首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypoxia plays a role in many diseases and can have a wide range of effects on cardiac metabolism depending on the extent of the hypoxic insult. Noninvasive imaging methods could shed valuable light on the metabolic effects of hypoxia on the heart in vivo. Hyperpolarized carbon‐13 magnetic resonance spectroscopy (HP 13C MRS) in particular is an exciting technique for imaging metabolism that could provide such information. The aim of our work was, therefore, to establish whether hyperpolarized 13C MRS can be used to assess the in vivo heart's metabolism of pyruvate in response to systemic acute and chronic hypoxic exposure. Groups of healthy male Wistar rats were exposed to either acute (30 minutes), 1 week or 3 weeks of hypoxia. In vivo MRS of hyperpolarized [1‐13C] pyruvate was carried out along with assessments of physiological parameters and ejection fraction. Hematocrit was elevated after 1 week and 3 weeks of hypoxia. 30 minutes of hypoxia resulted in a significant reduction in pyruvate dehydrogenase (PDH) flux, whereas 1 or 3 weeks of hypoxia resulted in a PDH flux that was not different to normoxic animals. Conversion of hyperpolarized [1‐13C] pyruvate into [1‐13C] lactate was elevated following acute hypoxia, suggestive of enhanced anaerobic glycolysis. Elevated HP pyruvate to lactate conversion was also seen at the one week timepoint, in concert with an increase in lactate dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac metabolism of pyruvate was comparable with that observed in normoxia. We have successfully visualized the effects of systemic hypoxia on cardiac metabolism of pyruvate using hyperpolarized 13C MRS, with differences observed following 30 minutes and 1 week of hypoxia. This demonstrates the potential of in vivo hyperpolarized 13C MRS data for assessing the cardiometabolic effects of hypoxia in disease.  相似文献   

2.
Lipopolysaccharide (LPS) is a commonly used agent for induction of neuroinflammation in preclinical studies. Upon injection, LPS causes activation of microglia and astrocytes, whose metabolism alters to favor glycolysis. Assessing in vivo neuroinflammation and its modulation following therapy remains challenging, and new noninvasive methods allowing for longitudinal monitoring would be highly valuable. Hyperpolarized (HP) 13C magnetic resonance spectroscopy (MRS) is a promising technique for assessing in vivo metabolism. In addition to applications in oncology, the most commonly used probe of [1–13C] pyruvate has shown potential in assessing neuroinflammation‐linked metabolism in mouse models of multiple sclerosis and traumatic brain injury. Here, we aimed to investigate LPS‐induced neuroinflammatory changes using HP [1–13C] pyruvate and HP 13C urea. 2D chemical shift imaging following simultaneous intravenous injection of HP [1–13C] pyruvate and HP 13C urea was performed at baseline (day 0) and at days 3 and 7 post‐intracranial injection of LPS (n = 6) or saline (n = 5). Immunofluorescence (IF) analyses were performed for Iba1 (resting and activated microglia/macrophages), GFAP (resting and reactive astrocytes) and CD68 (activated microglia/macrophages). A significant increase in HP [1–13C] lactate production was observed at days 3 and 7 following injection, in the injected (ipsilateral) side of the LPS‐treated mouse brain, but not in either the contralateral side or saline‐injected animals. HP 13C lactate/pyruvate ratio, without and with normalization to urea, was also significantly increased in the ipsilateral LPS‐injected brain at 7 days compared with baseline. IF analyses showed a significant increase in CD68 and GFAP staining at 3 days, followed by increased numbers of Iba1 and GFAP positive cells at 7 days post‐LPS injection. In conclusion, we can detect LPS‐induced changes in the mouse brain using HP 13C MRS, in alignment with increased numbers of microglia/macrophages and astrocytes. This study demonstrates that HP 13C spectroscopy has substantial potential for providing noninvasive information on neuroinflammation.  相似文献   

3.
