首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) is an important factor for endothelial cell proliferation and a key regulator of blood vessel development in embryos and angiogenesis in adult tissues. Its biological activity is mediated by two receptor tyrosine kinases, VEGFR-1 (Flt-1) and VEGFR-2 (KDR). In contrast to VEGFR-2, a naturally occurring soluble form of the VEGFR-1 (sVEGFR-1) is produced by endothelial cells by differential splicing of the flt-1 gene, and it is a secreted gene product. In order to develop a specific enzyme-linked immunosorbent assay (ELISA) for the measurement of sVEGFR-1, we established five anti-human receptor antibodies and characterized them in detail. These antibodies recognize different epitopes located within the seven Ig-like domains of the extracellular receptor protein but have no neutralizing activity in ligand binding assays. Together with a polyclonal antiserum, a specific human sVEGFR-1 ELISA was developed using the mAb #190.11. The ELISA can detect human sVEGFR-1 with a minimum detection limit of 1 ng/ml. The ELISA does not show any cross-reactivity with other related soluble receptors. Using this assay, human sVEGFR-1 was measured in the supernatant of different VEGFR-1 expressing cell types. No sVEGFR-1 protein was detectable after heparin Sepharose treatment or size-exclusion filtration (< 30 kDa). The ELISA assay for sVEGFR-1 was also used to measure the amount of the soluble receptor in amniotic fluid samples of patients undergoing amniocentesis during the course of normal pregnancies. The concentration of the samples was in the range of 5-35 ng/ml. This ELISA could be useful powerful tool for investigations concerning the physiological function of the soluble receptor under normal and pathophysiological conditions.Furthermore, it may facilitate studies of the mechanisms of receptor production.  相似文献   

2.
Differential splicing of the flt-1 mRNA generates soluble variant of vascular endothelial growth factor (VEGF) receptor-1 (sVEGFR-1, also known as sFlt-1). The action of VEGF is antagonized by sVEGFR-1. Soluble VEGFR-1 binds to VEGF with a high affinity and therefore works to modulate VEGF and VEGF signaling pathway. In this study, the authors tested the hypothesis that VEGF-mediated endothelial cell angiogenesis is tightly modulated by the release of sVEGFR-1 and placental expression of sVEGFR-1 is upregulated by hypoxia. Immunolocalization studies showed progressively intense staining for sVEGFR-1 and VEGF in the trophoblast of placental villous explants throughout gestation. Endothelial cell migration studies using a modified Boyden's chamber showed a significant increase in cell migration in response to VEGF that was significantly attenuated in the presence of exogenous sVEGFR-1. Furthermore, stimulation of endothelial cells with VEGF led to a dose-dependent increase in the release of sVEGFR-1 as determined by enzyme-linked immunosorbent assay (ELISA). Exposure of normal placental villous explants to hypoxia (1% pO2) increased trophoblast expression of sVEGFR-1 when compared with tissue normoxia (5% pO2). In addition, conditioned media from hypoxia treated placental villous explants induced a significant increase in endothelial cell migration that was significantly reduced in presence of sVEGFR-1. Our study demonstrates that hypoxia positively regulates sVEGFR-1 protein expression in ex vivo trophoblasts, which control VEGF-driven angiogenesis.  相似文献   

