首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aldosterone plays a central role in Na+ homeostasis by controlling Na+ reabsorption in the aldosterone-sensitive distal nephron involving the epithelial Na+ channel (ENaC). Part of the effects of aldosterone is mediated by serum and glucocorticoid-induced kinase 1 (Sgk1), a Ser/Thr kinase whose expression is rapidly induced by aldosterone and that increases in heterologous expression systems ENaC cell surface abundance and activity. Previous work in Xenopus laevis oocytes suggested that Sgk1 phosphorylates specific residues (Ser212 and Ser328) on the ubiquitin-protein ligase Nedd4-2, an enzyme that directly interacts with ENaC and negatively controls channel density at the plasma membrane. It further indicated that phosphorylation of Nedd4-2 led to impairment of ENaC/Nedd4-2 interaction and consequently to more channels at the cell surface. These data suggested a novel mode of aldosterone-dependent action, yet this was not demonstrated formally in epithelial cells that physiologically express ENaC. Here it is shown, with the use of an anti-phospho-Ser328-mNedd4-2 antibody, that 2 to 6 h of aldosterone treatment induces an increase in Nedd4-2 phosphorylation, both in a mouse cortical collecting duct cell line (mpkCCDcl4) and in kidneys of adrenalectomized rats. This augmentation, which is accompanied by a raise in Sgk1 expression and transepithelial Na+ transport, is sensitive to phosphatidylinositol-3 kinase inhibition, as is Sgk1 phosphorylation and Na+ transport. Hence, these data provide evidence in cortical collecting duct cells in vitro and in vivo that Sgk1-dependent phosphorylation of Nedd4-2 is part of the aldosterone response.  相似文献   

3.
PURPOSE OF REVIEW: The epithelial sodium channel (ENaC) sets the rate of Na+ reabsorption in the collecting duct. This review describes recent advances in our understanding of ENaC function. RECENT FINDINGS: First, collecting duct-specific deletion of alphaENaC does not cause Na wasting in mice, suggesting that other regions can compensate. Second, Nedd4 and Nedd4-2 are ubiquitin ligases that reduce surface expression of ENaC and inhibit Na+ transport. Nedd4-2, but not Nedd4, is negatively regulated by serum- and glucocorticoid-inducible kinase 1, an aldosterone-induced kinase, providing an attractive mechanism for the stimulatory effect of aldosterone on Na+ transport. However, mice with germline ablation of serum- and glucocorticoid-inducible kinase 1 show only modest hypotension and are able to decrease Na+ excretion rates substantially. Third, maturation of ENaC is associated with processing at consensus furin cleavage sites and this cleavage is critical for channel activity. A separate class of serine proteases, the channel-activating proteases, also stimulates ENaC activity. SUMMARY: The connecting tubule of the kidney has abundant ENaC and Na(+)- and K(+)-transport capacity and may provide much of ENaC-mediated Na+ transport in the kidney. Aldosterone may increase Na transport, in part, by serum- and glucocorticoid-inducible kinase 1-mediated inhibition of Nedd4-2 but this has not been demonstrated in the native collecting duct or connecting tubule. The mild phenotype of the serum- and glucocorticoid-inducible kinase 1-knockout mouse points to serum- and glucocorticoid-inducible kinase 1-independent mechanisms that regulate Na+ transport. Two separate classes of protease appear to regulate Na+ transport: one is furin or furin-like and cleaves ENaC subunits to stimulate transport; the other, the channel-activating proteases, may act on ENaC or a regulatory molecule.  相似文献   