The current standard for noninvasive imaging of acute rejection consists of X‐ray/CT, which derive their contrast from changes in ventilation, inflammation and edema, as well as remodeling during rejection. We propose the use of hyperpolarized [1‐13C] pyruvate MRI—which provides real‐time metabolic assessment of tissue—as an early biomarker for tissue rejection. In this preliminary study, we used μCT‐derived parameters and HP 13C MR‐derived biomarkers to predict rejection in an orthotopic left lung transplant model in both allogeneic and syngeneic rats. On day 3, the normalized lung density—a parameter that accounts for both lung volume (mL) and density (HU)—was ?0.335 (CI: ‐0.598, ?0.073) and ? 0.473 (CI: ‐0.726, ?0.220) for the allograft and isograft, respectively (not significant, 0.40). The lactate‐to‐pyruvate ratios—derived from the HP 13C MRI—for the allograft and isograft were 0.200 (CI: 0.161, 0.240) and 0.114 (CI: 0.074, 0.153), respectively (significant, 0.020). Both techniques showed tissue rejection on day 7. A separate sub‐study revealed CD8+ cells as the primary source of the lactate‐to‐pyruvate signal. Our study suggests that hyperpolarized (HP) [1‐13C] pyruvate MRI is a promising early biomarker for tissue rejection that provides metabolic assessment in real time based on changes in cellularity and metabolism of lung tissue and the infiltrating inflammatory cells, and may be able to predict tissue rejection earlier than X‐ray/CT.  相似文献   

4.
Mitochondrial dysfunction is considered to be an important component of many metabolic diseases yet there is no reliable imaging biomarker for monitoring mitochondrial damage in vivo. A large prior literature on inter‐conversion of β‐hydroxybutyrate and acetoacetate indicates that the process is mitochondrial and that the ratio reflects a specifically mitochondrial redox state. Therefore, the conversion of [1,3‐13C]acetoacetate to [1,3‐13C]β‐hydroxybutyrate is expected to be sensitive to the abnormal redox state present in dysfunctional mitochondria. In this study, we examined the conversion of hyperpolarized (HP) 13C‐acetoacetate (AcAc) to 13C‐β‐hydroxybutyrate (β‐HB) as a potential imaging biomarker for mitochondrial redox and dysfunction in perfused rat hearts. Conversion of HP‐AcAc to β‐HB was investigated using 13C magnetic resonance spectroscopy in Langendorff‐perfused rat hearts in four groups: control, global ischemic reperfusion, low‐flow ischemic, and rotenone (mitochondrial complex‐I inhibitor)‐treated hearts. We observed that more β‐HB was produced from AcAc in ischemic hearts and the hearts exposed to complex I inhibitor rotenone compared with controls, consistent with the accumulation of excess mitochondrial NADH. The increase in β‐HB, as detected by 13C MRS, was validated by a direct measure of tissue β‐HB by 1H nuclear magnetic resonance in tissue extracts. The redox ratio, NAD+/NADH, measured by enzyme assays of homogenized tissue, also paralleled production of β‐HB from AcAc. Transmission electron microscopy of tissues provided direct evidence for abnormal mitochondrial structure in each ischemic tissue model. The results suggest that conversion of HP‐AcAc to HP‐β‐HB detected by 13C‐MRS may serve as a useful diagnostic marker of mitochondrial redox and dysfunction in heart tissue in vivo.  相似文献   

5.
