than those provoked by i.p. administration. Furthermore, gavage treatment failed to induce detectable IgE responses in the BN rat, suggesting that the ability these animals to mount IgE responses is somewhat variable. Following i.p. administration to BALB/c strain mice, these proteins displayed immunological properties consistent with what is known of their allergenic potential in humans, suggesting that, following further evaluation with a wider range of proteins, this method may provide one approach to the identification of potential protein allergens.  相似文献   

2.
Whereas many foreign proteins are immunogenic, only a proportion is associated commonly with allergy, having the potential to induce the quality of immune response necessary for IgE antibody production and the development of immediate type hypersensitivity reactions in the gastrointestinal and/or respiratory tracts. In the context of toxicological evaluations there is a need to identify those properties that confer on proteins the ability to provoke allergic reactions. The characteristics of antibody responses induced in BALB/c strain mice following administration of ovalbumin (OVA), a significant human allergen, have been compared with those provoked by bovine serum albumin (BSA), a protein considered to have more limited allergenic potential. Intranasal or intraperitoneal (ip) administration of BSA or OVA elicited vigorous IgG and IgG1 antibody responses. Differential IgE antibody production was observed, however, with OVA stimulating relatively high IgE antibody titres at all doses tested whereas no or low titre IgE antibody was detected following exposure to BSA. Furthermore, a differential capacity for IgG2a antibody responses was observed, with only BSA provoking high titres of this IgG subclass. The relative quality of induced responses was equivalent following administration of these proteins via mucosal (in) tissue or via a non-mucosal (ip) route of exposure. IgG2a antibody production is promoted by the type 1 cytokine interferon gamma (IFN-gamma), whereas IFN-gamma and the type 2 cell product interleukin 4 exert reciprocal antagonistic effects on IgE antibody responses. Although cytokine expression patterns were not analysed in this series of experiments, the differential IgE and IgG subclass antibody responses induced by BSA and OVA are consistent with the preferential activation of T helper (Th) 1- and Th2-type cells, respectively. These data indicate that proteins can provoke in mice characteristic antibody (IgE and IgG) isotype profiles suggestive of discrete T lymphocyte responses and that such differences may be associated with variable allergenic activity.  相似文献   

3.
Characteristics of antibody responses induced in mice by protein allergens   总被引:5,自引:0,他引:5  
Whereas many foreign proteins are immunogenic, only a proportion is also allergenic, having the capacity to induce the quality of immune response necessary to support the production of IgE antibody. We have demonstrated previously that intraperitoneal administration to mice of proteins such as ovalbumin (OVA) or the industrial enzyme A. oryzae lipase, which possess significant allergenic potential, stimulates the production of both IgG and IgE antibody. Identical exposure to bovine serum albumin (BSA), a protein with limited potential to cause immediate respiratory or gastrointestinal hypersensitivity reactions, induced IgG responses only. In the current investigations, the quality of immune responses induced following exposure to these proteins via mucosal tissue (intranasal) has been compared with those provoked following administration via a non-mucosal (intraperitoneal) route of exposure. Intranasal or intraperitoneal administration of BSA, OVA or A. oryzae lipase elicited in each case vigorous IgG and IgG1 antibody responses. For all three proteins, at every concentration tested, and via both routes of exposure, IgG1 antibody titres paralleled closely IgG titres. However, the three materials displayed a differential potential to provoke IgE responses and this correlated with their known allergenic potential in humans. Thus, OVA and A. oryzae lipase stimulated strong IgE antibody responses, whereas BSA provoked low titre IgE only at the highest concentration tested (5% administered intraperitoneally). The quality of induced responses was not affected by the route of exposure. It would appear, therefore, that the stimulation of IgG and IgG1 antibody responses is a reflection of protein immunogenicity whereas protein allergenicity is associated with the induction of strong IgE responses.  相似文献   