4.
PURPOSE OF REVIEW: The serum and glucocorticoid inducible kinase 1 (SGK1) is induced in the aldosterone sensitive distal nephron (ASDN) where it may stimulate Na reabsorption, partly by inhibiting ubiquitin ligase Nedd4-2-mediated retrieval of epithelial Na+ channel ENaC from the luminal membrane. We describe recent advances in our understanding of SGK1 function in the regulation of renal function and blood pressure. RECENT FINDINGS: Thiazolidinediones, i.e. activators of peroxisome proliferator-activated receptor gamma (PPAR gamma), upregulate SGK1 and ENaC mRNA expression and increase cell-surface expression of ENaC alpha in a human cortical-collecting-duct cell line. cAMP/protein kinase A can induce phosphorylation and inhibition of Nedd4-2-independent of SGK1. Part of ENaC stimulation by SGK1 appears dependent on a SGK1 consensus motif in ENaC alpha and independent of Nedd4-2. SGK1-dependent upregulation of Na+ reabsorption in ASDN contributes to upregulation of renal K+ excretion. In oocytes, SGK1 activates various renal transport proteins including Na+/glucose cotransporter SGLT1, Na+-coupled dicarboxylate transporter NaDC-1, epithelial Ca+ channel TRPV5, renal outer medullary K+ channel ROMK and voltage gated K+ channels KCNE1/KCNQ1 and Kv1.3. A variant of the SGK1 gene associates with increased blood pressure and body mass index. SUMMARY: PPAR gamma activators may increase renal Na reabsorption by stimulating SGK1 and ENaC. Nedd4-2 integrates influences of cAMP/protein kinase A and SGK1. SGK1 can activate ENaC in part directly and independent of Nedd4-2. K+ homeostasis requires SGK1-dependent Na+ reabsorption in ASDN. SGK1 may affect renal transport mechanisms beyond Na+ reabsorption and K+ secretion in ASDN. Polymorphisms of SGK1 may be relevant to the pathophysiology of hypertension and other diseases.  相似文献   

5.
6.
The precise control of BP occurs via Na(+) homeostasis and involves the precise regulation of the epithelial Na(+) channel (ENaC) in the aldosterone-sensitive distal nephron. This has been corroborated by the linkage of mutations in the genes encoding ENaC subunits and Liddle's syndrome, a heritable form of human hypertension. Mapping of these mutations on ENaC indicated that inactivation of PY motifs is responsible and leads to the proposition that the channel interacts via its PY motifs with the WW domains of the Nedd4/Nedd4-like ubiquitin-protein ligase family. It is now well established that the cell surface expression of ENaC is controlled via ubiquitylation by this protein family and that this ubiquitylation is regulated by the aldosterone-induced protein serum and glucocorticoid induced kinase 1.  相似文献   

7.
8.
The epithelial Na(+) channel (ENaC), which plays an essential role in renal Na(+) handling, is composed of three subunits (alpha beta gamma), each containing a conserved PY motif at the C terminus. In Liddle's syndrome, an inherited form of salt-sensitive hypertension, the PY motifs of either beta or gamma ENaC are deleted or modified. We have recently shown that a ubiquitin-protein ligase Nedd4 binds via its WW domains to these PY motifs on ENaC, that ENaC is regulated by ubiquitination, and that Xenopus laevis Nedd4 (xNedd4) controls the cell surface pool of ENaC when coexpressed in Xenopus oocytes. Interestingly, Na(+) transporting cells, derived from mouse cortical collecting duct, express two different Nedd4 isoforms, which we have termed mNedd4-1 and mNedd4-2. Only mNedd4-2, which is orthologous to xNedd4, but not mNedd4-1, is able to regulate ENaC activity, and this property correlates with the capability to bind to the ENaC complex. Hence, Nedd4-2 may be encoded by a novel susceptibility gene for arterial hypertension.  相似文献   

