首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glioblastomas (GB) are brain tumours with poor prognosis even after aggressive therapy. Improvements in both therapeutic and follow‐up strategies are urgently needed. In previous work we described an oscillatory pattern of response to Temozolomide (TMZ) using a standard administration protocol, detected through MRSI‐based machine learning approaches. In the present work, we have introduced the Immune‐Enhancing Metronomic Schedule (IMS) with an every 6‐d TMZ administration at 60 mg/kg and investigated the consistence of such oscillatory behaviour. A total of n = 17 GL261 GB tumour‐bearing C57BL/6j mice were studied with MRI/MRSI every 2 d, and the oscillatory behaviour (6.2 ± 1.5 d period from the TMZ administration day) was confirmed during response. Furthermore, IMS‐TMZ produced significant improvement in mice survival (22.5 ± 3.0 d for controls vs 135.8 ± 78.2 for TMZ‐treated), outperforming standard TMZ treatment. Histopathological correlation was investigated in selected tumour samples (n = 6) analyzing control and responding fields. Significant differences were found for CD3+ cells (lymphocytes, 3.3 ± 2.5 vs 4.8 ± 2.9, respectively) and Iba‐1 immunostained area (microglia/macrophages, 16.8% ± 9.7% and 21.9% ± 11.4%, respectively). Unexpectedly, during IMS‐TMZ treatment, tumours from some mice (n = 6) fully regressed and remained undetectable without further treatment for 1 mo. These animals were considered “cured” and a GL261 re‐challenge experiment performed, with no tumour reappearance in five out of six cases. Heterogeneous therapy response outcomes were detected in tumour‐bearing mice, and a selected group was investigated (n = 3 non‐responders, n = 6 relapsing tumours, n = 3 controls). PD‐L1 content was found ca. 3‐fold increased in the relapsing group when comparing with control and non‐responding groups, suggesting that increased lymphocyte inhibition could be associated to IMS‐TMZ failure. Overall, data suggest that host immune response has a relevant role in therapy response/escape in GL261 tumours under IMS‐TMZ therapy. This is associated to changes in the metabolomics pattern, oscillating every 6 d, in agreement with immune cycle length, which is being sampled by MRSI‐derived nosological images.  相似文献   

2.
Dimethyl sulfoxide (DMSO) is commonly used in preclinical studies of animal models of high‐grade glioma as a solvent for chemotherapeutic agents. A strong DMSO signal was detected by single‐voxel MRS in the brain of three C57BL/6 control mice during a pilot study of DMSO tolerance after intragastric administration. This led us to investigate the accumulation and wash‐out kinetics of DMSO in both normal brain parenchyma (n = 3 control mice) by single‐voxel MRS, and in 12 GL261 glioblastomas (GBMs) by single‐voxel MRS (n = 3) and MRSI (n = 9). DMSO accumulated differently in each tissue type, reaching its highest concentration in tumors: 6.18 ± 0.85 µmol/g water, 1.5‐fold higher than in control mouse brain (p < 0.05). A faster wash‐out was detected in normal brain parenchyma with respect to GBM tissue: half‐lives of 2.06 ± 0.58 and 4.57 ± 1.15 h, respectively. MRSI maps of time‐course DMSO changes revealed clear hotspots of differential spatial accumulation in GL261 tumors. Additional MRSI studies with four mice bearing oligodendrogliomas (ODs) revealed similar results as in GBM tumors. The lack of T1 contrast enhancement post‐gadolinium (gadopentetate dimeglumine, Gd‐DTPA) in control mouse brain and mice with ODs suggested that DMSO was fully able to cross the intact blood–brain barrier in both normal brain parenchyma and in low‐grade tumors. Our results indicate a potential role for DMSO as a contrast agent for brain tumor detection, even in those tumors ‘invisible’ to standard gadolinium‐enhanced MRI, and possibly for monitoring heterogeneities associated with progression or with therapeutic response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The purpose of this study was to evaluate fitness and health adaptations from a training program riding all-terrain vehicles (ATV) and off-road motorcycles (ORM) as the exercise stimulus. Participants (n = 58) were randomized to a control group (n = 12) or one of four experimental groups; 2 days/week ATV (n = 11), 2 days/week ORM (n = 12), 4 days/week ATV (n = 11), or 4 days/week ORM (n = 12). Aerobic fitness, musculoskeletal fitness, body composition, clinical health, and quality of life (QOL) were compared at baseline and following 6 weeks of training. In all riding groups, there were improvements in blood pressure (SBP = 9.4 ± 10.1, DBP = 5.8 ± 6.2 mmHg), fasting glucose (0.5 ± 0.7 mmol/l), subcutaneous adiposity (0.9 ± 1.1%), body mass (0.7 ± 2.7 kg), waist circumference (1.3 ± 2.5 cm), and isometric leg endurance (26 ± 44 s). All changes were of moderate to large magnitude (Cohen’s d 0.52–0.94) with the exception of a small loss of body mass (Cohen’s d = 0.27). Although changes occurred in the riding groups for aerobic power (2.9 ± 4.6 ml kg−1 min−1), leg power (172 ± 486 w), and curl-ups (13.2 ± 22.7), these changes were not significantly different from the control group. No significant alterations occurred in resting heart rate, trunk flexibility, back endurance, hand grip strength, long jump, pull/push strength, or push-up ability as a result of training. Physical domain QOL increased in all 2 days/week riders but mental domain QOL increased in all ORM, but not ATV riders regardless of volume. Ambient carbon monoxide levels while riding (<30 ppm) were within safe exposure guidelines. Positive adaptations can be gained from a training program using off-road vehicle riding as the exercise stimulus.  相似文献   