3.
Early placental development occurs in an environment of relative hypoxia. Hypoxia promotes angiogenesis and up-regulates vascular endothelial growth factor (VEGF) expression while it down-regulates placenta growth factor (PIGF) that possess 53% homology with VEGF. Morphological studies show poor placental vascular development and an increase in the mitotic index of cytotrophoblasts in intrauterine growth restriction (IUGR). We hypothesized that the reported relatively high oxygen level in the intervillous space in contact with IUGR placental villi will limit angiogenesis by changes in VEGF and PIGF expression and function. Western immunoblot analysis demonstrates a diametric expression of PIGF and VEGF proteins throughout pregnancy with PIGF levels increasing and VEGF levels decreasing, consistent with placental oxygenation. In IUGR placentae, the ratio of PIGF/GAPDH mRNA was increased by 2.3-fold (p < 0.03) and PIGF protein levels were also increased, (p < 0.05) as compared with gestationally-matched normal placentae. PIGF mRNA and protein were localized to the trophoblast bilayer and villous mesenchyme of the human placenta throughout gestation. In vitro studies demonstrated that increasing oxygen tension (hyperoxia) up-regulated PIGF protein in term placental villous explants, whereas hypoxic culture of a term trophoblast choriocarcinoma cell line (BeWo) down-regulated PIGF mRNA and protein and VEGFR-1 (Flt-1) autophosphorylation. The addition of PIGF-1 to a spontaneously transformed first trimester cytotrophoblast cell line stimulated DNA synthesis while PIGF-2 had little effect. VEGF and PIGF exert their biological actions by means of a common receptor VEGFR-1. In the first trimester trophoblast cells, PIGF-1 increased the association of phosphorylated extracellular signal-related kinase (ERK) with VEGFR-1 immunoprecipitates while both PIGF-1 and PIGF-2 also potentiated endogenous VEGF mediated association of phosphorylated extracellular related kinase (ERK) with VEGFR-2 (KDR). More importantly, the addition of PIGF-1 had little effect while PIGF-2 inhibited cell growth in cultured endothelial cells derived from human umbilical vein. Nitric oxide (NO) is reported to promote angiogenesis and PIGF-2 inhibited the basal release of NO from the first trimester trophoblast. The tissue expression and functional studies support the hypothesis of "placental hyperoxia" in early-onset IUGR because hypoxia down-regulates trophoblast PIGF levels, PIGF expression is increased in IUGR, and PIGF-2 inhibits endothelial cell growth. Taken together, these changes provide a cellular explanation for the observed poor angiogenesis in the pathogenesis of IUGR and show that the two PIGF isoforms may modulate trophoblast and endothelial cell function differently, possibly through potentiation of VEGF mediated activation of VEGF-2.  相似文献   

4.
Human placental development combines elements of tumorigenesis and vasculogenesis. The organ's specialized epithelial cells, termed cytotrophoblasts, invade the uterus where they reside in the interstitial compartment. They also line uterine arteries and veins. During invasion, ectodermally derived cytotrophoblasts undergo pseudovasculogenesis, switching their adhesion molecule repertoire to mimic that of vascular cells. Failures in this transformation accompany the pregnancy complication preeclampsia. Here, we used a combination of in situ and in vitro analyses to characterize the cell's expression of vascular endothelial growth factor (VEGF) family ligands and receptors, key regulators of conventional vasculogenesis and angiogenesis. Cytotrophoblast differentiation and invasion during the first and second trimesters of pregnancy were associated with down-regulation of VEGF receptor (VEGFR)-2. Invasive cytotrophoblasts in early gestation expressed VEGF-A, VEGF-C, placental growth factor (PlGF), VEGFR-1, and VEGFR-3 and, at term, VEGF-A, PlGF, and VEGFR-1. In vitro the cells incorporated VEGF-A into the surrounding extracellular matrix; PlGF was secreted. We also found that cytotrophoblasts responded to the VEGF ligands they produced. Blocking ligand binding significantly decreased their expression of integrin alpha1, an adhesion molecule highly expressed by endovascular cytotrophoblasts, and increased apoptosis. In severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome, immunolocalization on tissue sections showed that cytotrophoblast VEGF-A and VEGFR-1 staining decreased; staining for PlGF was unaffected. Cytotrophoblast secretion of the soluble form of VEGFR-1 in vitro also increased. Together, the results of this study showed that VEGF family members regulate cytotrophoblast survival and that expression of a subset of family members is dysregulated in severe forms of preeclampsia.  相似文献   

5.
Few studies evaluated angiogenic/anti-angiogenic factors and endothelial (dys)function in both maternal and umbilical cord blood (UCB) in preeclampsia (PE). We aimed to clarify the role of placental growth factor (PlGF), vascular endothelial growth factor (VEGF), soluble vascular endothelial growth factor receptor 1 (VEGFR-1) and tissue plasminogen activator (tPA), by evaluating them in maternal and UCB in 42 normal and 46 preeclamptic (PEc) cases.

In PE, maternal and UCB PlGF were significantly lower; maternal VEGF, sVEGFR-1 and tPA were significantly higher. In UCB, sVEGFR-1 and tPA were significantly higher in PEc cases, while VEGF and PlGF were significantly lower. A significant correlation between maternal and UCB sVEGFR-1, and between sVEGFR-1 and tPA both in maternal and UCB, was observed in PEc cases.

