首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
2.
Inflammatory processes can reliably be assessed by 19F MRI using perfluorocarbons (PFCs), which is primarily based on the efficient uptake of emulsified PFCs by circulating cells of the monocyte–macrophage system and subsequent infiltration of the 19F‐labeled cells into affected tissue. An ideal candidate for the sensitive detection of fluorine‐loaded cells is the biochemically inert perfluoro‐15‐crown‐5 ether (PFCE), as it contains 20 magnetically equivalent 19F atoms. However, the biological half‐life of PFCE in the liver and spleen is extremely long, and so this substance is not suitable for future clinical applications. In the present study, we investigated alternative, nontoxic PFCs with predicted short biological half‐lives and high fluorine content: perfluorooctyl bromide (PFOB), perfluorodecalin (PFD) and trans‐bis‐perfluorobutyl ethylene (F‐44E). Despite the complex spectra of these compounds, we obtained artifact‐free images using sine‐squared acquisition‐weighted three‐dimensional chemical shift imaging and dedicated reconstruction accomplished with in‐house‐developed software. The signal‐to‐noise ratio of the images was maximized using a Nutall window with only moderate localization error. Using this approach, the retention times of the different PFCs in murine liver and spleen were determined at 9.4 T. The biological half‐lives were estimated to be 9 days (PFD), 12 days (PFOB) and 28 days (F‐44E), compared with more than 250 days for PFCE. In vivo sensitivity for inflammation imaging was assessed using an ear clip injury model. The alternative PFCs PFOB and F‐44E provided 37% and 43%, respectively, of the PFCE intensities, whereas PFD did not show any signal in the ear model. Thus, for in vivo monitoring of inflammatory processes, PFOB emerges as the most promising candidate for possible future translation of 19F MR inflammation imaging to human applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Fluorine‐19 (19F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non‐invasive quantification of inflammation and cell tracking, but suffers from a low signal‐to‐noise ratio and extended scan time. To address this limitation, we tested the hypotheses that a 19F MRI pulse sequence that combines a specific undersampling regime with signal averaging has both increased sensitivity and robustness against motion artifacts compared with a non‐averaged fully sampled pulse sequence, when both datasets are reconstructed with compressed sensing. As a proof of principle, numerical simulations and phantom experiments were performed on selected variable ranges to characterize the point spread function of undersampling patterns, as well as the vulnerability to noise of undersampling and reconstruction parameters with paired numbers of x signal averages and acceleration factor x (NAx ‐AFx ). The numerical simulations demonstrated that a probability density function that uses 25% of the samples to fully sample the k‐space central area allowed for an optimal balance between limited blurring and artifact incoherence. At all investigated noise levels, the Dice similarity coefficient (DSC) strongly depended on the regularization parameters and acceleration factor. In phantoms, the motion robustness of an NA8‐AF8 undersampling pattern versus NA1‐AF1 was evaluated with simulated and real motion patterns. Differences were assessed with the DSC, which was consistently higher for the NA8‐AF8 compared with the NA1‐AF1 strategy, for both simulated and real cyclic motion patterns (P < 0.001). Both strategies were validated in vivo in mice (n = 2) injected with perfluoropolyether. Here, the images displayed a sharper delineation of the liver with the NA8‐AF8 strategy than with the NA1‐AF1 strategy. In conclusion, we validated the hypotheses that in 19F MRI the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts.  相似文献   

4.
Time constraints placed on magnetic resonance imaging often restrict the application of advanced diffusion MRI (dMRI) protocols in clinical practice and in high throughput research studies. Therefore, acquisition strategies for accelerated dMRI have been investigated to allow for the collection of versatile and high quality imaging data, even if stringent scan time limits are imposed. Diffusion spectrum imaging (DSI), an advanced acquisition strategy that allows for a high resolution of intra‐voxel microstructure, can be sufficiently accelerated by means of compressed sensing (CS) theory. CS theory describes a framework for the efficient collection of fewer samples of a data set than conventionally required followed by robust reconstruction to recover the full data set from sparse measurements. For an accurate recovery of DSI data, a suitable acquisition scheme for sparse q‐space sampling and the sensing and sparsifying bases for CS reconstruction need to be selected. In this work we explore three different types of q‐space undersampling schemes and two frameworks for CS reconstruction based on either Fourier or SHORE basis functions. After CS recovery, diffusion and microstructural parameters and orientational information are estimated from the reconstructed data by means of state‐of‐the‐art processing techniques for dMRI analysis. By means of simulation, diffusion phantom and in vivo DSI data, an isotropic distribution of q‐space samples was found to be optimal for sparse DSI. The CS reconstruction results indicate superior performance of Fourier‐based CS‐DSI compared to the SHORE‐based approach. Based on these findings we outline an experimental design for accelerated DSI and robust CS reconstruction of the sparse measurements that is suitable for the application within time‐limited studies.  相似文献   

