首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separate quantification of glutamate (Glu) and glutamine (Gln) using conventional MRS on clinical scanners is challenging. In previous work, constant‐time point‐resolved spectroscopy (CT‐PRESS) was optimized at 3 T to detect Glu, but did not resolve Gln. To quantify Glu and Gln, a time‐domain basis set was constructed taking into account metabolite T2 relaxation times and dephasing from B0 inhomogeneity. Metabolite concentrations were estimated by fitting the basis one‐dimensional CT‐PRESS diagonal magnitude spectra to the measured spectrum. This method was first validated using seven custom‐built phantoms containing variable metabolite concentrations, and then applied to in vivo data acquired in rats exposed to vaporized ethanol and controls. Separate metabolite quantification revealed increased Gln after 16 weeks and increased Glu after 24 weeks of vaporized ethanol exposure in ethanol‐treated compared with control rats. Without separate quantification, the signal from the combined resonances of Glu and Gln (Glx) showed an increase at both 16 and 24 weeks in ethanol‐exposed rats, precluding the determination of the independent and differential contribution of each metabolite at each time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
ProFit: two-dimensional prior-knowledge fitting of J-resolved spectra   总被引:4,自引:0,他引:4  
A two-dimensional fitting procedure is introduced, capable of extracting the full amount of information from 2D J-resolved magnetic resonance spectroscopic data. The fitting procedure uses a linear combination of 2D model spectra. For reducing the degrees of freedom and increasing robustness, it is divided into a non-linear outer loop and an inner linear least-squares fit for the concentrations. In vitro and in vivo experiments on a whole-body 3 T MR scanner show the detectability of a wide range of metabolites in the human brain, namely total creatine, N-acetylaspartate, N-acetylaspartylglutamate, choline-containing compounds, glutamate, myo-inositol, glutathione, scyllo-inositol, gamma-aminobutyric acid, alanine and ascorbic acid.  相似文献   

3.
The 1H resonances of γ‐aminobutyric acid (GABA) in the human brain in vivo are extensively overlapped with the neighboring abundant resonances of other metabolites and remain indiscernible in short‐TE MRS at 7 T. Here we report that the GABA resonance at 2.28 ppm can be fully resolved by means of echo time optimization of a point‐resolved spectroscopy (PRESS) scheme. Following numerical simulations and phantom validation, the subecho times of PRESS were optimized at (TE, TE2) = (31, 61) ms for detection of GABA, glutamate (Glu), glutamine (Gln), and glutathione (GSH). The in vivo feasibility of the method was tested in several brain regions in nine healthy subjects. Spectra were acquired from the medial prefrontal, left frontal, medial occipital, and left occipital brain and analyzed with LCModel. Following the gray and white matter (GM and WM) segmentation of T1‐weighted images, linear regression of metabolite estimates was performed against the fractional GM contents. The GABA concentration was estimated to be about seven times higher in GM than in WM. GABA was overall higher in frontal than in occipital brain. Glu was about twice as high in GM as in WM in both frontal and occipital brain. Gln was significantly different between frontal GM and WM while being similar between occipital GM and WM. GSH did not show significant dependence on tissue content. The signals from N‐acetylaspartylglutamate were clearly resolved, giving the concentration more than 10 times higher in WM than in GM. Our data indicate that the PRESS TE = 92 ms method provides an effective means for measuring GABA and several challenging J‐coupled spin metabolites in human brain at 7 T. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Proton point‐resolved spectroscopy (PRESS) localization has been combined with distortionless enhanced polarization transfer (DEPT) in multinuclear MRS to overcome the signal contamination problem in image‐selected in vivo spectroscopy (ISIS)‐combined DEPT, especially for lipid detection. However, homonuclear proton scalar couplings reduce the DEPT enhancement by modifying the spin coherence distribution under J modulation during proton PRESS localization. Herein, a J‐refocused proton PRESS‐localized DEPT sequence is presented to obtain simultaneously enhanced and localized signals from a large number of metabolites by in vivo 13C MRS. The suppression of J modulation during PRESS and the substantial recovery of signal enhancement by J‐refocused PRESS‐localized DEPT were demonstrated theoretically by product operator formalism, numerically by the spin density matrix simulations for different scalar coupling conditions, and experimentally with a glutamate phantom at various TEs, as well as a colza oil phantom. The application of the sequence for localized detection of saturated and unsaturated fatty acids in the calf bone marrow and skeletal muscle of healthy subjects yielded high signal enhancements simultaneously obtained for all components. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