(13)C MR spectroscopy studies performed on hearts ex vivo and in vivo following perfusion of prepolarized [1-(13)C]pyruvate have shown that changes in pyruvate dehydrogenase (PDH) flux may be monitored non-invasively. However, to allow investigation of Krebs cycle metabolism, the (13)C label must be placed on the C2 position of pyruvate. Thus, the utilization of either C1 or C2 labeled prepolarized pyruvate as a tracer can only afford a partial view of cardiac pyruvate metabolism in health and disease. If the prepolarized pyruvate molecules were labeled at both C1 and C2 positions, then it would be possible to observe the downstream metabolites that were the results of both PDH flux ((13)CO(2) and H(13)CO(3)(-)) and Krebs cycle flux ([5-(13)C]glutamate) with a single dose of the agent. Cardiac pH could also be monitored in the same experiment, but adequate SNR of the (13)CO(2) resonance may be difficult to obtain in vivo. Using an interleaved selective RF pulse acquisition scheme to improve (13)CO(2) detection, the feasibility of using dual-labeled hyperpolarized [1,2-(13)C(2)]pyruvate as a substrate for dynamic cardiac metabolic MRS studies to allow simultaneous investigation of PDH flux, Krebs cycle flux and pH, was demonstrated in vivo.  相似文献   

6.
Previous studies have demonstrated that using hyperpolarized [2‐13C]pyruvate as a contrast agent can reveal 13C signals from metabolites associated with the tricarboxylic acid (TCA) cycle. However, the metabolites detectable from TCA cycle‐mediated oxidation of [2‐13C]pyruvate are the result of several metabolic steps. In the instance of the [5‐13C]glutamate signal, the amplitude can be modulated by changes to the rates of pyruvate dehydrogenase (PDH) flux, TCA cycle flux and metabolite pool size. Also key is the malate–aspartate shuttle, which facilitates the transport of cytosolic reducing equivalents into the mitochondria for oxidation via the malate–α‐ketoglutarate transporter, a process coupled to the exchange of cytosolic malate for mitochondrial α‐ketoglutarate. In this study, we investigated the mechanism driving the observed changes to hyperpolarized [2‐13C]pyruvate metabolism. Using hyperpolarized [1,2‐13C]pyruvate with magnetic resonance spectroscopy (MRS) in the porcine heart with different workloads, it was possible to probe 13C–glutamate labeling relative to rates of cytosolic metabolism, PDH flux and TCA cycle turnover in a single experiment non‐invasively. Via the [1‐13C]pyruvate label, we observed more than a five‐fold increase in the cytosolic conversion of pyruvate to [1‐13C]lactate and [1‐13C]alanine with higher workload. 13C–Bicarbonate production by PDH was increased by a factor of 2.2. Cardiac cine imaging measured a two‐fold increase in cardiac output, which is known to couple to TCA cycle turnover. Via the [2‐13C]pyruvate label, we observed that 13C–acetylcarnitine production increased 2.5‐fold in proportion to the 13C–bicarbonate signal, whereas the 13C–glutamate metabolic flux remained constant on adrenergic activation. Thus, the 13C–glutamate signal relative to the amount of 13C–labeled acetyl‐coenzyme A (acetyl‐CoA) entering the TCA cycle was decreased by 40%. The data strongly suggest that NADH (reduced form of nicotinamide adenine dinucleotide) shuttling from the cytosol to the mitochondria via the malate–aspartate shuttle is limited on adrenergic activation. Changes in [5‐13C]glutamate production from [2‐13C]pyruvate may play an important future role in non‐invasive myocardial assessment in patients with cardiovascular diseases, but careful interpretation of the results is required.  相似文献   

7.