In maternal and UCB circulation in PE, a close interaction seems to exist between endothelial dysfunction and angiogenesis disturbance, and sVEGFR-1 seems to play a central role in those disturbances.  相似文献   

6.
It has previously been suggested that in human brain tumours, endothelial cell proliferation during angiogenesis is regulated by a paracrine mechanism involving vascular endothelial growth factor (VEGF) and its receptors (VEGF receptor 1 and VEGF receptor 2). The mechanism of growth factor up-regulation is based on hypoxic activation of mRNA expression and mRNA stabilization and genetic events, leading to an increase of growth factor gene expression. The role of the other newly discovered VEGF family members with a high specificity for endothelial cells in the pathogenesis of glial neoplasms is unknown. To investigate which other members of the VEGF family are overexpressed in human brain tumours, the mRNA levels of placenta growth factor (PlGF), VEGF-A, and VEGF-B genes were determined by northern blot analysis in surgically obtained human meningiomas. In the 16 meningiomas examined, the mRNA for PlGF was highly expressed in four tumours and VEGF-A mRNA was highly abundant in three tumour samples. There was no close correlation between PlGF mRNA levels and VEGF-A expression levels. VEGF-B mRNA was abundantly expressed in all tumour samples at uniform levels. In a PlGF-positive tumour sample, immunoreactive VEGFR-1 and VEGFR-2 were detected in endothelial cells of the blood vessels. PlGF protein was detectable in most but not all capillaries of the tumour. PlGF is thus highly up-regulated in a subset of human meningiomas and may therefore have functions, in some tumour vessels, connected to endothelial cell maturation and tube formation. These findings suggest that PlGF, in addition to VEGF-A, may be another positive factor in tumour angiogenesis in human meningiomas. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
Solitary fibrous tumor (SFT) is an uncommon tumor first reported in the pleura, but recently described in other tissues. CD34, which is expressed in hematopoietic stem cells, endothelial progenitor cells and vascular endothelial cells, is observed in most SFT and some investigators believe that its expression is a definitive marker of this tumor. In the present study, the expression of vascular endothelial cell markers, such as vascular endothelial growth factor receptor (VEGFR)-1 (flt-1), VEGFR-2 (flk-1/KDR), Tie-2 and c-Met, was examined in SFT to clarify the relationship between SFT and endothelial cells. By immunohistochemical staining of tumor cells from 26 patients, VEGFR-1 was detected in 24 (92%), VEGFR-2 in five (19%), Tie-2 in 14 (54%), and c-Met, a specific receptor of hepatocyte growth factor (HGF) in 23 patients (88%). Furthermore, VEGFR-3 (flt-4) immunoreactivity was detected in eight of 26 patients (31%). In contrast, VEGF, VEGF-C and HGF, which are ligands for the receptors, were not localized in the SFT cells. These findings indicate that most SFT may closely relate to vascular or lymphatic endothelial cells and the endothelial growth factors may contribute to the growth of SFT in a paracrine manner.  相似文献   

8.

Background

Several proteins that promote angiogenesis are overexpressed in hepatocellular carcinoma (HCC) and have been implicated in disease pathogenesis. Sunitinib has antiangiogenic activity and is an oral multitargeted inhibitor of vascular endothelial growth factor receptors (VEGFRs)-1, -2, and -3, platelet-derived growth factor receptors (PDGFRs)-α and -β, stem-cell factor receptor (KIT), and other tyrosine kinases. In a phase II study of sunitinib in advanced HCC, we evaluated the plasma pharmacodynamics of five proteins related to the mechanism of action of sunitinib and explored potential correlations with clinical outcome.

Methods

Patients with advanced HCC received a starting dose of sunitinib 50 mg/day administered orally for 4 weeks on treatment, followed by 2 weeks off treatment. Plasma samples from 37 patients were obtained at baseline and during treatment and were analyzed for vascular endothelial growth factor (VEGF)-A, VEGF-C, soluble VEGFR-2 (sVEGFR-2), soluble VEGFR-3 (sVEGFR-3), and soluble KIT (sKIT).