2‐Hydroxyglutarate (2HG) is produced in gliomas with mutations of isocitrate dehydrogenase (IDH) 1 and 2. The 1H resonances of the J‐coupled spins of 2HG are extensively overlapped with signals from other metabolites. Here, we report a comparative study at 3 T of the utility of the point‐resolved spectroscopy sequence with a standard short TE (35 ms) and a long TE (97 ms), which had been theoretically designed for the detection of the 2HG 2.25‐ppm resonance. The performance of the methods is evaluated using data from phantoms, seven healthy volunteers and 22 subjects with IDH‐mutated gliomas. The results indicate that TE = 97 ms provides higher detectability of 2HG than TE = 35 ms, and that this improved capability is gained when data are analyzed with basis spectra that include the effects of the volume localizing radiofrequency and gradient pulses. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Management of brain tumours in children would benefit from improved non‐invasive diagnosis, characterisation and prognostic biomarkers. Metabolite profiles derived from in‐vivo MRS have been shown to provide such information. Studies indicate that using optimum a priori information on metabolite contents in the construction of linear combination (LC) models of MR spectra leads to improved metabolite profile estimation. Glycine (Gly) is usually neglected in such models due to strong overlap with myo‐inositol (mI) and a low concentration in normal brain. However, biological studies indicate that Gly is abundant in high‐grade brain tumours. This study aimed to investigate the quantitation of Gly in paediatric brain tumours using MRS analysed by LCModel?, and its potential as a non‐invasive biomarker of malignancy. Single‐voxel MRS was performed using PRESS (TR 1500 ms, TE 30 ms/135 ms) on a 1.5 T scanner. Forty‐seven cases (18 high grade (HG), 17 low grade (LG), 12 ungraded) were retrospectively selected if both short‐TE and long‐TE MRS (n = 33) or short‐TE MRS and high‐resolution magic‐angle spinning (HRMAS) of matched surgical samples (n = 15) were available. The inclusion of Gly in LCModel? analyses led to significantly reduced fit residues for both short‐TE and long‐TE MRS (p < 0.05). The Gly concentrations estimated from short‐TE MRS were significantly correlated with the long‐TE values (R = 0.91, p < 0.001). The Gly concentration estimated by LCModel? was significantly higher in HG versus LG tumours for both short‐TE (p < 1e‐6) and long‐TE (p = 0.003) MRS. This was consistent with the HRMAS results, which showed a significantly higher normalised Gly concentration in HG tumours (p < 0.05) and a significant correlation with the normalised Gly concentration measured from short‐TE in‐vivo MRS (p < 0.05). This study suggests that glycine can be reliably detected in paediatric brain tumours using in‐vivo MRS on standard clinical scanners and that it is a promising biomarker of tumour aggressiveness. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
High‐resolution magic angle spinning (HRMAS) MRS is a powerful method for gaining insight into the physiological and pathological processes of cellular metabolism. Given its ability to obtain high‐resolution spectra of non‐liquid biological samples, while preserving tissue architecture for subsequent histopathological analysis, the technique has become invaluable for biochemical and biomedical studies. Using HRMAS MRS, alterations in measured metabolites, metabolic ratios, and metabolomic profiles present the possibility to improve identification and prognostication of various diseases and decipher the metabolomic impact of drug therapies. In this review, we evaluate HRMAS MRS results on human tissue specimens from malignancies and non‐localized diseases reported in the literature since the inception of the technique in 1996. We present the diverse applications of the technique in understanding pathological processes of different anatomical origins, correlations with in vivo imaging, effectiveness of therapies, and progress in the HRMAS methodology.  相似文献   

8.