In addition to cancer imaging, 13C‐MRS of hyperpolarized pyruvate has also demonstrated utility for the investigation of cardiac metabolism and ischemic heart disease. Although no adverse effects have yet been reported for doses commonly used in vivo, high substrate concentrations have lead to supraphysiological pyruvate levels that can affect the underlying metabolism and should be considered when interpreting results. With lactate serving as an important energy source for the heart and physiological lactate levels one to two orders of magnitude higher than for pyruvate, hyperpolarized lactate could potentially be used as an alternative to pyruvate for probing cardiac metabolism. In this study, hyperpolarized [1‐13C]lactate was used to acquire time‐resolved spectra from the healthy rat heart in vivo and to measure dichloroacetate (DCA)‐modulated changes in flux through pyruvate dehydrogenase (PDH). Both primary oxidation of lactate to pyruvate and subsequent conversion of pyruvate to alanine and bicarbonate could reliably be detected. Since DCA stimulates the activity of PDH through inhibition of PDH kinase, a more than 2.5‐fold increase in bicarbonate‐to‐substrate ratio was found after administration of DCA, similar to the effect when using [1‐13C]pyruvate as the substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Hepatocellular carcinoma (HCC), the primary form of human adult liver malignancy, is a highly aggressive tumor with average survival rates that are currently less than 1 year following diagnosis. Most patients with HCC are diagnosed at an advanced stage, and no efficient marker exists for the prediction of prognosis and/or response(s) to therapy. We have reported previously a high level of [1‐13C]alanine in an orthotopic HCC using single‐voxel hyperpolarized [1‐13C]pyruvate MRS. In the present study, we implemented a three‐dimensional MRSI sequence to investigate this potential hallmark of cellular metabolism in rat livers bearing HCC (n = 7 buffalo rats). In addition, quantitative real‐time polymerase chain reaction was used to determine the mRNA levels of lactate dehydrogenase A, nicotinamide adenine (phosphate) dinucleotide dehydrogenase quinone 1 and alanine transaminase. The enzyme levels were significantly higher in tumor than in normal liver tissues within each rat, and were associated with the in vivo MRSI signal of [1‐13C]alanine and [1‐13C]lactate after a bolus intravenous injection of [1‐13C]pyruvate. Histopathological analysis of these tumors confirmed the successful growth of HCC as a nodule in buffalo rat livers, revealing malignancy and hypervascular architecture. More importantly, the results demonstrated that the metabolic fate of [1‐13C]pyruvate conversion to [1‐13C]alanine significantly superseded that of [1‐13C]pyruvate conversion to [1‐13C]lactate, potentially serving as a marker of HCC tumors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Hyperpolarized [1‐13C] pyruvate MRS can measure cardiac pyruvate dehydrogenase (PDH) flux in vivo through 13C‐label incorporation into bicarbonate. Using this technology, substrate availability as well as pathology have been shown to modulate PDH flux. Clinical protocols attempt to standardize PDH flux with oral glucose loading prior to scanning, while rodents in preclinical studies are usually scanned in the fed state. We aimed to establish which strategy was optimal to maximize PDH flux and minimize its variability in both control and Type II diabetic rats, without affecting the pathological variation being assessed. We found similar variances in the bicarbonate to pyruvate ratio, reflecting PDH flux, in fed and fasted/glucose‐loaded animals, which showed no statistically significant differences. Furthermore, fasting/glucose loading did not alter the low PDH flux seen in Type II diabetic rats. Overall this suggests that preclinical cardiac hyperpolarized magnetic resonance studies could be performed either in the fed or in the fasted/glucose‐loaded state. Centres planning to start new clinical studies with cardiac hyperpolarized magnetic resonance in man may find it beneficial to run small proof‐of‐concept trials to determine whether metabolic standardizations by oral or intravenous glucose load are beneficial compared with scanning patients in the fed state.  相似文献   

10.
Hyperpolarized 13C magnetic resonance imaging (MRI) may be used to non‐invasively image the transport and chemical conversion of 13C–labeled compounds in vivo. In this study, we utilize hyperpolarized 13C MRI to evaluate metabolic markers in the kidneys longitudinally in a mouse model of partial unilateral ureteral obstruction (pUUO). Partial obstruction was surgically induced in the left ureter of nine adult mice, leaving the right ureter as a control. 1H and hyperpolarized [1‐13C]pyruvate MRI of the kidneys was performed 2 days prior to surgery (baseline) and at 3, 7 and 14 days post‐surgery. Images were evaluated for changes in renal pelvis volume, pyruvate, lactate and the lactate to pyruvate ratio. After 14 days, mice were sacrificed and immunohistological staining of both kidneys for collagen fibrosis (picrosirius red) and macrophage infiltration (F4/80) was performed. Statistical analysis was performed using a linear mixed effects model. Significant kidney × time interaction effects were observed for both lactate and pyruvate, indicating that these markers changed differently between time points for the obstructed and unobstructed kidneys. Both kidneys showed an increase in the lactate to pyruvate ratio after obstruction, suggesting a shift towards glycolytic metabolism. These changes were accompanied by marked hydronephrosis, fibrosis and macrophage infiltration in the obstructed kidney, but not in the unobstructed kidney. Our results show that pUUO is associated with increased pyruvate to lactate metabolism in both kidneys, with injury and inflammation specific to the obstructed kidney. The work also demonstrates the feasibility of the use of hyperpolarized 13C MRI to study metabolism in renal disease.  相似文献   

11.