Results

At the end of the first sunitinib treatment cycle, plasma VEGF-A levels were significantly increased relative to baseline, while levels of plasma VEGF-C, sVEGFR-2, sVEGFR-3, and sKIT were significantly decreased. Changes from baseline in VEGF-A, sVEGFR-2, and sVEGFR-3, but not VEGF-C or sKIT, were partially or completely reversed during the first 2-week off-treatment period. High levels of VEGF-C at baseline were significantly associated with Response Evaluation Criteria in Solid Tumors (RECIST)-defined disease control, prolonged time to tumor progression (TTP), and prolonged overall survival (OS). Baseline VEGF-C levels were an independent predictor of TTP by multivariate analysis. Changes from baseline in VEGF-A and sKIT at cycle 1 day 14 or cycle 2 day 28, and change in VEGF-C at the end of the first off-treatment period, were significantly associated with both TTP and OS, while change in sVEGFR-2 at cycle 1 day 28 was an independent predictor of OS.

Conclusions

Baseline plasma VEGF-C levels predicted disease control (based on RECIST) and were positively associated with both TTP and OS in this exploratory analysis, suggesting that this VEGF family member may have utility in predicting clinical outcome in patients with HCC who receive sunitinib.

Trial registration

ClinicalTrials.gov: NCT00247676  相似文献   

9.
The retinal pigment epithelium (RPE) maintains the choriocapillaris (CC) in the normal eye and is involved in the pathogenesis of choroidal neovascularization in age-related macular degeneration. Vascular endothelial growth factor-A (VEGF) is produced by differentiated human RPE cells in vitro and in vivo and may be involved in paracrine signaling between the RPE and the CC. We investigated whether there is a polarized secretion of VEGF by RPE cells in vitro. Also, the localization of VEGF receptors in the human retina was investigated. We observed that highly differentiated human RPE cells, cultured on transwell filters in normoxic conditions, produced two- to sevenfold more VEGF toward their basolateral side as compared to the apical side. In hypoxic conditions, VEGF-A secretion increased to the basal side only, resulting in a three- to 10-fold higher basolateral secretion. By immunohistochemistry in 30 human eyes and in two cynomolgus monkey eyes, KDR (VEGFR-2) and flt-4 (VEGFR-3) were preferentially localized at the side of the CC endothelium facing the RPE cell layer, whereas flt-1 (VEGFR-1) was found on the inner CC and on other choroidal vessels. Our results indicate that RPE secretes VEGF toward its basal side where its receptor KDR is located on the adjacent CC endothelium, suggesting a role of VEGF in a paracrine relation, possibly in cooperation with flt-4 and its ligand. This can explain the known trophic function of the RPE in the maintenance of the CC and its fenestrated permeable phenotype and points to a role for VEGF in normal eye functioning. Up-regulated basolateral VEGF secretion by RPE in hypoxia or loss of polarity of VEGF production may play a role in the pathogenesis of choroidal neovascularization.  相似文献   

10.
The known responses of vascular endothelial growth factor (VEGF) are mediated through VEGF receptor-2 (VEGFR-2/KDR) in endothelial cells. However, it is unknown whether VEGFR-1 (Flt-1) is an inert decoy or a signaling receptor for VEGF during physiological or pathological angiogenesis. Here we report that VEGF-stimulated nitric oxide (NO) release is inhibited by blockade of VEGFR-1 and that VEGFR-1 via NO negatively regulates of VEGFR-2-mediated proliferation and promotes formation of capillary networks in human umbilical vein endothelial cells (HUVECs). Inhibition of VEGFR-1 in a murine Matrigel angiogenesis assay induced large aneurysm-like structures. VEGF-induced capillary growth over 14 days was inhibited by anti-VEGFR-2-blocking antibody as determined by reduced tube length between capillary connections (P < 0.0001) in an in vitro angiogenesis assay. In contrast, loss of VEGFR-1 activity with a neutralizing anti-VEGFR-1 antibody resulted in an increase in the accumulation of endothelial cells (P < 0.0001) and a dramatic decrease in the number of capillary connections that were restored by the addition of NO donor. Porcine aortic endothelial (PAE) cells expressing human VEGFR-1 but not VEGFR-2 plated on growth factor-reduced Matrigel rearranged into tube-like structures that were prevented by anti-VEGFR-1 antibody or a cGMP inhibitor. VEGF stimulated NO release from VEGFR-1- but not VEGFR-2-transfected endothelial cells and placenta growth factor-1 stimulated NO release in HUVECs. Blockade of VEGFR-1 increased VEGF-mediated HUVEC proliferation that was inhibited by NO donors, and potentiated by NO synthase inhibitors. These data indicate that VEGFR-1 is a signaling receptor that promotes endothelial cell differentiation into vascular tubes, in part by limiting VEGFR-2-mediated endothelial cell proliferation via NO, which seems to be a molecular switch for endothelial cell differentiation.  相似文献   

