首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ultra‐high field (UHF, ≥7 T) tight fit transceiver phased arrays improve transmit (Tx) efficiency (B1+/√P) in comparison with Tx‐only arrays, which are usually larger to fit receive (Rx)‐only arrays inside. One of the major problems limiting applications of tight fit arrays at UHFs is the anticipated increase of local tissue heating, which is commonly evaluated by the local specific absorption rate (SAR). To investigate the tradeoff between Tx efficiency and SAR when a tight fit UHF human head transceiver phased array is used instead of a Tx‐only/Rx‐only RF system, a single‐row eight‐element prototype of a 400 MHz transceiver head phased array was constructed. The Tx efficiency and SAR of the array were evaluated and compared with that of a larger Tx‐only array, which could also be used in combination with an 18‐channel Rx‐only array. Data were acquired on the Siemens Magnetom whole body 9.4 T human MRI system. Depending on the head size, positioning and the RF shim strategy, the smaller array provides from 11 to 23% higher Tx efficiency. In general, the Tx performance, evaluated as B1+/√SAR, i.e. the safety excitation efficiency (SEE), is also not compromised. The two arrays provide very similar SEEs evaluated over 1000 random RF shim sets. We demonstrated that, in general, the tight fit transceiver array improves Tx performance without compromising SEE. However, in specific cases, the SEE value may vary, favoring one of the arrays, and therefore must be carefully evaluated.  相似文献   

2.
Ultra‐high‐field (UHF, ≥7 T) human magnetic resonance imaging (MRI) provides undisputed advantages over low‐field MRI (≤3 T), but its development remains challenging because of numerous technical issues, including the low efficiency of transmit (Tx) radiofrequency (RF) coils caused by the increase in tissue power deposition with frequency. Tight‐fit human head transceiver (TxRx) arrays improve Tx efficiency in comparison with Tx‐only arrays, which are larger in order to fit multi‐channel receive (Rx)‐only arrays inside. A drawback of the TxRx design is that the number of elements in an array is limited by the number of available high‐power RF Tx channels (commonly 8 or 16), which is not sufficient for optimal Rx performance. In this work, as a proof of concept, we developed a method for increasing the number of Rx elements in a human head TxRx surface loop array without the need to move the loops away from a sample, which compromises the array Tx performance. We designed and constructed a prototype 16‐channel tight‐fit array, which consists of eight TxRx surface loops placed on a cylindrical holder circumscribing a head, and eight Rx‐only vertical loops positioned along the central axis (parallel to the magnetic field B0) of each TxRx loop, perpendicular to its surface. We demonstrated both experimentally and numerically that the addition of the vertical loops has no measurable effect on the Tx efficiency of the array. An increase in the maximum local specific absorption rate (SAR), evaluated using two human head voxel models (Duke and Ella), measured 3.4% or less. At the same time, the 16‐element array provided 30% improvement of central signal‐to‐noise ratio (SNR) in vivo relative to a surface loop eight‐element array. The novel array design also demonstrated an improvement in the parallel Rx performance in the transversal plane. Thus, using this method, both the Rx and Tx performance of the human head array can be optimized simultaneously.  相似文献   

3.
The purpose of this study is to develop and evaluate a custom‐designed 7  T MRI coil and explore its use for upper extremity applications. An RF system composed of a transverse electromagnetic transmit coil and an eight‐channel receive‐only array was developed for 7  T upper extremity applications. The RF system was characterized and evaluated using scattering parameters and B1+ mapping. Finite difference time domain simulations were performed to evaluate the B1+ field distribution and specific absorption rate for the forearm region of the upper extremity. High‐resolution 7  T images were acquired and compared with those at 3 T. The simulation and experimental results show very good B1+ field homogeneity across the forearm. High‐resolution images of musculotendinous, osseocartilaginous, and neurovascular structures in the upper extremity are presented with T1 volumetric interpolated breath‐hold examination, T2 double‐echo steady state, T2* susceptibility weighted imaging (SWI), diffusion tensor imaging, and time‐of‐flight sequences. Comparison between 3  T and 7  T is shown. Intricate contextual anatomy can be delineated in synovial, fibrocartilaginous, interosseous, and intraosseous trabecular structures of the forearm, as well as palmar and digital vascular anatomy (including microvascular detail in SWI). Ultra‐high‐field 7  T imaging holds great potential in improving the sensitivity and specificity of upper extremity imaging, especially in wrist and hand pathology secondary to bone, ligament, nerve, vascular, and other soft or hard tissue etiology.  相似文献   