Glutamine (Gln), glutamate (Glu) and γ‐aminobutyric acid (GABA) are relevant brain metabolites that can be measured with magnetic resonance spectroscopy (MRS). This work optimizes the point‐resolved spectroscopy (PRESS) sequence echo times, TE1 and TE2, for improved simultaneous quantification of the three metabolites at 9.4 T. Quantification was based on the proton resonances of Gln, Glu and GABA at ≈2.45, ≈2.35 and ≈2.28 ppm, respectively. Glu exhibits overlap with both Gln and GABA; in addition, the Gln peak is contaminated by signal from the strongly coupled protons of N‐acetylaspartate (NAA), which resonate at about 2.49 ppm. J‐coupling evolution of the protons was characterized numerically and verified experimentally. A {TE1, TE2} combination of {106 ms, 16 ms} minimized the NAA signal in the Gln spectral region, whilst retaining Gln, Glu and GABA peaks. The efficacy of the technique was verified on phantom solutions and on rat brain in vivo. LCModel was employed to analyze the in vivo spectra. The average T2‐corrected Gln, Glu and GABA concentrations were found to be 3.39, 11.43 and 2.20 mM, respectively, assuming a total creatine concentration of 8.5 mM. LCModel Cramér–Rao lower bounds (CRLBs) for Gln, Glu and GABA were in the ranges 14–17%, 4–6% and 16–19%, respectively. The optimal TE resulted in concentrations for Gln and GABA that agreed more closely with literature concentrations compared with concentrations obtained from short‐TE spectra acquired with a {TE1, TE2} combination of {12 ms, 9 ms}. LCModel estimations were also evaluated with short‐TE PRESS and with the optimized long TE of {106 ms, 16 ms}, using phantom solutions of known metabolite concentrations. It was shown that concentrations estimated with LCModel can be inaccurate when combined with short‐TE PRESS, where there is peak overlap, even when low (<20%) CRLBs are reported.  相似文献   

9.
1H MRS provides a powerful method for investigating tumour metabolism by allowing the measurement of metabolites in vivo. Recently, the technique of 1H high‐resolution magic angle spinning (HR‐MAS) has been shown to produce high‐quality data, allowing the accurate measurement of many metabolites present in unprocessed biopsy tissue. The purpose of this study was to evaluate the agreement between the techniques of in vivo MRS and ex vivo HR‐MAS for investigating childhood brain tumours. Short‐TE (30 ms), single‐voxel, in vivo MRS was performed on 16 paediatric patients with brain tumours at 1.5 T. A frozen biopsy sample was available for each patient. HR‐MAS was performed on the biopsy samples, and metabolite quantities were determined from the MRS and HR‐MAS data using the LCModel? and TARQUIN algorithms, respectively. Linear regression was performed on the metabolite quantities to asses the agreement between MRS and HR‐MAS. Eight of the 12 metabolite quantities were found to correlate significantly (P < 0.05). The four worst correlating metabolites were aspartate, scyllo‐inositol, glycerophosphocholine and N‐acetylaspartate, and, except for glycerophosphocholine, this error was reflected in their higher Cramer–Rao lower bounds (CRLBs), suggesting that low signal‐to‐noise was the greatest source of error for these metabolites. Glycerophosphocholine had a lower CRLB implying that interference with phosphocholine and choline was the most significant source of error. The generally good agreement observed between the two techniques suggests that both MRS and HR‐MAS can be used to reliably estimate metabolite quantities in brain tumour tissue and that tumour heterogeneity and metabolite degradation do not have an important effect on the HR‐MAS metabolite profile for the tumours investigated. HR‐MAS can be used to improve the analysis and understanding of MRS data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The overlap of metabolites is a major limitation in one‐dimensional (1D) spectral‐based single‐voxel MRS and multivoxel‐based MRSI. By combining echo planar spectroscopic imaging (EPSI) with a two‐dimensional (2D) J‐resolved spectroscopic (JPRESS) sequence, 2D spectra can be recorded in multiple locations in a single slice of prostate using four‐dimensional (4D) echo planar J‐resolved spectroscopic imaging (EP‐JRESI). The goal of the present work was to validate two different non‐linear reconstruction methods independently using compressed sensing‐based 4D EP‐JRESI in prostate cancer (PCa): maximum entropy (MaxEnt) and