In vivo metabolic imaging using hyperpolarized [1‐13C]pyruvate provides localized biochemical information and is particularly useful in detecting early disease changes, as well as monitoring disease progression and treatment response. However, a major limitation of hyperpolarized magnetization is its unrecoverable decay, due not only to T1 relaxation but also to radio‐frequency (RF) excitation. RF excitation schemes used in metabolic imaging must therefore be able to utilize available hyperpolarized magnetization efficiently and robustly for the optimal detection of substrate and metabolite activities. In this work, a novel RF excitation scheme called selective non‐excitation of pyruvate (SNEP) is presented. This excitation scheme involves the use of a spectral selective RF pulse to specifically exclude the excitation of [1‐13C]pyruvate, while uniformly exciting the key metabolites of interest (namely [1‐13C]lactate and [1‐13C]alanine) and [1‐13C]pyruvate‐hydrate. By eliminating the loss of hyperpolarized [1‐13C]pyruvate magnetization due to RF excitation, the signal from downstream metabolite pools is increased together with enhanced dynamic range. Simulation results, together with phantom measurements and in vivo experiments, demonstrated the improvement in signal‐to‐noise ratio (SNR) and the extension of the lifetime of the [1‐13C]lactate and [1‐13C]alanine pools when compared with conventional non‐spectral selective (NS) excitation. SNEP has also been shown to perform comparably well with multi‐band (MB) excitation, yet SNEP possesses distinct advantages, including ease of implementation, less stringent demands on gradient performance, increased robustness to frequency drifts and B0 inhomogeneity as well as easier quantification involving the use of [1‐13C]pyruvate‐hydrate as a proxy for the actual [1‐13C] pyruvate signal. SNEP is therefore a promising alternative for robust hyperpolarized [1‐13C]pyruvate metabolic imaging with high fidelity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A co‐polarization scheme for [1,4‐13C2]fumarate and [1‐13C]pyruvate is presented to simultaneously assess necrosis and metabolism in rats with hyperpolarized 13C magnetic resonance (MR). The co‐polarization was performed in a SPINlab polarizer. In addition, the feasibility of simultaneous positron emission tomography (PET) and MR of small animals with a clinical PET/MR scanner is demonstrated. The hyperpolarized metabolic MR and PET was demonstrated in a rat model of necrosis. The polarization and T1 of the co‐polarized [1,4‐13C2]fumarate and [1‐13C]pyruvate substrates were measured in vitro and compared with those obtained when the substrates were polarized individually. A polarization of 36 ± 4% for fumarate and 37 ± 6% for pyruvate was obtained. We found no significant difference in the polarization and T1 values between the dual and single substrate polarization. Rats weighing about 400 g were injected intramuscularly in one of the hind legs with 200 μL of turpentine to induce necrosis. Two hours later, 13C metabolic maps were obtained with a chemical shift imaging sequence (16 × 16) with a resolution of 3.1 × 5.0 × 25.0 mm3. The 13C spectroscopic images were acquired in 12 s, followed by an 8‐min 18F‐2‐fluoro‐2‐deoxy‐d ‐glucose (18F–FDG) PET acquisition with a resolution of 3.5 mm. [1,4‐13C2]Malate was observed from the tissue injected with turpentine indicating necrosis. Normal [1‐13C]pyruvate metabolism and 18F–FDG uptake were observed from the same tissue. The proposed co‐polarization scheme provides a means to utilize multiple imaging agents simultaneously, and thus to probe various metabolic pathways in a single examination. Moreover, it demonstrates the feasibility of small animal research on a clinical PET/MR scanner for combined PET and hyperpolarized metabolic MR.  相似文献   

13.