4.
Characterization of glioblastoma (GB) response to treatment is a key factor for improving patients' survival and prognosis. MRI and magnetic resonance spectroscopic imaging (MRSI) provide morphologic and metabolic profiles of GB but usually fail to produce unequivocal biomarkers of response. The purpose of this work is to provide proof of concept of the ability of a semi‐supervised signal source extraction methodology to produce images with robust recognition of response to temozolomide (TMZ) in a preclinical GB model. A total of 38 female C57BL/6 mice were used in this study. The semi‐supervised methodology extracted the required sources from a training set consisting of MRSI grids from eight GL261 GBs treated with TMZ, and six control untreated GBs. Three different sources (normal brain parenchyma, actively proliferating GB and GB responding to treatment) were extracted and used for calculating nosologic maps representing the spatial response to treatment. These results were validated with an independent test set (7 control and 17 treated cases) and correlated with histopathology. Major differences between the responder and non‐responder sources were mainly related to the resonances of mobile lipids (MLs) and polyunsaturated fatty acids in MLs (0.9, 1.3 and 2.8 ppm). Responding tumors showed significantly lower mitotic (3.3 ± 2.9 versus 14.1 ± 4.2 mitoses/field) and proliferation rates (29.8 ± 10.3 versus 57.8 ± 5.4%) than control untreated cases. The methodology described in this work is able to produce nosological images of response to TMZ in GL261 preclinical GBs and suitably correlates with the histopathological analysis of tumors. A similar strategy could be devised for monitoring response to treatment in patients. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Accurate differentiation of true progression (TP) from pseudoprogression (PsP) in patients with glioblastomas (GBMs) is essential for planning adequate treatment and for estimating clinical outcome measures and future prognosis. The purpose of this study was to investigate the utility of three‐dimensional echo planar spectroscopic imaging (3D‐EPSI) in distinguishing TP from PsP in GBM patients. For this institutional review board approved and HIPAA compliant retrospective study, 27 patients with GBM demonstrating enhancing lesions within six months of completion of concurrent chemo‐radiation therapy were included. Of these, 18 were subsequently classified as TP and 9 as PsP based on histological features or follow‐up MRI studies. Parametric maps of choline/creatine (Cho/Cr) and choline/N‐acetylaspartate (Cho/NAA) were computed and co‐registered with post‐contrast T1‐weighted and FLAIR images. All lesions were segmented into contrast enhancing (CER), immediate peritumoral (IPR), and distal peritumoral (DPR) regions. For each region, Cho/Cr and Cho/NAA ratios were normalized to corresponding metabolite ratios from contralateral normal parenchyma and compared between TP and PsP groups. Logistic regression analyses were performed to obtain the best model to distinguish TP from PsP. Significantly higher Cho/NAA was observed from CER (2.69 ± 1.00 versus 1.56 ± 0.51, p = 0.003), IPR (2.31 ± 0.92 versus 1.53 ± 0.56, p = 0.030), and DPR (1.80 ± 0.68 versus 1.19 ± 0.28, p = 0.035) regions in TP patients compared with those with PsP. Additionally, significantly elevated Cho/Cr (1.74 ± 0.44 versus 1.34 ± 0.26, p = 0.023) from CER was observed in TP compared with PsP. When these parameters were incorporated in multivariate regression analyses, a discriminatory model with a sensitivity of 94% and a specificity of 87% was observed in distinguishing TP from PsP. These results indicate the utility of 3D‐EPSI in differentiating TP from PsP with high sensitivity and specificity.  相似文献   