4.
Assessment of the potential allergenicity of novel proteins, including those expressed in genetically modified plants, is an important issue. In previous studies, we have shown that the IgE measurement induced by systemic exposure of BALB/c mice to a range of proteins correlates broadly with what is known of their allergenic potential in humans. The approach used a homologous passive cutaneous anaphylaxis (PCA) assay that reflects IgE-dependent biological activity and is of sufficient sensitivity to detect IgE production in the absence of adjuvant. In previous studies, the immunization phase was conducted independently in two separate facilities, and the subsequent analytical work (PCA) conducted in a single facility. The purpose here was to further evaluate the transferability of this approach. To this end, BALB/c mice were exposed to a range of doses of peanut agglutinin or ovalbumin, allergenic proteins of peanut and hen's egg, respectively, in two independent laboratories. Serial doubling dilutions of serum pooled for each treatment group were analyzed for specific IgE. At higher doses of allergen very similar, or identical, IgE titers were achieved in both laboratories, although at lower doses, responses were somewhat more variable. These data demonstrate that, although technically demanding, the measurement of protein allergen-induced IgE antibody production in mice using PCA is relatively robust and is transferable and reproducible between laboratories. This approach may provide a useful tool for the safety assessment of novel proteins and suggests that continued evaluation of the approach with a wider range of protein allergens and non-sensitising proteins is justified.  相似文献   

5.
The ability of food proteins to resist digestion in simulated gastric fluid (SGF) correlates with allergenic potential. The purpose of the current investigations was to determine whether this association is due solely to the failure of unstable proteins to elicit an immune response when administered orally. We have examined immune responses induced in BALB/c mice by gavage administration of ovalbumin (OVA) and a crude potato protein extract (PPE) containing acid phosphatase activity. The stability of OVA and PPE in SGF was measured using sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The ability of these proteins to stimulate specific IgG and IgE antibody production in mice following parenteral (intraperitoneal; ip) or oral (gavage) exposure was compared using enzyme-linked immunosorbent and homologous passive cutaneous anaphylaxis assays, respectively. Both OVA and PPE induced specific IgG antibody responses when administered either by gavage or by ip injection. Parenteral, but not gavage, exposure to OVA was associated with robust IgE antibody responses. Administration of PPE failed to stimulate strong IgE production via either route of exposure. Differential stability in SGF was observed, with PPE being digested extremely rapidly (within 1 min), whereas OVA was more resistant. The strong association reported by others between stability in SGF and allergenic potential is unlikely to be solely due to orally-ingested labile proteins failing to provoke immune responses due to degradation in the stomach.  相似文献   

6.
Assessment of the potential allergenicity (IgE‐inducing properties) of novel proteins is an important challenge in the overall safety assessment of foods. Resistance to digestion with pepsin is commonly measured to characterize allergenicity, although the association is not absolute. We have previously shown that specific IgE antibody production induced by systemic [intraperitoneal (i.p.)] exposure of BALB/c strain mice to a range of proteins correlates with allergenic potential for known allergens. The purpose of the present study was to explore further the utility of these approaches using the food allergen, actinidin. Recently, kiwifruit has become an important allergenic foodstuff, coincident with its increased consumption, particularly as a weaning food. The ability of the kiwifruit allergen actinidin to stimulate antibody responses has been compared with the reference allergen ovalbumin, and with the non‐allergen bovine haemoglobin. Haemoglobin was rapidly digested by pepsin whereas actinidin was resistant unless subjected to prior chemical reduction (reflecting intracellular digestion conditions). Haemoglobin stimulated detectable IgG antibody production at relatively high doses (10%), but failed to provoke detectable IgE. In contrast, actinidin was both immunogenic and allergenic at relatively low doses (0.25% to 1%). Vigorous IgG and IgG1 antibody and high titre IgE antibody responses were recorded, similar to those provoked by ovalbumin. Thus, actinidin displays a marked ability to provoke IgE, consistent with allergenic potential. These data provide further encouragement that in tandem with analysis of pepsin stability, the induction of IgE after systemic exposure of BALB/c strain mice provides a useful approach for the prospective identification of protein allergens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The present study was to investigate the possibility of using the BALB/c mouse as an animal model for assessing the potential allergenicity of proteins.Specific IgE and IgG1 against ovalbumin were induced by dosing BALB/c mice via intraperitoneal injection (absence of adjuvant). The effects of various allergen doses (5 mg, 0.5 mg or 0.05 mg OVA), sensitization times (twice or five times), timepoints (day 14 or day 28) and sex (male or female) were studied. IL-4, IFN-γ, OVA-specific IgE and IgG1 were measured by enzyme-linked immunosorbent assay (ELISA).A general finding was that mice treated with 0.05 mg OVA had the highest OVA-specific IgE and IgG1, statistically significant higher specific IgE and IgG1 were observed in groups sensitized five times than twice, OVA-specific IgE and IgG1 on day 28 were statistically higher than day 14, and higher IL-4 was observed in OVA-allergic mice than control mice.These results demonstrate that the BALB/c mouse model treated with 0.05 mg OVA intraperitoneally on days 0, 3, 6, 9, 12 might be used for further experiments. OVA-specific IgE and IgG1 should be detected on day 28. Further studies including reproducibility and other conditions were required before using the BALB/c mouse model for assessing the potential allergenicity of proteins.  相似文献   