9.
10.
Renal transplantation is associated with alterations of tubular functions and of the renin-angiotensin-aldosterone system. The underlying cellular and molecular mechanisms are unclear. We used an allogeneic rat renal transplantation model of acute rejection with and without immunosuppression by cyclosporine A (CsA) and a syngeneic model as control. Uninephrectomized Lewis or Lewis-Brown-Norway (LBN) rats received a kidney from LBN-rats. Renal transporters and receptors were analyzed by immunohistochemistry, semiquantitative RT-PCR and Western-blot analysis. Intracellular Na(+) was analyzed microfluorimetrically in isolated cortical collecting ducts. mRNA expression and function of the epithelial Na(+)-channel (ENaC) and mRNA and protein expression of the water-channel AQP2 were downregulated in transplanted kidneys undergoing rejection. Expression of the serum- and glucocorticoid-kinase (Sgk1) was decreased and that of the ubiquitin-protein ligase Nedd4-2 was increased. These changes were absent under CsA-therapy and in syngeneic model. Expression and function of the Na(+)-K(+)-ATPase, expression of the secretory K(+)-channel and of the mineralocorticoid receptor remained unchanged. Reduced ENaC function is likely due to decreased Sgk1- and increased Nedd4-2 mRNA expression leading to reduced ENaC expression in the membrane. These acute downregulations of ENaC and AQP2 may be triggered to reduce energy consumption in the distal nephron to protect the kidney immediately after transplantation.  相似文献   

11.
Mineralocorticoids stimulate Na(+) reabsorption and K(+) secretion in principal cells of connecting tubule and collecting duct. The involved ion channels are ENaC and ROMK1, respectively. In Xenopus oocytes, the serum and glucocorticoid-sensitive kinase SGK1 has been shown to increase ENaC activity by enhancing its abundance in the plasma membrane. With the same method, ROMK1 appeared to be insensitive to regulation by SGK1. On the other hand, ROMK1 has been shown to colocalize with NHERF2, a protein mediating targeting and trafficking of transport proteins into the cell membrane. The present study has been performed to test whether NHERF2 is required for regulation of ROMK1 by SGK1. Coexpression of neither NHERF2 nor SGK1 with ROMK1 increases ROMK1 activity. However, coexpression of NHERF2 and SGK1 together with ROMK1 markedly increases K(+) channel activity. The combined effect of SGK1 and NHERF2 does not significantly alter the I/V relation of the channel but increases the abundance of the channel in the membrane and decreases the decay of channel activity after inhibition of vesicle insertion with brefeldin. Coexpression of NHERF2 and SGK1 does not modify cytosolic pH but leads to a slight shift of pK(a) of ROMK1 to more acidic values. In conclusion, NHERF2 and SGK1 interact to enhance ROMK1 activity in large part by enhancing the abundance of channel protein within the cell membrane. This interaction allows the integration of genomic regulation and activation of SGK1 and NHERF2 in the control of ROMK1 activity and renal K(+) excretion.  相似文献   

12.
13.
Potassium deficiency is associated with an increased prevalence of hypertension. Increasing potassium intake lowers blood pressure via an unknown mechanism. WNK (with no lysine) kinases are a novel family of large serine/threonine protein kinases. A large deletion from the first intron of the WNK1 gene results in increased levels of expression of WNK1 and causes Gordon's syndrome, of which hypertension and hyperkalemia are features. WNK1 activates the Na(+)/Cl(-) cotransporter NCC and the epithelial Na(+) channel ENaC, and inhibits the renal K(+) channel ROMK. Enhanced Na(+) reabsorption and inhibition of K(+) secretion resulting from increased WNK1 expression probably contribute to hypertension and hyperkalemia in Gordon's syndrome. Here, we review the role of dietary K(+) deficiency in the pathogenesis of salt-sensitive hypertension and summarize recent findings indicating that WNK1 might mediate renal Na(+) retention and hypertension in K(+) deficiency.  相似文献   