6.
This study investigated whether or not prepubertal exposure to the fish contaminants methylmercury (MeHg) and the polychlorinated bisphenol Aroclor in low doses interferes with the histomorphometry of the testes, epididymis, liver and kidneys in rats. Wistar male rats, 21 days old, were allocated into the following: control (n = 17, received corn oil), MeHg (n = 17, received MeHg at 0.5 mg/kg/day), Aroclor (n = 17, received Aroclor at 1.0 mg/kg/day), low mix (n = 18, received MeHg at 0.05 mg/kg/day and Aroclor at 0.1 mg/kg/day), high mix (n = 18, received MeHg at 0.5 mg/kg/day and Aroclor at 1.0 mg/kg/day). Dosing continued from post natal day (PND) 23 to 53, by gavage. Euthanasia was performed on PND 53; or, after an interval of 62 days without exposure to chemicals, on PND 115. The degree of maturation of the seminiferous epithelium was delayed in chemical‐exposed groups and testicular interstitial oedema was observed at adulthood. The pattern of male gonad organization was changed in the Aroclor group on PND 53 and in all treated groups at adulthood. The animals from Aroclor, low mix and high mix groups showed a reduction in the number of Sertoli cells. Histological evidence of renal injury was observed in all chemical‐exposed groups in both ages. A probable target for MeHg and Aroclor in the reproductive system was Sertoli cells, in which possible dysfunctions could be linked to the other testicular alterations. Curiously, the main deleterious effects were late outcomes, along with the absence of synergistic interaction of MeHg and Aroclor in the parameters investigated. In conclusion, fish pollutants MeHg and Aroclor caused permanent structural damage in male gonads and kidneys after prepubertal exposure, without showing clear chemical interactions.  相似文献   

7.
《Journal of anatomy》2017,230(5):639-650
It is challenging to differentiate the mechanical properties of synergist muscles in vivo. Shear wave elastography can be used to quantify the shear modulus (i.e. an index of stiffness) of a specific muscle. This study assessed the passive behavior of lower leg muscles during passive dorsiflexion performed with the knee fully extended (experiment 1, n = 22) or with the knee flexed at 90° (experiment 2, n = 20). The shear modulus measurements were repeated twice during experiment 1 to assess the inter‐day reliability. During both experiments, the shear modulus of the following plantar flexors was randomly measured: gastrocnemii medialis (GM) and lateralis (GL), soleus (SOL), peroneus longus (PL), and the deep muscles flexor digitorum longus (FDL), flexor hallucis longus (FHL), tibialis posterior (TP). Two antagonist muscles tibialis anterior (TA), and extensor digitorum longus (EDL) were also recorded. Measurements were performed in different proximo‐distal regions for GM, GL and SOL. Inter‐day reliability was adequate for all muscles (coefficient of variation < 15%), except for TP. In experiment 1, GM exhibited the highest shear modulus at 80% of the maximal range of motion (128.5 ± 27.3 kPa) and was followed by GL (67.1 ± 24.1 kPa). In experiment 2, SOL exhibited the highest shear modulus (55.1 ± 18.0 kPa). The highest values of shear modulus were found for the distal locations of both the GM (80% of participants in experiment 1) and the SOL (100% of participants in experiment 2). For both experiments, deep muscles and PL exhibited low levels of stiffness during the stretch in young asymptomatic adults, which was unknown until now. These results provide a deeper understanding of passive mechanical properties and the distribution of stiffness between and within the plantar flexor muscles during stretching between them and thus could be relevant to study the effects of aging, disease progression, and rehabilitation on stiffness.  相似文献   