To date, measurements of the activity of aldehyde dehydrogenase‐2 (ALDH2), a critical mitochondrial enzyme for the elimination of certain cytotoxic aldehydes in the body and a promising target for drug development, have been largely limited to in vitro methods. Recent advancements in MRS of hyperpolarized 13C‐labeled substrates have provided a method to detect and image in vivo metabolic pathways with signal‐to‐noise ratio gains greater than 10 000‐fold over conventional MRS techniques. However aldehydes, because of their toxicity and short T1 relaxation times, are generally poor targets for such 13C‐labeled studies. In this work, we show that dynamic MRSI of hyperpolarized [1‐13C]pyruvate and its conversion to [1‐13C]lactate can provide an indirect in vivo measurement of ALDH2 activity via the concentration of NADH (nicotinamide adenine dinucleotide, reduced form), a co‐factor common to both the reduction of pyruvate to lactate and the oxidation of acetaldehyde to acetate. Results from a rat liver ethanol model (n = 9) show that changes in 13C‐lactate labeling following the bolus injection of hyperpolarized pyruvate are highly correlated with changes in ALDH2 activity (R2 = 0.76). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Many diseases of the heart are characterised by changes in substrate utilisation, which is regulated in part by the activity of the enzyme pyruvate dehydrogenase (PDH). Consequently, there is much interest in the in vivo evaluation of PDH activity in a range of physiological and pathological states to obtain information on the metabolic mechanisms of cardiac diseases. Hyperpolarised [1‐13C]pyruvate, detected using MRS, is a novel technique for the noninvasive evaluation of PDH flux. PDH flux has been assumed to directly reflect in vivo PDH activity, although to date this assumption remains unproven. Control animals and animals undergoing interventions known to modulate PDH activity, namely high fat feeding and dichloroacetate infusion, were used to investigate the relationship between in vivo hyperpolarised MRS measurements of PDH flux and ex vivo measurements of PDH enzyme activity (PDHa). Further, the plasma concentrations of pyruvate and other important metabolites were evaluated following pyruvate infusion to assess the metabolic consequences of pyruvate infusion during hyperpolarised MRS experiments. Hyperpolarised MRS measurements of PDH flux correlated significantly with ex vivo measurements of PDHa, confirming that PDH activity influences directly the in vivo flux of hyperpolarised pyruvate through cardiac PDH. The maximum plasma concentration of pyruvate reached during hyperpolarised MRS experiments was approximately 250 µM , equivalent to physiological pyruvate concentrations reached during exercise or with dietary interventions. The concentrations of other metabolites, including lactate, glucose and β‐hydroxybutyrate, did not vary during the 60 s following pyruvate infusion. Hence, during the 60‐s data acquisition period, metabolism was minimally affected by pyruvate infusion. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Single‐shot echo planar imaging (EPI), which allows an image to be acquired using a single excitation pulse, is used widely for imaging the metabolism of hyperpolarized 13C‐labelled metabolites in vivo as the technique is rapid and minimizes the depletion of the hyperpolarized signal. However, EPI suffers from Nyquist ghosting, which normally is corrected for by acquiring a reference scan. In a dynamic acquisition of a series of images, this results in the sacrifice of a time point if the reference scan involves a full readout train with no phase encoding. This time penalty is negligible if an integrated navigator echo is used, but at the cost of a lower signal‐to‐noise ratio (SNR) as a result of prolonged T2* decay. We describe here a workflow for hyperpolarized 13C EPI that requires no reference scan. This involves the selection of a ghost‐containing background from a 13C image of a single metabolite at a single time point, the identification of phase correction coefficients that minimize signal in the selected area, and the application of these coefficients to images acquired at all time points and from all metabolites. The workflow was compared in phantom experiments with phase correction using a 13C reference scan, and yielded similar results in situations with a regular field of view (FOV), a restricted FOV and where there were multiple signal sources. When compared with alternative phase correction methods, the workflow showed an SNR benefit relative to integrated 13C reference echoes (>15%) or better ghost removal relative to a 1H reference scan. The residual ghosting in a slightly de‐shimmed B0 field was 1.6% using the proposed workflow and 3.8% using a 1H reference scan. The workflow was implemented with a series of dynamically acquired hyperpolarized [1‐13C]pyruvate and [1‐13C]lactate images in vivo, resulting in images with no observable ghosting and which were quantitatively similar to images corrected using a 13C reference scan.  相似文献   

16.