8.
With the development of genetically modified crops, there has been a growing interest in available approaches to assess the potential allergenicity of novel gene products. We were not sure whether Cry1C could induce allergy. We examined the protein with three other proteins to determine the potential allergenicity of Cry1C protein from genetically modified rice. Female Brown Norway (BN) rats received 0.1 mg peanut agglutinin (PNA), 1 mg potato acid phosphatase (PAP), 1 mg ovalbumin (OVA) or 5 mg purified Cry1C protein dissolved in 1 mL water by daily gavage for 42 days to test potential allergenicity. Ten days after the last gavage, rats were orally challenged with antigens, and physiologic and immunologic responses were studied. In contrast to sensitization with PNA, PAP and OVA Cry1C protein did not induce antigen-specific IgG2a in BN rats. Cytokine expression, serum IgE and histamine levels and the number of eosinophils and mast cells in the blood of Cry1C group rats were comparable to the control group rats, which were treated with water alone. As Cry1C did not show any allergenicity, we make the following conclusion that the protein could be safety used in rice or other plants.  相似文献   

9.
Determination of protein allergenicity: studies in mice   总被引:17,自引:0,他引:17  
Dearman RJ  Kimber I 《Toxicology letters》2001,120(1-3):181-186
There is a need to identify and characterize the allergenic potential of novel proteins introduced into genetically-modified crop plants. Although several approaches have already been described, none of these measures directly the ability of proteins to cause allergic sensitization. For this reason there has been a growing interest in the development of suitable animal models. This article describes experience to date with a method based upon assessment of serological (IgG and IgE antibody) responses induced in BALB/c strain mice by proteins. Comparisons have been made between intraperitoneal (i.p.) administration and exposure by gavage using both allergenic and non-allergenic proteins. The available data indicate that responses provoked by i.p. exposure permit the identification of proteins that have the inherent potential to induce IgE antibody production and allergic sensitization. Moreover, this approach also provides a rank order of proteins with respect to allergenic potency that apparently reflects what is known of their relative sensitizing activity in humans. By comparison, oral exposure of mice by gavage is somewhat less sensitive. On this basis it is proposed that the inherent sensitizing potential of novel proteins can be evaluated as a function of IgE antibody responses stimulated by parenteral (i.p.) exposure of BALB/c mice.  相似文献   

10.
We sought to assess the allergenic potential of red gram by identifying and characterizing the responsible proteins. Immunoblotting was performed to detect IgE binding proteins. Identities of these proteins were confirmed by mass spectrometry. To evaluate allergenic potential, BALB/c mice were sensitized with red gram proteins and levels of specific immunoglobulins, histamine, Th2 cytokines were measured. Allergenic response was evident by significant increase in specific IgE, IgG1, histamine and Th2 cytokine levels. Prominent anaphylactic symptoms, discernible histopathological responses and down regulation of IFN-γ levels give strong support towards allergenicity of red gram proteins. IgE immunoblot detected five proteins; one of 66 kDa, three of 45 kDa (pI of ∼5.3, 5.9 and 6.6) and one of 30 kDa. All these proteins showed homology to known allergens of soybean (different subunits of β-conglycinin), lentil (Len c1 and Len c2), peanut (Ara h1) and pea (vicilin). In conclusion, five novel IgE binding proteins (namely Caj c1, Caj c2, Caj c3, Caj c4 and Caj c5) were identified as putative clinically relevant allergens.  相似文献   