total variation (TV). Twenty‐two patients with PCa with a mean age of 63.8 years (range, 46–79 years) were investigated in this study. A 4D non‐uniformly undersampled (NUS) EP‐JRESI sequence was implemented on a Siemens 3‐T MRI scanner. The NUS data were reconstructed using two non‐linear reconstruction methods, namely MaxEnt and TV. Using both TV and MaxEnt reconstruction methods, the following observations were made in cancerous compared with non‐cancerous locations: (i) higher mean (choline + creatine)/citrate metabolite ratios; (ii) increased levels of (choline + creatine)/spermine and (choline + creatine)/myo‐inositol; and (iii) decreased levels of (choline + creatine)/(glutamine + glutamate). We have shown that it is possible to accelerate the 4D EP‐JRESI sequence by four times and that the data can be reliably reconstructed using the TV and MaxEnt methods. The total acquisition duration was less than 13 min and we were able to detect and quantify several metabolites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Short‐TE MRS has been proposed recently as a method for the in vivo detection and quantification of γ‐aminobutyric acid (GABA) in the human brain at 3 T. In this study, we investigated the accuracy and reproducibility of short‐TE MRS measurements of GABA at 3 T using both simulations and experiments. LCModel analysis was performed on a large number of simulated spectra with known metabolite input concentrations. Simulated spectra were generated using a range of spectral linewidths and signal‐to‐noise ratios to investigate the effect of varying experimental conditions, and analyses were performed using two different baseline models to investigate the effect of an inaccurate baseline model on GABA quantification. The results of these analyses indicated that, under experimental conditions corresponding to those typically observed in the occipital cortex, GABA concentration estimates are reproducible (mean reproducibility error, <20%), even when an incorrect baseline model is used. However, simulations indicate that the accuracy of GABA concentration estimates depends strongly on the experimental conditions (linewidth and signal‐to‐noise ratio). In addition to simulations, in vivo GABA measurements were performed using both spectral editing and short‐TE MRS in the occipital cortex of 14 healthy volunteers. Short‐TE MRS measurements of GABA exhibited a significant positive correlation with edited GABA measurements (R = 0.58, p < 0.05), suggesting that short‐TE measurements of GABA correspond well with measurements made using spectral editing techniques. Finally, within‐session reproducibility was assessed in the same 14 subjects using four consecutive short‐TE GABA measurements in the occipital cortex. Across all subjects, the average coefficient of variation of these four GABA measurements was 8.7 ± 4.9%. This study demonstrates that, under some experimental conditions, short‐TE MRS can be employed for the reproducible detection of GABA at 3 T, but that the technique should be used with caution, as the results are dependent on the experimental conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
MRS of 13C4‐labelled glutamate (13C4‐Glu) during an infusion of a carbon‐13 (13C)‐labelled substrate, such as uniformly labelled glucose ([U‐13C6]‐Glc), provides a measure of Glc metabolism. The presented work provides a single‐shot indirect 13C detection technique to quantify the approximately 2.51 ppm 13C4‐Glu satellite proton (1H) peak at 9.4 T. The methodology is an optimized point‐resolved spectroscopy (PRESS) sequence that minimizes signal contamination from the strongly coupled protons of N‐acetylaspartate (NAA), which resonate at approximately 2.49 ppm. J‐coupling evolution of protons was characterized numerically and verified experimentally. A (TE1, TE2) combination of (20 ms, 106 ms) was found to be suitable for minimizing NAA signal in the 2.51 ppm 1H 13C4‐Glu spectral region, while retaining the 13C4‐Glu 1H satellite peak. The efficacy of the technique was verified on phantom solutions and on two rat brains in vivo during an infusion of [U‐13C6]‐Glc. LCModel was employed for analysis of the in vivo spectra to quantify the 2.51 ppm 1H 13C4‐Glu signal to obtain Glu C4 fractional enrichment time courses during the infusions. Cramér‐Rao lower bounds of about 8% were obtained for the 2.51 ppm 13C4‐Glu 1H satellite peak with the optimal TE combination.  相似文献   

13.