8.
Growth hormone (GH) is a commonly used drug aimed at improving sport performance. The aim of this study is to evaluate the immunomodulatory effects of short-term administration of recombinant GH (rhGH) in healthy young males. NK cell number, activity and phenotype, T cell number, CD4+ (Th1/Th2) cytokine production of IL2, IL4, IL6, IL10, TNF-α and IFN-γ and CD4+/CD8+ ratio with particular attention to the possible correlation to IGF-I production were investigated. 30 males (27 ± 9 years) were randomly assigned to placebo (n = 15) or drug (rhGH) 1 mg/day groups (n = 15) with daily injection for 7 days. IGF-I plasma concentration and flow cytometry data were generated at baseline and days 8, 15, 22 and 29 post injection. Data analysis used General Linear Model with repeated measures, Bonferroni correction factor and significance at p ≤ 0.05. Serum IGF-I levels (ng/mL) increased significantly (p ≤ 0.01) on day 8 (0.48 ± 0.78) after injections compared to baseline (0.31 ± 0.07) and days 15 (0.33 ± 0.06), 22 (0.29 ± 0.05) and 29 (0.29 ± 0.06). A significant time effect was noted in IL10 secretion (pg/mL) from day 15 (P = 35.14 ± 19.93, rhGH = 26.63 ± 16.39) to days 22 (P = 61.32 ± 20.41, rhGH = 74.99 ± 46.91) and 29 (P = 101.98 ± 67.25, rhGH = 107.74; ± 122.58). There was no correlation between IGF-I and NK activity, phenotype or number along with T lymphocyte number, CD4+/CD8+ ratio or Th1 and Th2 cytokine production. In conclusion, cytokine secretion spectrum was not affected by short-term rhGH administration in young males.  相似文献   

9.
Natural and synthetic sugars have great potential for developing highly biocompatible and translatable chemical exchange saturation transfer (CEST) MRI contrast agents. In this study, we aimed to develop the smallest clinically available form of dextran, Dex1 (molecular weight, MW ~ 1 kDa), as a new CEST agent. We first characterized the CEST properties of Dex1 in vitro at 11.7 T and showed that the Dex1 had a detectable CEST signal at ~1.2 ppm, attributed to hydroxyl protons. In vivo CEST MRI studies were then carried out on C57BL6 mice bearing orthotopic GL261 brain tumors (n = 5) using a Bruker BioSpec 11.7 T MRI scanner. Both steady-state full Z-spectral images and single offset (1.2 ppm) dynamic dextran-enhanced (DDE) images were acquired before and after the intravenous injection of Dex1 (2 g/kg). The steady-state Z-spectral analysis showed a significantly higher CEST contrast enhancement in the tumor than in contralateral brain (∆MTRasym1.2 ppm = 0.010 ± 0.006 versus 0.002 ± 0.008, P = 0.0069) at 20 min after the injection of Dex1. Pharmacokinetic analyses of DDE were performed using the area under the curve (AUC) in the first 10 min after Dex1 injection, revealing a significantly higher uptake of Dex1 in the tumor than in brain tissue for tumor-bearing mice (AUC[0-10 min] = 21.9 ± 4.2 versus 5.3 ± 6.4%·min, P = 0.0294). In contrast, no Dex1 uptake was foundling in the brains of non-tumor-bearing mice (AUC[0-10 min] = −1.59 ± 2.43%·min). Importantly, the CEST MRI findings were consistent with the measurements obtained using DCE MRI and fluorescence microscopy, demonstrating the potential of Dex1 as a highly translatable CEST MRI contrast agent for assessing tumor hemodynamics.  相似文献   

10.
Sickle cell anemia (SCA) is a genetic disorder resulting in reduced oxygen carrying capacity and elevated stroke risk. Pseudo‐continuous arterial spin labeling (pCASL) measures of cerebral blood flow (CBF) may have relevance for stroke risk assessment; however, the effects of elevated flow velocity and reduced bolus arrival time (BAT) on CBF quantification in SCA patients have not been thoroughly characterized, and pCASL model parameters used in healthy adults are often applied to patients with SCA. Here, cervical arterial flow velocities and pCASL labeling efficiencies were computed in adults with SCA (n = 19) and age‐ and race‐matched controls without sickle trait (n = 7) using pCASL in sequence with phase contrast MR angiography (MRA). Controls (n = 7) and a subgroup of patients (n = 8) also underwent multi‐post‐labeling‐delay pCASL for BAT assessment. Mean flow velocities were elevated in SCA adults (velocity = 28.3 ± 4.1 cm/s) compared with controls (velocity = 24.5 ± 3.8 cm/s), and mean pCASL labeling efficiency (α) was reduced in SCA adults (α = 0.72) relative to controls (α = 0.91). In patients, mean whole‐brain CBF from phase contrast MRA was 91.8 ± 18.1 ml/100 g/min, while mean pCASL CBF when assuming a constant labeling efficiency of 0.86 was 75.2 ± 17.3 ml/100 g/min (p < 0.01), resulting in a mean absolute quantification error of 23% when a labeling efficiency appropriate for controls was assumed. This difference cannot be accounted for by BAT (whole‐brain BAT: control, 1.13 ± 0.06 s; SCA, 1.02 ± 0.09 s) or tissue T1 variation. In conclusion, BAT variation influences pCASL quantification less than elevated cervical arterial velocity and labeling efficiency variation in SCA adults; thus, a lower labeling efficiency (α = 0.72) or subject‐specific labeling efficiency should be incorporated for SCA patients.  相似文献   