11.
An animal model for food allergy is needed to assess genetically modified food crops for potential allergenicity. The ideal model must produce allergic antibody (IgE) to proteins differentially according to known allergenicity before being used to accurately identify potential allergens among novel proteins. The oral route is the most relevant for exposure to food antigens, and a protein's stability to digestion is a current risk assessment tool based on this natural route. However, normal laboratory animals do not mount allergic responses to proteins administered orally due to oral tolerance, an immunologic mechanism which specifically suppresses IgE. To circumvent oral tolerance and evoke differential IgE responses to a panel of allergenic and nonallergenic food extracts, female C3H/HeJ mice were exposed subcutaneously or orally with cholera toxin as an adjuvant. All foods elicited IgE by the subcutaneous route. Oral exposure, however, resulted in IgE to allergens (peanut, Brazil nut, and egg white) but not to nonallergens (spinach and turkey), provided that the dose and exposures were limited. Additionally, in vitro digestibility assays demonstrated the presence of digestion-stable proteins in the allergenic food extracts but not in the nonallergenic foods. Our results suggest that the subcutaneous route is inadequate to distinguish allergens from nonallergens, but oral exposure under the appropriate experimental conditions will result in differential allergic responses in accordance with known allergenicity. Moreover, those foods containing digestion-resistant proteins provoke allergic responses in this model, supporting the current use of pepsin resistance in the decision tree for potential allergenicity assessment.  相似文献   

12.
Allergy to chickpea or Garbanzo bean (Cicer arietinum) has been reported in the Indian population. Little information is found regarding allergenic events involved in the chickpea allergy; therefore, chickpea allergenicity assessment was undertaken. In vivo and ex vivo studies were carried out using BALB/c mice. Chickpea skin prick test positive patients have been used to extend this study in humans. Identification of allergens was carried out by simulated gastric fluids assay for pepsin resistant polypeptides and validated by IgE western blotting using chickpea sensitive humans and sensitized mice sera. Our data have shown the occurrence of a systemic anaphylactic reaction resulting in reduced body temperature after challenge along with significantly increased levels of IgE, IgG1, MMCP-1, CCL-2 as well as histamine. Further, increased Th1/Th2 (mixed) cytokine response was observed in spleen cell culture supernatants. Jejunum, lungs and spleen showed prominent histopathological changes specific for allergic inflammation. Immunoblotting with pooled sera of either sensitized mice or human sera recognized seven similar IgE binding polypeptides that may be responsible for chickpea induced hypersensitivity reactions. This study has addressed the allergenic manifestations associated with chickpea consumption and identifies the proteins responsible for allergenicity which may prove useful in diagnosis and management of allergenicity of legumes especially chickpea.  相似文献   

13.
With increased interest in genetically modified (GM) crop plants there is an important need to understand the properties that contribute to the ability of such novel proteins to provoke immune and/or allergic responses. One characteristic that may be relevant is glycosylation, particularly as novel expression systems (e.g. bacterial to plant) will impact on the protein glycoprofile. The allergenicity (IgE inducing) and immunogenicity (IgG inducing) properties of wild type native human lactoferrin (NLF) from human milk (hm) and neutrophil granules (n) and a recombinant molecule produced in rice (RLF) have been assessed. These forms of lactoferrin have identical amino acid sequences, but different glycosylation patterns: hmNLF and nNLF have complex glycoprofiles including Lewis (Le)(x) structures, with particularly high levels of Le(x) expressed by nNLF, whereas RLF is simpler and rich in mannose residues. Antibody responses induced in BALB/c strain mice by intraperitoneal exposure to the different forms of lactoferrin were characterised. Immunisation with both forms of NLF stimulated substantial IgG and IgE antibody responses. In contrast, the recombinant molecule was considerably less immunogenic and failed to stimulate detectable IgE, irrespective of endotoxin and iron content. The glycans did not contribute to epitope formation, with equivalent IgE and IgG binding recorded for high titre anti-NLF antisera regardless of whether the immunising NLF or the recombinant molecule were used substrates in the analyses. These data demonstrate that differential glycosylation profiles can have a profound impact on protein allergenicity and immunogenicity, with mannose and Le(x) exhibiting opposing effects. These results have clear relevance for characterising the allergenic hazards of novel proteins in GM crops.  相似文献   