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non‐invasively assessed by 1H‐MRS in vivo. We used 1H‐MRS to characterize the hepatic fatty‐acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra‐short TE of 2.8 ms, confounding effects from T2 relaxation and J‐coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono‐unsaturated (MUFA) and poly‐unsaturated (PUFA) fatty‐acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo 1H‐MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty‐acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty‐acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ‐induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of 1H‐MRS in vivo to monitor changes in the composition of the hepatic fatty‐acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid‐lowering interventions in the scope of metabolic disorders. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
An unassigned and prominent resonance in the region from δ 2.0–2.1 ppm has frequently been found in the in vivo MR spectra of cancer patients. We demonstrated the presence of this resonance with in vivo MRS in the cyst fluid of a patient with an ovarian tumor. 1H‐NMRS on the aspirated cyst fluid of this patient confirmed the observation. A complex of resonances was observed between 2.0 and 2.1 ppm. It was also present in 11 additional ovarian cyst fluid samples randomly chosen from our biobank. The resonance complex was significantly more prominent in samples from mucinous tumors than in samples from other histological subtypes. A macromolecule (>10 kDa) was found responsible for this complex of resonances. A correlation spectroscopy (COSY) experiment revealed cross peaks of two different types of bound sialic acid suggesting that N‐glycans from glycoproteins and/or glycolipids cause this resonance complex. In the literature, plasma α‐1 acid glycoprotein (AGP), known for its high content of N‐linked glycans, has been suggested to contribute to the δ 2.0–2.1 spectral region. The AGP cyst fluid concentration did not correlate significantly with the peak height of the δ 2.0–2.1 resonance complex in our study. AGP may be partly responsible for the resonance complex but other N‐acetylated glycoproteins and/or glycolipids also contribute. After deproteinization of the cyst fluid, N‐acetyl‐L ‐aspartic acid (NAA) was found to contribute significantly to the signal in this spectral region in three of the 12 samples. GC‐MS independently confirmed the presence of NAA in high concentration in the three samples, which all derived from benign serous tumors. We conclude that both NAA and N‐acetyl groups from glycoproteins and/or glycolipids may contribute to the δ 2.0–2.1 ppm resonance complex in ovarian cyst fluid. This spectral region seems to contain resonances from biomarkers that provide relevant clinical information on the type of ovarian tumor. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Creatine kinase (CK) is essential for the buffering and rapid regeneration of adenosine triphosphate (ATP) in heart tissue. Herein, we demonstrate a 31P MRS protocol to quantify CK reaction kinetics in human myocardium at 3 T. Furthermore, we sought to quantify the test–retest reliability of the measured metabolic parameters. The method localizes the 31P signal from the heart using modified one‐dimensional image‐selected in vivo spectroscopy (ISIS), and a time‐dependent saturation transfer (TDST) approach was used to measure CK reaction parameters. Fifteen healthy volunteers (22 measurements in total) were tested. The CK reaction rate constant (kf) was 0.32 ± 0.05 s?1 and the coefficient of variation (CV) was 15.62%. The intrinsic T1 for phosphocreatine (PCr) was 7.36 ± 1.79 s with CV = 24.32%. These values are consistent with those reported previously. The PCr/ATP ratio was equal to 1.94 ± 0.15 with CV = 7.73%, which is within the range of healthy subjects. The reproducibility of the technique was tested in seven subjects and inferred parameters, such as kf and T1, exhibited good reliability [intraclass correlation coefficient (ICC) of 0.90 and 0.79 for kf and T1, respectively). The reproducibility data provided in this study will enable the calculation of the power and sample sizes required for clinical and research studies. The technique will allow for the examination of cardiac energy metabolism in clinical and research studies, providing insight into the relationship between energy deficit and functional deficiency in the heart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