11.
Zebrafish is an emerging model system for cardiac conduction and regeneration. Zebrafish heart regenerates after 20% ventricular resection within 60 days. Whether cardiac conduction phenotype correlated with cardiomyocyte regeneration remained undefined. Longitudinal monitoring of the adult zebrafish heart (n = 12) was performed in terms of atrial contraction (PR intervals), ventricular depolarization (QRS complex) and repolarization (heart rated corrected QTc interval). Baseline electrocardiogram (ECG) signals were recorded one day prior to resection and twice per week over 59 days. Immunostaining for gap junctions with anti-Connexin-43 antibody was compared between the sham (n = 5) and ventricular resection at 60 days post-resection (dpr) (n = 7). Heart rate variability, QTc prolongation and J-point depression developed in the resected group but not in the sham. Despite a trend toward heart rate variability in response to ventricular resection, the differences between the resected and sham fish were, by and large, statistically insignificant. At 10 dpr, J-point depression was statistically significant (sham: −0.179 ± 0.061 mV vs. ventricular resection: −0.353 ± 0.105 mV, p < 0.01, n = 7). At 60 days, histology revealed either cardiomyocyte regeneration (n = 4) or scar tissues (n = 3). J-point depression was no longer statistically significant at 59 dpr (sham: −0.114 ± 0.085 mV; scar tissue: −0.268 ± 0.178 mV, p > 0.05, n = 3; regeneration: −0.209 ± 0.119 mV, p > 0.05, n = 4). Despite positive Connexin-43 staining in the regeneration group, QTc intervals remained prolonged (sham: 325 ± 42 ms, n = 5; scar tissues: 534 ± 51 ms, p < 0.01, n = 3; regeneration: 496 ± 31 ms, p < 0.01, n = 4). Thus, we observed delayed electric repolarization in either the regenerated hearts or scar tissues. Moreover, early regenerated cardiomyocytes lacked the conduction phenotypes of the sham fish.  相似文献   

12.
The impact of resistance training has not been thoroughly examined in overweight older adults undergoing weight loss. Subjects (n = 27) were overweight and obese (BMI 31.7 ± 3.6 kg/m2) older (age 67 ± 4 years) adults and were randomized into either a 10-week Dietary Approaches to Stop Hypertension for weight loss diet (DASH, n = 12) or DASH plus moderate intensity resistance training (DASH-RT, n = 15). Outcomes included weight loss, total body and mid-thigh composition, muscle and physical function. There were no significant weight loss differences between the DASH-RT and DASH groups (−3.6 ± 0.8 vs. −2.0 ± 0.9%, p = 0.137). The DASH-RT group had a greater reduction in body fat than the DASH group (−4.1 ± 0.9 vs. −0.2 ± 1.0 kg, p = 0.005). The DASH-RT group had greater changes in lean mass (+0.8 ± 0.4 vs. −1.4 ± 0.4 kg, p = 0.002) and strength (+60 ± 18 vs. −5 ± 9 N, p = 0.008) than the DASH group. There were favorable changes in mid-thigh composition variables in the DASH-RT group that were different than the lack of changes observed in the DASH group, except for intermuscular adipose tissue. Both groups experienced decreases in 400-m walk times showed (DASH −36 ± 11 s, DASH-RT −40 ± 7 s) with no differences between groups. Moderate intensity resistance training during weight loss appears to improve fat mass and thigh composition, but weight loss only does not. However, global measures of physical functioning may improve with a weight loss-only program.  相似文献   