11.
Signaling pathways induced by vascular endothelial growth factor (review)   总被引:7,自引:0,他引:7  
Vasculogenesis and angiogenesis are the mechanisms responsible for the development of the blood vessels. Angiogenesis refers to the formation of capillaries from pre-existing vessels in the embryo and adult organism, while vasculogenesis is the development of new blood vessels from the differentiation of endothelial precursors (angioblasts) in situ. Vascular endothelial growth factor (VEGF) family members are major mediators of vasculogenesis and angiogenesis both during development and in pathological conditions. VEGF has a variety of effects on vascular endothelium, including the ability to promote endothelial cell viability, mitogenesis, chemotaxis, and vascular permeability. It mediates its activity mainly via two tyrosine kinase receptors, VEGFR-1 (flt-1) and VEGFR-2 (flk-1/KDR), although other receptors, such as neuropilin-1 and -2, can also bind VEGF. Another tyrosine kinase receptor, VEGFR-3 (flt-4) binds VEGF-C and VEGF-D and is more important in the development of lymphatic vessels. While the functional effects of VEGF on endothelial cells has been well studied, not as much is known about VEGF signaling. This review summarizes the different pathways known to be involved in VEGF signal transduction and the biological responses triggered by the VEGF signaling cascade.  相似文献   

12.
Extensive angiogenesis and invasion of the maternal decidua by trophoblasts are essential for the development and function of the placenta. Vascular endothelial growth factors (VEGF), placenta growth factor (PlGF) and their receptors VEGFR-1/Flt-1, VEGFR-2/KDR and VEGFR-3/Flt4 have important roles in vasculogenesis and angiogenesis. We have studied the localization of these proteins by immunohistochemistry and Western blotting in the placenta and of PlGF in maternal serum, and their association with diabetes, pre-eclampsia, fetal growth restriction (FGR) and fetal alcohol syndrome (FAS). VEGFR-1 and VEGFR-3 were detected mainly in the syncytiotrophoblastic layer whereas VEGFR-2 was detected in the vascular endothelial cells of the placenta. VEGFR-1, but not the other receptors, showed increased expression in placental syncytiotrophoblasts from 50% of patients with severe pre-eclampsia and FGR when compared with normal placentas. PlGF was undetectable in 38 of 44 samples of amniotic fluid of mothers with normal and complicated pregnancies. However, maternal serum PlGF concentrations were significantly lower in pre-eclamptic patients and in those with FGR when compared to diabetic women or healthy controls. These results suggest that low maternal serum PlGF and increased placental expression of its receptor VEGFR-1 are associated with pre-eclampsia and FGR.  相似文献   

13.
This study was designed to detect vascular endothelial growth factor (VEGF) and its soluble receptor (sVEGFR-1) in follicular fluid specimens and to evaluate the importance of sVEGFR-1 with respect to ovarian response to gonadotrophin stimulation. A total of 69 patients was treated for IVF with recombinant human follicle stimulating hormone (FSH). Concentrations of VEGF and sVEGFR-1 were quantified in follicular fluids from oocyte retrievals. Patients were designated to three groups with respect to the number of harvested oocytes: group A, 1-5 oocytes; group B, 6-10 oocytes; group C, >10 oocytes. In group A, 1133 +/- 870 pg VEGF/ml follicular fluid per oocyte were quantified, in group B 426 +/- 262 pg VEGF/ml per oocyte, and in group C 274 +/- 179 pg VEGF/ml per oocyte. Soluble VEGFR-1 concentrations resulted in 1200 +/- 523 pg/ml follicular fluid per oocyte in group A, 255 +/- 193 pg/ml per oocyte in group B, and 79 +/- 69 pg/ml per oocyte in group C. No free sVEGFR-1 could be detected in any follicular fluid. An index to estimate the biological activity of VEGF by dividing VEGF/sVEGFR-1 revealed an increasing availability of VEGF with higher ovarian response to gonadotrophin therapy. In group A this index was 1.03, in group B 1.71, and in group C 3.21. A delicate balance between VEGF and sVEGFR-1 is necessary to allow an adequate ovarian reaction to gonadotrophin therapy. Excess of bio-active VEGF increases the risk for ovarian hyperstimulation syndrome. Excess of sVEGFR-1 results in poor response and goes in parallel with reduced chances for conception.  相似文献   