In response to hypobaric hypoxia (HH), which occurs at high altitude, the brain undergoes deleterious changes at the structural and metabolite level. In vivo T2 weighted imaging (T2WI) and 1H‐MRS was performed to understand the structural and metabolic changes in the hippocampus region of rat brain. Data were acquired pre‐exposure (baseline controls), immediately after exposure and subsequently at the first, fourth, seventh and 14th days post exposure at normoxia. T2 weighted images of rat brain showed hyperintensity in the CA2/CA3 region of the hippocampus 7 d after acute HH, which persisted till 14 d, probably indicating structural changes in the hippocampus. 1H‐MRS results showed no change in metabolite level immediately after acute HH exposure, but on the first day of normoxia the myo‐inositol level was significantly decreased, possibly due to altered astrocyte metabolism. Metabolic alterations showing an increase in choline and decrease in glutamate on the fourth day of normoxia may be seen as a process of demyelination and loss of glutamate pool respectively. On the seventh and 14th days of normoxia, decreases in N‐acetylaspartate, creatine and glutamine + glutamate were observed, which might be due to decreased viability of glutamatergic neurons. In vivo 1H‐MRS demonstrated early neurometabolic changes prior to probable structural changes post acute HH exposure. The extension of these studies will help in early risk assessment, developing intervention and strategies for combating HH related changes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Abnormalities in brain γ‐aminobutyric acid (GABA) have been implicated in various neuropsychiatric and neurological disorders. However, in vivo GABA detection by 1H MRS presents significant challenges arising from the low brain concentration, overlap by much stronger resonances and contamination by mobile macromolecule (MM) signals. This study addresses these impediments to reliable brain GABA detection with the J‐editing difference technique on a 3‐T MR system in healthy human subjects by: (i) assessing the sensitivity gains attainable with an eight‐channel phased‐array head coil; (ii) determining the magnitude and anatomic variation of the contamination of GABA by MM; and (iii) estimating the test–retest reliability of the measurement of GABA with this method. Sensitivity gains and test–retest reliability were examined in the dorsolateral prefrontal cortex (DLPFC), whereas MM levels were compared across three cortical regions: DLPFC, the medial prefrontal cortex (MPFC) and the occipital cortex (OCC). A three‐fold higher GABA detection sensitivity was attained with the eight‐channel head coil compared with the standard single‐channel head coil in DLPFC. Despite significant anatomical variation in GABA + MM and MM across the three brain regions (p < 0.05), the contribution of MM to GABA + MM was relatively stable across the three voxels, ranging from 41% to 49%, a non‐significant regional variation (p = 0.58). The test–retest reliability of GABA measurement, expressed as either the ratio to voxel tissue water (W) or to total creatine, was found to be very high for both the single‐channel coil and the eight‐channel phased‐array coil. For the eight‐channel coil, for example, Pearson's correlation coefficient of test vs. retest for GABA/W was 0.98 (R2 = 0.96, p = 0.0007), the percentage coefficient of variation (CV) was 1.25% and the intraclass correlation coefficient (ICC) was 0.98. Similar reliability was also found for the co‐edited resonance of combined glutamate and glutamine (Glx) for both coils. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Localized two-dimensional constant-time correlation spectroscopy (CT-COSY) was used to resolve glutamate (Glu), gamma-aminobutyric acid (GABA), and glutamine (Gln) in the human brain at 4.7 T. In this method, three-dimensional localization was achieved using three radio frequency pulses of the CT-COSY module for slice selection. As this sequence could decouple JHH along the F1 direction, peak resolution of metabolites was improved even on a magnitude-mode display. In experiments on a phantom containing N-acetylaspartate, creatine, Glu, Gln, and GABA with a constant time delay (Tct) of 110 ms, cross peaks of Glu, Gln, and GABA were obtained on a spectrum processed with standard sine-bell windows, which emphasize sine-dependent signals along the t2 direction. In contrast, diagonal peaks of Glu C4H at 2.35 ppm, GABA C2H at 2.28 ppm, and Gln C4H at 2.44 ppm were resolved on a spectrum processed with Gaussian windows, which emphasize cosine-dependent signals along t2. Human brain spectra were obtained from a 27 mL voxel within the parieto-occipital region using a volume transverse electromagnetic (TEM) coil for both transmission and reception. Tct was 110 ms; the total scan time was 30 min. Diagonal peaks of Glu C4H, GABA C2H, and Gln C4H were also resolved on the spectrum processed with Gaussian windows. These results show that the localized two-dimensional CT-COSY method featuring 1H decoupling along the F1 direction could resolve Glu, GABA, and Gln signals in the human brain.  相似文献   

19.