13.
Caffeine is known for its capacity to mitigate performance decrements. The metabolic side‐effects are less well understood. This study examined the impact of cumulative caffeine doses on glucose metabolism, self‐reported hunger and mood state during 50 hr of wakefulness. In a double‐blind laboratory study, participants were assigned to caffeine (n = 9, 6M, age 21.3 ± 2.1 years; body mass index 21.9 ± 1.6 kg/m2) or placebo conditions (n = 8, 4M, age 23.0 ± 2.8 years; body mass index 21.8 ± 1.6 kg/m2). Following a baseline sleep (22:00 hours–08:00 hours), participants commenced 50 hr of sleep deprivation. Meal timing and composition were controlled throughout the study. Caffeine (200 mg) or placebo gum was chewed for 5 min at 01:00 hours, 03:00 hours, 05:00 hours and 07:00 hours during each night of sleep deprivation. Continual glucose monitors captured interstitial glucose 2 hr post‐breakfast, at 5‐min intervals. Hunger and mood state were assessed at 10:00 hours, 16:30 hours, 22:30 hours and 04:30 hours. Caffeine did not affect glucose area under the curve (p = 0.680); however, glucose response to breakfast significantly increased after 2 nights of extended wakefulness compared with baseline (p = 0.001). There was a significant main effect of day, with increased tiredness (p < 0.001), mental exhaustion (p < 0.001), irritability (p = 0.002) and stress (p < 0.001) on the second day of extended wake compared with day 1. Caffeine attenuated the rise in tiredness (p < 0.001), mental exhaustion (p = 0.044) and irritability (p = 0.018) on day 1 but not day 2. Self‐reported hunger was not affected by sleep deprivation or caffeine. These data confirm the effectiveness of caffeine in improving performance under conditions of sleep deprivation by reducing feelings of tiredness, mental exhaustion and irritability without exacerbating glucose metabolism and feelings of hunger.  相似文献   

14.
MCP‐1/IL‐6 in vitro monocyte secretion upon coculture with autologous fragment spheroids was studied in relation to patient 5‐ and 10‐year overall survival rates in head and neck squamous cell carcinoma (HNSCC) patients (n = 65) diagnosed between 1998 and 2005, nine of whom had an human papilloma virus (HPV) tumour infection. The spheroids were harvested from malignant or benign tissue during primary surgery. Two weeks following surgery, freshly isolated autologous monocytes and benign or malignant spheroids were cocultured 24 h in vitro. The IL‐6 secretion was expressed as a fraction of the lipopolysaccharide (LPS) response from the same batch of monocytes. HPV status was obtained by employing PCR analyses of primary diagnostic blocks. IL‐6/MCP‐1 response levels were not found to be dependent on HPV infection status. MCP‐1 secretion did not predict prognosis, nor did in vitro IL‐6 monocyte background or LPS‐stimulated IL‐6 secretion. At 5‐year observation, dichotomized IL‐6 levels following monocyte coculture, with both malignant and benign spheroids, showed a strong trend towards predicting survival, that is a low monocyte malignant coculture response showed a survival of 31 ± 17 versus 58 ± 17% with a high such response (= 0.057). When studying monocyte IL‐6 coculture responses evaluating benign and malignant spheroid results statistically together, a prediction of survival up to 10 years was found (hazard ratio = 0.48; confidence interval = 0.24–0.96; < 0.05) with double low IL‐6 responses. This survival prediction was also present after an adjustment for HPV tumour infection status. In conclusion, monocyte IL‐6 in vitro secretion in cocultures with autologous spheroids/serum from HNSCCs predicted 5‐ and 10‐year survivals, both with and without tumour HPV tumour adjustment.  相似文献   