14.
BACKGROUND: Peanut hypersensitivity is one of the most common food allergies and one of the most common causes of death by food anaphylaxis in children and adults. Cross-reactivity of peanut-specific antibody (Ab) with other legumes is frequently demonstrated but it still remains to be demonstrated whether these responses could lead to clinical signs of cross-allergenicity. OBJECTIVE: We sought to evaluate peanut-specific serum IgE and IgG1 antibody (Ab) responses and anaphylactic reaction in mice strains and to assess both cross-reactivity and cross-allergenicity of peanut and lupine. METHODS: Four mice strains (i.e., C3H, BALB/c, CBA and SJL) were sensitized to peanut by intraperitoneal (ip) injection of crude peanut protein extract with alum. Other groups were given oral peanut extract without adjuvant. Peanut-specific antibodies (Abs) and anaphylactic responses to peanut challenge were examined. RESULTS: The C3H, CBA (H-2(k)) and BALB/c (H2-(d)) mice exhibited high levels of peanut-specific serum IgE, IgG1 Ab responses after the intra-peritoneal sensitization. Only the two strains of mice in the H-2(k) background developed anaphylactic symptoms upon intra-peritoneal challenge with crude peanut protein extract. While cross-reactivity of peanut and lupine was confirmed by ELISA, no clinical symptom of cross-allergenicity was seen after challenge with lupine. Mice that were given oral peanut showed only increase in peanut-specific IgG2a, but no IgE or IgG1 Abs and failed to develop anaphylactic reactions following injection of either peanut or lupine protein. CONCLUSION: These results show that mice of different genetic backgrounds can be sensitized to peanut by ip injection to develop anti-peanut Abs that cross react with lupine. In addition, cross-allergenicity may not directly correlate with the presence of cross-reactive Abs since no clinical symptoms of cross-allergenicity was seen after ip challenge with lupine.  相似文献   

15.
Anthropogenically induced exposures may, due to their adjuvant effect, promote development of sensitisation to commonly occurring aeroallergens. No generally accepted model exists for determination of adjuvant effect of airborne substances. Therefore, BALB/cJ mice were exposed for 10 consecutive days with ovalbumin (OVA) solution, 25 mg/l-10 g/l (0.0025-1%) for 20 min/day, with and without the Al(OH)(3) adjuvant (0.5%). Four days after the last aerosol exposure, no OVA specific IgE and only low IgG1 were produced. Subsequent parenteral OVA administration showed that the 10 g/l solution induced full tolerance of the IgE response, whereas only partial tolerance was apparent with 25 mg/l OVA. The Al(OH)(3) adjuvant counteracted development of tolerance that was fully prevented at the 25 mg/l OVA concentration. Development of IgG1 was increased in a concentration-dependent manner with 500 mg/l-10 g/l OVA. No increase occurred at the 25 mg/l level, but addition of Al(OH)(3) increased IgG1 production to the same level as the higher OVA concentrations. Concentrations from 1.25 mg/l to 10 g/l OVA were studied with ten exposures followed by once-weekly aerosol exposure for uptil 6 weeks. In the range from 1.25 mg/l to 10 g/l, IgE production was time- and concentration-dependent. Both the IgE and IgG1 production were markedly promoted by Al(OH)(3). However, with aerosol exposures, the IgE antibody productions were not sufficient to increase the level of inflammatory cells in broncho-alveolar lavage fluid. Overall, this study showed that airborne Al(OH)(3) was able to counteract tolerance and increase specific IgE and IgG1 production.  相似文献   

16.
There is little knowledge about the factors that determine the allergenicity of food proteins. One aspect that remains to be elucidated is the effect of the food matrix on immune responses to food proteins. To study the intrinsic immunogenicity of allergens and the influence of the food matrix, purified peanut allergens (Ara h 1, Ara h 2, Ara h 3, or Ara h 6) and a whole peanut extract (PE) were tested in the popliteal lymph node assay (PLNA) and in an oral model of peanut hypersensitivity. In the PLNA, peanut proteins were injected into the hind footpad of BALB/c mice; in the oral exposure experiments C3H/HeOuJ mice were gavaged weekly with PE or allergens in the presence of cholera toxin (CT). Upon footpad injection, none of the allergens induced significant immune activation. In contrast, PE induced an increase in cell number, cytokine production, and activation of antigen-presenting cells. Furthermore, the presence of a food matrix enhanced the immune response to the individual allergens. Oral exposure to the purified allergens in the presence of CT induced specific IgE responses, irrespective of the presence of a food matrix. These results suggest that purified peanut allergens possess little intrinsic immune-stimulating capacity in contrast to a whole PE. Moreover, the data indicate that the food matrix can influence responses to individual proteins and, therefore, the food matrix must be taken into account when developing models for allergenic potential assessment.  相似文献   