Gamma‐aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, and plays a key role in brain development. However, the in vivo levels of brain GABA in early life are unknown. Using edited MRS, in vivo GABA can be detected as GABA+ signal with contamination of macromolecule signals. GABA+ is evaluated as the peak ratio of GABA+/reference compound, for which creatine (Cr) or water is typically used. However, the concentrations and T1 and T2 relaxation times of these references change during development. Thus, the peak ratio comparison between neonates and children may be inaccurate. The aim of this study was to measure in vivo neonatal brain GABA+ levels, and to investigate the dependency of GABA levels on brain region and age. The basal ganglia and cerebellum of 38 neonates and 12 children were measured using GABA‐edited MRS. Two different approaches were used to obtain GABA+ levels: (i) multiplying the GABA/water ratio by the water concentration; and (ii) multiplying the GABA+/Cr by the Cr concentration. Neonates exhibited significantly lower GABA+ levels compared with children in both regions, regardless of the approach employed, consistent with previous ex vivo data. A similar finding of lower GABA+/water and GABA+/Cr in neonates compared with children was observed, except for GABA+/Cr in the cerebellum. This contrasting finding resulted from significantly lower Cr concentrations in the neonate cerebellum, which were approximately 52% of those of children. In conclusion, care should be taken to consider Cr concentrations when comparing GABA+/Cr levels between different‐aged subjects.  相似文献   

20.
Glycine (Gly) has been implicated in several neurological disorders, including malignant brain tumors. The precise measurement of Gly is challenging largely as a result of the spectral overlap with myo‐inositol (mI). We report a new triple‐refocusing sequence for the reliable co‐detection of Gly and mI at 3 T and for the evaluation of Gly in healthy and tumorous brain. The sequence parameters were optimized with density‐matrix simulations and phantom validation. With a total TE of 134 ms, the sequence gave complete suppression of the mI signal between 3.5 and 3.6 ppm and, consequently, well‐defined Gly (3.55 ppm) and mI (3.64 ppm) peaks. In vivo 1H magnetic resonance spectroscopy (MRS) data were acquired from the gray matter (GM)‐dominant medial occipital and white matter (WM)‐dominant left parietal regions in six healthy subjects, and analyzed with LCModel using in‐house‐calculated basis spectra. Tissue segmentation was performed to obtain the GM and WM contents within the MRS voxels. Metabolites were quantified with reference to GM‐rich medial occipital total creatine at 8 mM. The Gly and mI concentrations were estimated to be 0.63 ± 0.05 and 8.6 ± 0.6 mM for the medial occipital and 0.34 ± 0.05 and 5.3 ± 0.8 mM for the left parietal regions, respectively. From linear regression of the metabolite estimates versus fractional GM content, the concentration ratios between pure GM and pure WM were estimated to be 2.6 and 2.1 for Gly and mI, respectively. Clinical application of the optimized sequence was performed in four subjects with brain tumor. The Gly levels in tumors were higher than those of healthy brain. Gly elevation was more extensive in a post‐contrast enhancing region than in a non‐enhancing region. The data indicate that the optimized triple‐refocusing sequence may provide reliable co‐detection of Gly and mI, and alterations of Gly in brain tumors can be precisely evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号