15.
Non‐invasive monitoring of response to treatment of glioblastoma (GB) is nowadays carried out using MRI. MRS and MR spectroscopic imaging (MRSI) constitute promising tools for this undertaking. A temozolomide (TMZ) protocol was optimized for GL261 GB. Sixty‐three mice were studied by MRI/MRS/MRSI. The spectroscopic information was used for the classification of control brain and untreated and responding GB, and validated against post‐mortem immunostainings in selected animals. A classification system was developed, based on the MRSI‐sampled metabolome of normal brain parenchyma, untreated and responding GB, with a 93% accuracy. Classification of an independent test set yielded a balanced error rate of 6% or less. Classifications correlated well both with tumor volume changes detected by MRI after two TMZ cycles and with the histopathological data: a significant decrease (p < 0.05) in the proliferation and mitotic rates and a 4.6‐fold increase in the apoptotic rate. A surrogate response biomarker based on the linear combination of 12 spectral features has been found in the MRS/MRSI pattern of treated tumors, allowing the non‐invasive classification of growing and responding GL261 GB. The methodology described can be applied to preclinical treatment efficacy studies to test new antitumoral drugs, and begets translational potential for early response detection in clinical studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
We developed a novel manganese (Mn2+) chelate for magnetic resonance imaging (MRI) assessment of myocardial viability in acute and chronic myocardial infarct (MI) models, and compared it with Gadolinium‐based delay enhancement MRI (Gd3+‐DEMRI) and histology. MI was induced in 14 rabbits by permanent occlusion of the left circumflex coronary artery. Gd3+‐DEMRI and Mn2+ chelate‐based delayed enhancement MRI (Mn2+ chelate‐DEMRI) were performed at 7 days (acute MI, n = 8) or 8 weeks (chronic MI, n = 6) after surgery with sequential injection of 0.15 mmol/kg Gd3+ and Mn2+ chelate. The biodistribution of Mn2+ in tissues and blood was measured at 1.5 and 24 h. Blood pressure, heart rate (HR), left ventricular (LV) function, and infarct fraction (IF) were analyzed, and IF was compared with the histology. The Mn2+ chelate group maintained a stable hemodynamic status during experiment. For acute and chronic MI, all rabbits survived without significant differences in HR or LV function before and after injection of Mn2+ chelate or Gd3+ (p > 0.05). Mn2+ chelate mainly accumulated in the kidney, liver, spleen, and heart at 1.5 h, with low tissue uptake and urine residue at 24 h after injection. In the acute MI group, there was no significant difference in IF between Mn2+ chelate‐DEMRI and histology (22.92 ± 2.21% vs. 21.79 ± 2.25%, respectively, p = 0.87), while Gd3+‐DEMRI overestimated IF, as compared with histology (24.54 ± 1.73%, p = 0.04). In the chronic MI group, there was no significant difference in IF between the Mn2+ chelate‐DEMRI, Gd3+‐DEMRI, and histology (29.50 ± 11.39%, 29.95 ± 9.40%, and 29.00 ± 10.44%, respectively, p > 0.05), and all three were well correlated (r = 0.92–0.96, p < 0.01). We conclude that the use of Mn2+ chelate‐DEMRI is reliable for MI visualization and identifies acute MI more accurately than Gd3+‐DEMRI.  相似文献   

17.
Rituximab therapy alters all aspects of B‐cell participation in the disturbed immune response of rheumatoid arthritis patients. To determine the impact of B‐cell depletion on other immune compartments, we analysed levels of soluble and surface interleukin‐15 (IL‐15) along with the frequency of IL‐15‐related subsets after rituximab treatment. We then studied the correlation of observed changes with clinical activity. Heparinized blood samples from 33 rheumatoid arthritis patients were collected on days 0, 30, 90 and 180 after each of three rituximab cycles. Serum cytokine levels were determined by ELISA. Interleukin‐15 trans‐presentation was analysed by cytometry. Flow cytometry with monoclonal antibodies was performed to analyse circulating cell subsets. Interleukin‐15 was detected in the serum of 25 patients before initiating the treatment. Rituximab then progressively reduced serum IL‐15 (138 ± 21 pg/ml at baseline, 48 ± 18 pg/ml after third cycle, P = 0·03) along with IL‐17 (1197 ± 203 pg/ml at baseline, 623 ± 213 pg/ml after third cycle, P = 0·03) and tended to increase the frequency of circulating regulatory T cells (3·1 ± 1 cells/μl at baseline, 7·7 ± 2 cells/μl after third cycle). Rituximab also significantly decreased IL‐15 trans‐presentation on surface monocytes of patients negative for IL‐15 serum (mean fluorescence intensity: 4·82 ± 1·30 at baseline, 1·42 ± 0·69 after third cycle P = 0·05). Reduction of serum IL‐15 was associated with decrease in CD8+ CD45RO+/RA+ ratio (1·17 ± 0·21 at baseline, 0·36 ± 0·06 at third cycle, P = 0·02). DAS28, erythrocyte sedimentation rate and C‐reactive protein correlated significantly with CD8+ CD45RO+/RA+ ratio (R = 0·323, R = 0·357, R = 0·369 respectively, P < 0·001). Our results suggest that sustained clinical improvement after rituximab treatment is associated with IL‐15/memory T‐cell‐related mechanisms beyond circulating B cells.  相似文献   