14.
BACKGROUND: This study was conducted to evaluate the effects of graded concentrations (10(-8), 10(-7) and 10(-6) M) of progesterone receptor (PR) modulator CDB-2914 on the protein contents of PR, of vascular endothelial growth factor (VEGF), adrenomedullin (ADM) and their receptors in cultured human uterine leiomyoma and matching myometrial cells. METHODS: PR-A, PR-B, VEGF-A, VEGF-B, VEGF receptor (VEGFR)-1, VEGFR-2, ADM and ADM receptor (ADMR) contents were assessed by Western blot analysis. RESULTS: Treatment with 100 ng/ml progesterone increased VEGF-A, VEGF-B and ADM contents in cultured leiomyoma cells and normal myometrial cells. The concomitant treatment with 10(-6) M CDB-2914 significantly decreased the progesterone-induced VEGF-A, VEGF-B and ADM contents in cultured leiomyoma cells but not in normal myometrial cells. CDB-2914 treatment alone decreased VEGFR-1, VEGFR-2 and ADMR contents in cultured leiomyoma cells but not in normal myometrial cells. CDB-2914 treatment increased PR-A and decreased PR-B contents in cultured leiomyoma cells in a dose-dependent manner compared with untreated cultures, whereas no significant changes in PR isoform contents were observed in normal myometrial cells. CONCLUSIONS: These results suggest that CDB-2914 down-regulates VEGF, ADM and their receptor contents and modulates PR isoform contents in cultured leiomyoma cells in a cell-type-specific manner.  相似文献   

15.
Mice lacking the vascular endothelial growth factor (VEGF) receptor flt-1 (VEGFR-1) die from vascular overgrowth, caused primarily by aberrant endothelial cell division (Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL: Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 2002, 99:2397-2407). Because a second high-affinity VEGF receptor, flk-1, produces a positive endothelial proliferation signal, it was logical to ask whether flt-1 affects developmental blood vessel formation by modulating signaling through flk-1. Differentiated embryonic stem cell cultures lacking flt-1 (flt-1-/-) had increased flk-1 tyrosine phosphorylation, indicating that flk-1 signaling is up-regulated in the mutant background. The selective flk-1 inhibitor SU5416 partially rescued the flt-1-/- mutant phenotype, and this rescue was accompanied by a decrease in the relative amount of flk-1 tyrosine phosphorylation. Thus reduced flk-1 signal transduction can partially compensate for the lack of flt-1. The flt-1-/- mutant phenotype was also partially rescued by Flt-1/Fc, a truncated flt-1 that binds and sequesters the VEGF ligand. Taken together, these data show that down-regulation of flk-1 signaling by two different strategies partially rescues the developmental vascular overgrowth seen in the absence of flt-1, and they support a model whereby flt-1 modulates the flk-1 signal at an early point in the pathway.  相似文献   

16.

Purpose

There is a paucity of information on the serum soluble vascular endothelial growth factor receptor-2 (sVEGFR-2) concentrations, membranous VEGFR-2 expression and the mechanism involved in their modulations during the clinical onset of pre-eclampsia. This cross-sectional study was conducted to evaluate the concentration of sVEGFR-2 in serum and to investigate the expression of membranous VEGFR-2 in placentae of pre-eclampsia group.

Materials and Methods

The serum levels of sVEGFR-2 (n = 120) and the expression of membranous VEGFR-2 in placentae (n = 100) were analysed at third trimester of pregnancy by enzyme linked immunosorbent assay (ELISA) and immunohistochemistry respectively. The diagnostic parameters of sensitivity, specificity and association of soluble and membranous VEGFR-2 in these patients were evaluated.