17.
There is a growing need for the development of methods to characterize the allergenic properties of novel proteins, particularly those expressed by transgenic crop plants. Hence, there is considerable interest in the development of suitable animal models for this purpose. The production of specific IgE antibody has been reported following sensitization with food allergen via oral or systemic (intraperitoneal) routes of exposure. We have characterized cytokine profiles induced by intradermal treatment of BALB/c strain mice with a purified peanut allergen, Arachis hypogea lectin. Mice were exposed to peanut lectin by intradermal administration and the cytokine responses in the lymph node draining the site of exposure analyzed at the secreted protein level by enyzme-linked immunosorbent assay (ELISA) and cytokine mRNA level by ribonuclease protection assay (RPA). Exposure to peanut lectin, under conditions that induced robust IgE antibody titers, was found to be associated with a T helper 2 (Th2)-type cytokine expression profile at both the mRNA and secreted protein levels. Culture of na?ve lymph node cells with peanut lectin failed to stimulate marked proliferation or cytokine production, confirming this protein is not mitogenic for mouse lymphocytes. Furthermore, the expression of Th2 cytokines was associated with the effector/memory CD62L- cell population. Similar treatment with a non-allergenic protein, potato acid phosphatase, failed to induce Th2 cytokine expression. These data demonstrate that exposure of mice to peanut allergen results in the selective stimulation of a Th2-type response.  相似文献   

18.
During recent decades the prevalence of IgE-mediated (atopic) allergic diseases in Western Europe and the USA has been increasing dramatically. It has been suggested that one possible cause is the presence in the environment of chemicals that may act as adjuvants, enhancing immune and allergic responses. Certain commonly used phthalate plasticizers such as butyl benzyl phthalate (BBP) have been implicated in this way. In the current experiments, the impact of BBP, applied by a physiologically relevant exposure route, on the vigour of immune responses induced in BALB/c strain mice has been examined. Mice were immunized via subcutaneous injection with the reference allergen ovalbumin (OVA) and received concurrent topical treatment with doses of BBP that induced significant changes in liver weight. The generation of specific anti-OVA IgE and IgG1 antibodies was measured by passive cutaneous anaphylaxis and by enzyme-linked immunosorbant assays, respectively. Topical administration of BBP was without impact on anti-OVA IgE antibody responses, regardless of whether BBP was applied locally or distant to the site of OVA immunization. However, same-site treatment with high-dose BBP (100 mg) did result in a modest elevation in anti-OVA IgG1 antibody production, a subclass of antibody used as a surrogate marker of IgE responses. Taken together with human exposure data, these results suggest that the doses of phthalate encountered in the home environment are unlikely to be a major factor contributing to the increased incidence of asthma and allergy in the developed world.  相似文献   

19.
It has been suggested that occupational exposure to quaternary ammonium compounds (QACs) may promote the development of allergic airway diseases. In this study, hazard identifications of the adjuvant effect of cetylpyridinium chloride (CPC), dimethyldioctadecylammonium bromide (DDA), hexadecyltrimethylammonium bromide (HTA), and tetraethylammonium chloride (TEA) were performed in a screening bioassay. Female BALB/c mice were injected subcutaneously with the model allergen ovalbumin (OVA) alone or together with different quantities of one of the QAC test compounds. After one or two boosters, levels of OVA-specific IgE, IgG1 and IgG2a antibodies were measured in sera. CPC and DDA increased IgE and IgG1 antibody production, respectively, compared to the OVA control group, whereas HTA and TEA showed no adjuvant effect. Nevertheless, when TEA was given in combination with DDA, the adjuvant effect was up to six-fold higher than the adjuvant effect of DDA alone. Only DDA had a statistically significant adjuvant effect on IgG2a antibody levels.  相似文献   

20.
It has been suggested that one possible contributor to the increasing prevalence of IgE-mediated allergic diseases in Europe and the US is exposure to chemicals that may act as adjuvants. It has been reported previously that certain commonly used phthalate plasticizers, such as di-(2-ethylhexyl) phthalate (DEHP), are able to modify immune responses induced in mice by the common hens' egg allergen ovalbumin (OVA). However, the significance of these observations for human health is unclear, not least because the relevant studies have been conducted exclusively using subcutaneous administration of phthalates. We have therefore investigated the ability of DEHP when applied topically to affect anti-OVA antibody responses induced by subcutaneous exposure to OVA in BALB/c strain mice. Doses of DEHP (50mg) were used that resulted in a marked (approximately 30%) increase in liver weight. Dose-responses were conducted in order to identify doses of OVA that were sub-optimal for both anti-OVA IgG1 and IgE antibody responses: 1microg and 0.05microg, respectively. Under these conditions of exposure, topical administration of DEHP was without impact on antibody responses, regardless of whether DEHP was applied local or distant to the site of OVA immunization. Topical application of concentrations of DEHP that provoked marked systemic effects was without effect on the induction of immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号