18.
Trichuris suis ova (TSO) have shown promising results in the treatment of inflammatory bowel disease (IBD) but the mechanisms which underlies this therapeutic effect cannot be studied in mice and rats as T. suis fails to colonize the rodent intestine, whilst hatching in humans and rabbits. As a suitable rabbit IBD model is currently not available, we developed a rabbit colitis model by administration of dextran sodium sulphate (DSS). White Himalayan rabbits (n = 12) received 0.1% DSS in the daily water supply for five days. Clinical symptoms were monitored daily, and rabbits were sacrificed at different time points. A genomewide expression analysis was performed with RNA isolated from caecal lamina propria mononuclear cells (LPMC) and intestinal epithelial cells (IEC). The disease activity index of DSS rabbits increased up to 2.1 ± 0.4 (n = 6) at day 10 (controls <0.5). DSS induced a caecum‐localized pathology with crypt architectural distortion, stunted villous surface and inflammatory infiltrate in the lamina propria. The histopathology score reached a peak of 14.2 ± 4.9 (n = 4) at day 10 (controls 7.7 ± 0.9, n = 5). Expression profiling revealed an enrichment of IBD‐related genes in both LPMC and IEC. Innate inflammatory response, Th17 signalling and chemotaxis were among the pathways affected significantly. We describe a reproducible and reliable rabbit model of DSS colitis. Localization of the inflammation in the caecum and its similarities to IBD make this model particularly suitable to study TSO therapy in vivo.  相似文献   

19.
Fatal outcomes of prostate carcinoma (PCa) mostly result from metastatic spread rather than from primary tumor burden. Here, we monitored growth and metastatic spread of an orthotopic luciferase/GFP-expressing LNCaP PCa xenograft model in SCID mice by in vivo imaging and in vitro luciferase assay of tissues homogenates. Although the metastatic spread generally shows a significant correlation to primary tumor volumes, the susceptibility of various tissues to metastatic invasion was different in the number of affected animals as well as in absolute metastatic burden in the individual tissues. Using this xenograft model we showed that treatment with liposomal gemcitabine (GemLip) inhibited growth of the primary tumors (83.9 ± 6.4%; P = 0.009) as well as metastatic burden in lymph nodes (95.6 ± 24.0%; P = 0.047), lung (86.5 ± 10.5%; P = 0.015), kidney (88.4 ± 9.2%; P = 0.045) and stomach (79.5 ± 6.6%; P = 0.036) already at very low efficient concentrations (8 mg/kg) as compared to conventional gemcitabine (360 mg/kg). Our data show that this orthotopic LNCaP xenograft PCa model seems to reflect the clinical situation characterized by the fact that at time of diagnosis, prostate neoplasms are biologically heterogeneous and thus, it is a useful model to investigate new anti-metastatic therapies.  相似文献   

20.
The aim of the study is to determine the effects of short-term high-intensity exercise on arterial function and glucose tolerance in obese individuals with and without the metabolic syndrome (MetSyn). Obese men and women (BMI > 30 kg/m2; 39–60 years) with and without MetSyn (MetSyn, n = 13; Non-MetSyn, n = 13) participated in exercise training consisting of ten consecutive days of treadmill walking for 1 h/day at 70–75% of peak aerobic capacity. Changes in aerobic capacity, flow-mediated dilation (FMD), and arterial stiffness using central and peripheral pulse wave velocity (PWV) measurements were assessed pre- and post-training. These measurements were obtained fasting and 1-h post-test meal while the subjects were hyperglycemic. Aerobic capacity improved for both groups [Non-MetSyn 24.0 ± 1.6 vs. 25.1 ± 1.5 mL/(kg min); MetSyn 25.2 ± 1.8 vs. 26.2 ± 1.7 mL/(kg min), P < 0.05]. There was no change in body weight. FMD decreased by ~20% (P < 0.05) for both groups during acute hyperglycemia (MetSyn, n = 11; Non-MetSyn, n = 10), while hyperglycemia increased central PWV and not peripheral PWV. Exercise training did not change FMD in the fasted or challenged state. Central and peripheral PWV were not altered with training for either group (MetSyn, n = 13; Non-MetSyn, n = 13). A 10-day high-intensity exercise program in obese individuals improved aerobic capacity and glucose tolerance but no change in arterial function was observed. Acute hyperglycemia had a deleterious effect on arterial function, suggesting that persons with impaired glucose homeostasis may experience more opportunities for attenuated arterial function on a daily basis which could contribute to increased cardiovascular risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号