Vorinostat is a histone deacetylase (HDAC) inhibitor that inhibits cell proliferation and induces apoptosis in solid tumors, and is in clinical trials for the treatment of glioblastoma (GBM). The goal of this study was to assess whether hyperpolarized 13C MRS and magnetic resonance spectroscopic imaging (MRSI) can detect HDAC inhibition in GBM models. First, we confirmed HDAC inhibition in U87 GBM cells and evaluated real‐time dynamic metabolic changes using a bioreactor system with live vorinostat‐treated or control cells. We found a significant 40% decrease in the 13C MRS‐detectable ratio of hyperpolarized [1‐13C]lactate to hyperpolarized [1‐13C]pyruvate, [1‐13C]Lac/Pyr, and a 37% decrease in the pseudo‐rate constant, kPL, for hyperpolarized [1‐13C]lactate production, in vorinostat‐treated cells compared with controls. To understand the underlying mechanism for this finding, we assessed the expression and activity of lactate dehydrogenase (LDH) (which catalyzes the pyruvate to lactate conversion), its associated cofactor nicotinamide adenine dinucleotide, the expression of monocarboxylate transporters (MCTs) MCT1 and MCT4 (which shuttle pyruvate and lactate in and out of the cell) and intracellular lactate levels. We found that the most likely explanation for our finding that hyperpolarized lactate is reduced in treated cells is a 30% reduction in intracellular lactate levels that occurs as a result of increased expression of both MCT1 and MCT4 in vorinostat‐treated cells. In vivo 13C MRSI studies of orthotopic tumors in mice also showed a significant 52% decrease in hyperpolarized [1‐13C]Lac/Pyr when comparing vorinostat‐treated U87 GBM tumors with controls, and, as in the cell studies, this metabolic finding was associated with increased MCT1 and MCT4 expression in HDAC‐inhibited tumors. Thus, the 13C MRSI‐detectable decrease in hyperpolarized [1‐13C]lactate production could serve as a biomarker of response to HDAC inhibitors.  相似文献   

17.
Hyperpolarized 13C MR measurements have the potential to display non‐linear kinetics. We have developed an approach to describe possible non‐first‐order kinetics of hyperpolarized [1‐13C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass of the hyperpolarized signal. Simultaneous fitting to a second‐order model for conversion of [1‐13C] pyruvate to bicarbonate, lactate and alanine was well described in the isolated rat heart perfused with Krebs buffer containing glucose as sole energy substrate, or glucose supplemented with pyruvate. Second‐order modeling yielded significantly improved fits of pyruvate–bicarbonate kinetics compared with the more traditionally used first‐order model and suggested time‐dependent decreases in pyruvate–bicarbonate flux. Second‐order modeling gave time‐dependent changes in forward and reverse reaction kinetics of pyruvate–lactate exchange and pyruvate–alanine exchange in both groups of hearts during the infusion of pyruvate; however, the fits were not significantly improved with respect to a traditional first‐order model. The mechanism giving rise to second‐order pyruvate dehydrogenase (PDH) kinetics was explored experimentally using surface fluorescence measurements of nicotinamide adenine dinucleotide reduced form (NADH) performed under the same conditions, demonstrating a significant increase of NADH during pyruvate infusion. This suggests a simultaneous depletion of available mitochondrial NAD+ (the cofactor for PDH), consistent with the non‐linear nature of the kinetics. NADH levels returned to baseline following cessation of the pyruvate infusion, suggesting this to be a transient effect. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

18.