5.
Systemic chemotherapy is effective in only a subset of patients with metastasized colorectal cancer. Therefore, early selection of patients who are most likely to benefit from chemotherapy is desirable. Response to treatment may be determined by the delivery of the drug to the tumor, retention of the drug in the tumor and by the amount of intracellular uptake, metabolic activation and catabolism, as well as other factors. The first aim of this study was to investigate the predictive value of DCE-MRI with the contrast agent Gd-DTPA for tumor response to first-line chemotherapy in patients with liver metastases of colorectal cancer. The second aim was to investigate the predictive value of 5-fluorouracil (FU) uptake, retention and catabolism as measured by localized (19)F MRS for tumor response to FU therapy. Since FU uptake, retention and metabolism may depend on tumor vascularization, the relationship between (19)F MRS and the DCE-MRI parameters k(ep), K(trans) and v(e) was also examined (1). In this study, 37 patients were included. The kinetic parameters of DCE-MRI, k(ep), K(trans) and v(e), before start of treatment did not predict tumor response after 2 months, suggesting that the delivery of chemotherapy by tumor vasculature is not a major factor determining response in first-line treatment. No evident correlations between (19)F MRS parameters and tumor response were found. This suggests that in liver metastases that are not selected on the basis of their tumor diameter, FU uptake and catabolism are not limiting factors for response. The transfer constant K(trans), as measured by DCE-MRI before start of treatment, was negatively correlated with FU half-life in the liver metastases, which suggests that, in metastases with a larger tumor blood flow or permeability surface area product, FU is rapidly washed out from the tumor.  相似文献   

6.
To compare different MRI sequences for the detection of lesions and the evaluation of response to chemotherapy in patients with diffuse large B‐cell lymphoma (DLBCL), 18 patients with histology‐confirmed DLBCL underwent 3‐T MRI scanning prior to and 1 week after chemotherapy. The MRI sequences included T1‐weighted pre‐ and post‐contrast, T2‐weighted with and without fat suppression, and a single‐shot echo‐planar diffusion‐weighted imaging (DWI) with two b values (0 and 800 s/mm2). Conventional MRI sequence comparisons were performed using the contrast ratio between tumor and normal vertebral body instead of signal intensity. The apparent diffusion coefficient (ADC) of the tumor was measured directly on the parametric ADC map. The tumor volume was used as a reference for the evaluation of chemotherapy response. The mean tumor volume was 374 mL at baseline, and decreased by 65% 1 week after chemotherapy (p < 0.01). The T2‐weighted image with fat suppression showed a significantly higher contrast ratio compared with images from all other conventional MRI sequences, both before and after treatment (p < 0.01, respectively). The contrast ratio of the T2‐weighted image with fat suppression decreased significantly (p < 0.01), and that of the T1‐weighted pre‐contrast image increased significantly (p < 0.01), after treatment. However, there was no correlation between the change in contrast ratio and tumor volume. The mean ADC value was 0.68 × 10–3 mm2/s at baseline; it increased by 89% after chemotherapy (p < 0.001), and the change in ADC value correlated with the change in tumor volume (r = 0.66, p < 0.01). The baseline ADC value also correlated inversely with the percentage change in ADC after treatment (r = ?0.62, p < 0.01). In conclusion, this study indicates that T2‐weighted imaging with fat suppression is the best conventional sequence for the detection of lesions and evaluation of the efficacy of chemotherapy in DLBCL. DWI with ADC mapping is an imaging modality with both diagnostic and prognostic value that could complement conventional MRI. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号