Results

The serum levels of sVEGFR-2 in pre-eclampsia patients were found to be significantly reduced (p = 0.01, p = 0.001) in early and late pre-eclamptic sub-groups as compared to their respective third trimester control sub-groups. Also, the receiver operating characteristic (ROC) curve analysis showed a cut-off value of 7350.4 pg/mL, higher sensitivity (76%) and specificity (76%) for sVEGFR-2 in late onset (> 34 weeks) pre-eclamptic group. Significant down-regulation of membranous VEGFR-2 immunoreactivity was observed in all the placental cells (p = 0.0001) at > 34 weeks preeclamptic group.

Conclusion

The reduced serum levels of soluble VEGFR-2 and the down-regulated expression of membranous VEGFR-2 in the study group denoted abnormality in VEGF mediated placental function in all placental cells and thus VEGFR-2 may be a key factor, intimately associated with pre-eclampsia. This study shows the clinical utility of soluble and membranous VEGFR-2 in pre-eclampsia patients.  相似文献   

17.
18.

Background

Sunitinib malate (SUTENT®) is an oral, multitargeted tyrosine kinase inhibitor, approved multinationally for the treatment of advanced RCC and of imatinib-resistant or – intolerant GIST. The purpose of this study was to explore potential biomarkers of sunitinib pharmacological activity via serial assessment of plasma levels of four soluble proteins from patients in a phase II study of advanced RCC: VEGF, soluble VEGFR-2 (sVEGFR-2), placenta growth factor (PlGF), and a novel soluble variant of VEGFR-3 (sVEGFR-3).

Methods

Sunitinib was administered at 50 mg/day on a 4/2 schedule (4 weeks on treatment, 2 weeks off treatment) to 63 patients with metastatic RCC after failure of first-line cytokine therapy. Predose plasma samples were collected on days 1 and 28 of each cycle and analyzed via ELISA.

Results

At the end of cycle 1, VEGF and PlGF levels increased >3-fold (relative to baseline) in 24/54 (44%) and 22/55 (40%) cases, respectively (P < 0.001). sVEGFR-2 levels decreased ≥ 30% in 50/55 (91%) cases and ≥ 20% in all cases (P < 0.001) during cycle 1, while sVEGFR-3 levels were decreased ≥ 30% in 48 of 55 cases (87%), and ≥ 20% in all but 2 cases. These levels tended to return to near-baseline after 2 weeks off treatment, indicating that these effects were dependent on drug exposure. Overall, significantly larger changes in VEGF, sVEGFR-2, and sVEGFR-3 levels were observed in patients exhibiting objective tumor response compared with those exhibiting stable disease or disease progression (P < 0.05 for each analyte; analysis not done for PlGF).

Conclusion

Sunitinib treatment in advanced RCC patients leads to modulation of plasma levels of circulating proteins involved in VEGF signaling, including soluble forms of two VEGF receptors. This panel of proteins may be of value as biomarkers of the pharmacological and clinical activity of sunitinib in RCC, and of angiogenic processes in cancer and other diseases.  相似文献   

19.
Ueda N  Wise LM  Stacker SA  Fleming SB  Mercer AA 《Virology》2003,310(2):298-309
We have identified a gene encoding a homolog of vascular endothelial growth factor (VEGF) in the Pseudocowpox virus (PCPV) genome. The predicted protein shows 27% amino acid identity to human VEGF-A. It also shows 41 and 61% amino acid identity to VEGFs encoded by orf virus (ORFV) strains NZ2 and NZ7, respectively. Assays of the expressed VEGF-like protein of PCPV (PCPV(VR634)VEGF) demonstrated that PCPV(VR634)VEGF is mitogenic for endothelial cells and is capable of inducing vascular permeability. PCPV(VR634)VEGF bound VEGF receptor-2 (VEGFR-2) but did not bind VEGFR-1 or VEGFR-3. These results indicate that PCPV(VR634)VEGF is a biologically active member of the VEGF family which shares with the ORFV-encoded VEGFs a receptor binding profile that differs from those of all cellular members of the VEGF family. It seems likely that the biological activities of PCPV(VR634)VEGF contribute to the proliferative and highly vascularized nature of PCPV lesions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号