Hyperpolarised [1‐13C]pyruvate MRI has shown promise in monitoring therapeutic efficacy in a number of cancers including glioma. In this study, we assessed the pyruvate response to the lentiviral suicide gene therapy of herpes simplex virus‐1 thymidine kinase with the prodrug ganciclovir (HSV‐TK/GCV) in C6 rat glioma and compared it with traditional MR therapy markers. Female Wistar rats were inoculated with 106 C6 glioma cells. Treated animals received intratumoural lentiviral HSV‐TK gene transfers on days 7 and 8 followed by 2‐week GCV therapy starting on day 10. Animals were repeatedly imaged during therapy using volumetric MRI, diffusion and relaxation mapping, as well as metabolic [1‐13C]pyruvate MRS imaging. Survival (measured as time before animals reached a humane endpoint and were euthanised) was assessed up to day 30 posttherapy. HSV‐TK/GCV gene therapy lengthened the median survival time from 12 to 25 days. This was accompanied by an apparent tumour growth arrest, but no changes in diffusion or relaxation parameters in treated animals. The metabolic response was more evident in the case‐by‐case analysis than in the group‐level analysis. Treated animals also showed a 37 ± 15% decrease (P < 0.05, n = 5) in lactate‐to‐pyruvate ratio between therapy weeks, whereas a 44 ± 18% increase (P < 0.05, n = 6) was observed in control animals. Hyperpolarised [1‐13C]pyruvate MRI can offer complementary metabolic information to traditional MR methods to give a more comprehensive picture of the slowly developing gene therapy response. This may benefit the detection of the successful therapy response in patients.  相似文献   

19.
The goal of the study was to establish early hyperpolarized (HP) 13C MRI metabolic and perfusion changes that predict effective high‐intensity focused ultrasound (HIFU) ablation and lead to improved adjuvant treatment of partially treated regions. To accomplish this a combined HP dual‐agent (13C pyruvate and 13C urea) 13C MRI/multiparametric 1H MRI approach was used to measure prostate cancer metabolism and perfusion 3–4 h, 1 d, and 5 d after exposure to ablative and sub‐lethal doses of HIFU within adenocarcinoma of mouse prostate tumors using a focused ultrasound applicator designed for murine studies. Pathologic and immunohistochemical analysis of the ablated tumor demonstrated fragmented, non‐viable cells and vasculature consistent with coagulative necrosis, and a mixture of destroyed tissue and highly proliferative, poorly differentiated tumor cells in tumor tissues exposed to sub‐lethal heat doses in the ablative margin. In ablated regions, the intensity of HP 13C lactate or HP 13C urea and dynamic contrast‐enhanced (DCE) MRI area under the curve images were reduced to the level of background noise by 3–4 h after treatment with no recovery by the 5 d time point in either case. In the tissues that received sub‐lethal heat dose, there was a significant 60% ± 12.4% drop in HP 13C lactate production and a significant 30 ± 13.7% drop in urea perfusion 3–4 h after treatment, followed by recovery to baseline by 5 d after treatment. DCE MRI Ktrans showed a similar trend to HP 13C urea, demonstrating a complete loss of perfusion with no recovery in the ablated region, while having a 40%–50% decrease 3–4 h after treatment followed by recovery to baseline values by 5 d in the margin region. The utility of the HP 13C MR measures of perfusion and metabolism in optimizing focal HIFU, either alone or in combination with adjuvant therapy, deserves further testing in future studies.  相似文献   

20.
A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized 13C‐labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β‐oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [13C]bicarbonate signal in cardiac hyperpolarized [1‐13C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1‐13C]pyruvate. No [13C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [13C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [13C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [13C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号