14.
The thiazide-sensitive Na(+)-Cl(-) cotransporter (NCC), which is expressed on the apical membrane of epithelial cells lining the distal convoluted tubule, is responsible for the reabsorption of 5% to 10% of filtered Na(+) and Cl(-). To date, functional studies on the structural and regulatory requirements for localized trafficking and ion-transporting activity of NCC have been hampered by lack of a suitable cell system expressing this cotransporter. Reported here is the functional expression of human NCC (hNCC) in a polarized mammalian cell of renal origin-that is, the high-resistance Madin-Darby canine kidney (MDCK) cell. Western blot testing revealed that the cells predominantly expressed the complex glycosylated (approximately 140 kD) form of hNCC. hNCC was present primarily in the apical part of the cell. The functionality of hNCC was demonstrated by the gain of thiazide-sensitive Na(+) uptake and transepithelial transport activity. Na(+) uptake was significantly increased after short-term (15 min) treatment with forskolin, whereas cyclic guanosine monophosphate, wortmannin, phorbol 12-myriatate 13-acetate, and staurosporine were without effect. This indicates that hNCC activity is regulated through cyclic adenosine monophosphate, rather than via cyclic guanosine monophosphate, phospho-inositide 3-kinases or protein kinase C. Aldosterone did not alter Na(+) uptake in the short term (15 min) but significantly increased the transport activity in the long term (16 h). The latter effect of aldosterone was due to an effect on the cytomegalovirus promoter/enhancer driving the expression of hNCC. hNCC-MDCK cells are a good model for the study of the regulation of apical trafficking and ion-transporting activity of hNCC.  相似文献   

15.
The epithelial sodium channel (ENaC) is critical for sodium and BP homeostasis. ENaC is regulated by Nedd4-2-mediated ubiquitylation, which leads to its internalization; this process can be reversed by deubiquitylation, which is regulated by the aldosterone-induced enzyme Usp2-45. In a second regulatory pathway, ENaC can be activated by luminal serine protease-mediated cleavage of its extracellular loops. Whether these two regulatory processes interact, however, is unknown. Here, in HEK293 cells stably transfected with ENaC, Usp2-45 interacted with ENaC, leading to deubiquitylation of the channel and stimulation of ENaC activity >20-fold. This was accompanied by a modest increase in cell surface expression of ENaC and by proteolytic cleavage of alphaENaC and gammaENaC at their extracellular loops. When endocytosis was inhibited with dominant negative dynamin (DynK44R), channel density and gammaENaC cleavage were increased, but alphaENaC cleavage and ENaC activity were not augmented. When Usp2-45 was coexpressed with DynK44R, both alphaENaC cleavage and activity were recovered. In summary, these data suggest that Usp2-45 deubiquitylation of ENaC enhances the proteolytic activation of both alphaENaC and gammaENaC, possibly by inducing a conformational change and by interfering with endocytosis, respectively.  相似文献   

16.
17.
18.
目的 通过建立生理条件下的盐负荷饮食大鼠模型,观察醛固酮和WNK4在水盐代谢调节中的作用。 方法 将SD大鼠分为5组:高盐组(H,4% NaCl)、正常盐组(N,0.4% NaCl)、低盐组(L,0.07% NaCl)、高盐加醛固酮组(H+A,4% NaCl+1 mg&#8226;kg-1&#8226;d-1醛固酮)、低盐加螺内酯(L+S,0.07% NaCl+0.1 g&#8226;kg-1&#8226;d-1螺内酯),所有大鼠自由饮水,喂养2周。用放射免疫法检测血浆醛固酮的变化。应用实时定量PCR和Western印迹法检测大鼠肾脏上皮钠通道γ亚基(γENaC)、WNK4的mRNA和蛋白的变化。 结果 H组大鼠血浆醛固酮水平低于N组(P < 0.05),H+A组高于H组(P < 0.05);L组大鼠血浆醛固酮水平高于N组(P < 0.05),显示SD大鼠造模成功。L组大鼠肾脏γENaC蛋白表达高于N组,但是L+S低于L组;同时H组低于N组,H+A组高于H组,差异均有统计学意义(P < 0.05)。mRNA变化趋势和蛋白变化趋势一致。H组肾脏WNK4的蛋白表达高于N组,但是H+A组低于H组;同时L组低于N组,L+S组高于L组,差异均有统计学意义(P < 0.05)。mRNA的变化趋势和蛋白的变化趋势一致。 结论 饮食中的盐可以调节γENaC在肾脏的蛋白表达,醛固酮和WNK4都参与了机体对盐的调节,WNK4受到醛固酮的负调节作用。  相似文献   

19.
The epithelial Na+ channel (ENaC) is comprised of three subunits, alpha, beta and gamma, and plays an essential role in Na+ and fluid absorption in the kidney, colon and lung. We had identified proline-rich sequences at the C termini of alpha beta gamma ENaC, which include the sequence PPxY, the PY motif. This sequence in beta or gamma ENaC is deleted or mutated in Liddle's syndrome, a hereditary form of arterial hypertension. Our previous work demonstrated that these PY motifs bind to the WW domains of Nedd4, a ubiquitin protein ligase containing a C2 domain, three or four WW domains and a ubiquitin protein ligase Hect domain. Accordingly, we have recently demonstrated that Nedd4 regulates ENaC function by controlling the number of channels at the cell surface, that this regulation is impaired in ENaC bearing Liddle's syndrome mutations, and that ENaC stability and function are regulated by ubiquitination. The C2 domain is responsible for localizing Nedd4 to the plasma membrane in a Ca(2+)-dependent manner, and in polarized epithelial MDCK cells this localization is primarily apical. In accordance, electrophysiological characterization of ENaC expressed in MDCK cells revealed inhibition of channel activity by elevated intracellular Ca2+ levels. Thus, in response to Ca2+, Nedd4 may be mobilized to the apical membrane via its C2 domain, where it binds ENaC via Nedd4-WW:ENaC-PY motifs' interactions, leading to ubiquitination of the channel by the Nedd4-Hect domain and subsequent channel endocytosis and lysosomal degradation. This process may be at least partially impaired in Liddle's syndrome due to reduced Nedd4 binding, leading to increased retention of ENaC at the cell surface.  相似文献   

20.
Pendrin modulates ENaC function by changing luminal HCO3-   总被引:1,自引:0,他引:1  
The epithelial Na(+) channel, ENaC, and the Cl(-)/HCO(3)(-) exchanger, pendrin, mediate NaCl absorption within the cortical collecting duct and the connecting tubule. Although pendrin and ENaC localize to different cell types, ENaC subunit abundance and activity are lower in aldosterone-treated pendrin-null mice relative to wild-type mice. Because pendrin mediates HCO(3)(-) secretion, we asked if increasing distal delivery of HCO(3)(-) through a pendrin-independent mechanism "rescues" ENaC function in pendrin-null mice. We gave aldosterone and NaHCO(3) to increase pendrin-dependent HCO(3)(-) secretion within the connecting tubule and cortical collecting duct, or gave aldosterone and NaHCO(3) plus acetazolamide to increase luminal HCO(3)(-) concentration, [HCO(3)(-)], independent of pendrin. Following treatment with aldosterone and NaHCO(3), pendrin-null mice had lower urinary pH and [HCO(3)(-)] as well as lower renal ENaC abundance and function than wild-type mice. With the addition of acetazolamide, however, acid-base balance as well as ENaC subunit abundance and function was similar in pendrin-null and wild-type mice. We explored whether [HCO(3)(-)] directly alters ENaC abundance and function in cultured mouse principal cells (mpkCCD). Amiloride-sensitive current and ENaC abundance rose with increased [HCO(3)(-)] on the apical or the basolateral side, independent of the substituting anion. However, ENaC was more sensitive to changes in [HCO(3)(-)] on the basolateral side of the monolayer. Moreover, increasing [HCO(3)(-)] on the apical and basolateral side of Xenopus kidney cells increased both ENaC channel density and channel activity. We conclude that pendrin modulates ENaC abundance and function, at least in part by increasing luminal [HCO(3)(-)] and/or pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号