4.
Phosphorus (31P) MRSI provides opportunities to monitor potential biomarkers. However, current applications of 31P MRS are generally restricted to relatively small volumes as small coils are used. Conventional surface coils require high energy adiabatic RF pulses to achieve flip angle homogeneity, leading to high specific absorption rates (SARs), and occupy space within the MRI bore. A birdcage coil behind the bore cover can potentially reduce the SAR constraints massively by use of conventional amplitude modulated pulses without sacrificing patient space. Here, we demonstrate that the integrated 31P birdcage coil setup with a high power RF amplifier at 7 T allows for low flip angle excitations with short repetition time (TR) for fast 3D chemical shift imaging (CSI) and 3D T1‐weighted CSI as well as high flip angle multi‐refocusing pulses, enabling multi‐echo CSI that can measure metabolite T2, over a large field of view in the body. B1+ calibration showed a variation of only 30% in maximum B1 in four volunteers. High signal‐to‐noise ratio (SNR) MRSI was obtained in the gluteal muscle using two fast in vivo 3D spectroscopic imaging protocols, with low and high flip angles, and with multi‐echo MRSI without exceeding SAR levels. In addition, full liver MRSI was achieved within SAR constraints. The integrated 31P body coil allowed for fast spectroscopic imaging and successful implementation of the multi‐echo method in the body at 7 T. Moreover, no additional enclosing hardware was needed for 31P excitation, paving the way to include larger subjects and more space for receiver arrays. The increase in possible number of RF excitations per scan time, due to the improved B1+ homogeneity and low SAR, allows SNR to be exchanged for spatial resolution in CSI and/or T1 weighting by simply manipulating TR and/or flip angle to detect and quantify ratios from different molecular species.  相似文献   

5.
Dynamic contrast‐enhanced MRI is the workhorse of breast MRI, where the diagnosis of lesions is largely based on the enhancement curve shape. However, this curve shape is biased by RF transmit (B1+) field inhomogeneities. B1+ field information is required in order to correct these. The use of a generic, coil‐specific B1+ template is proposed and tested. Finite‐difference time‐domain simulations for B1+ were performed for healthy female volunteers with a wide range of breast anatomies. A generic B1+ template was constructed by averaging simulations based on four volunteers. Three‐dimensional B1+ maps were acquired in 15 other volunteers. Root mean square error (RMSE) metrics were calculated between individual simulations and the template, and between individual measurements and the template. The agreement between the proposed template approach and a B1+ mapping method was compared against the agreement between acquisition and reacquisition using the same mapping protocol. RMSE values (% of nominal flip angle) comparing individual simulations with the template were in the range 2.00‐4.01%, with mean 2.68%. RMSE values comparing individual measurements with the template were in the range8.1‐16%, with mean 11.7%. The agreement between the proposed template approach and a B1+ mapping method was only slightly worse than the agreement between two consecutive acquisitions using the same mapping protocol in one volunteer: the range of agreement increased from ±16% of the nominal angle for repeated measurement to ±22% for the B1+ template. With local RF transmit coils, intersubject differences in B1+ fields of the breast are comparable to the accuracy of B1+ mapping methods, even at 7 T. Consequently, a single generic B1+ template suits subjects over a wide range of breast anatomies, eliminating the need for a time‐consuming B1+ mapping protocol.  相似文献   

6.
In this study, the performance of an integrated body-imaging array for 7 T with 32 radiofrequency (RF) channels under consideration of local specific absorption rate (SAR), tissue temperature, and thermal dose limits was evaluated and the imaging performance was compared with a clinical 3 T body coil. Thirty-two transmit elements were placed in three rings between the bore liner and RF shield of the gradient coil. Slice-selective RF pulse optimizations for B1 shimming and spokes were performed for differently oriented slices in the body under consideration of realistic constraints for power and local SAR. To improve the B1+ homogeneity, safety assessments based on temperature and thermal dose were performed to possibly allow for higher input power for the pulse optimization than permissible with SAR limits. The results showed that using two spokes, the 7 T array outperformed the 3 T birdcage in all the considered regions of interest. However, a significantly higher SAR or lower duty cycle at 7 T is necessary in some cases to achieve similar B1+ homogeneity as at 3 T. The homogeneity in up to 50 cm-long coronal slices can particularly benefit from the high RF shim performance provided by the 32 RF channels. The thermal dose approach increases the allowable input power and the corresponding local SAR, in one example up to 100 W/kg, without limiting the exposure time necessary for an MR examination. In conclusion, the integrated antenna array at 7 T enables a clinical workflow for body imaging and comparable imaging performance to a conventional 3 T clinical body coil.  相似文献   

7.
The performance of multichannel transmit coil layouts and parallel transmission (pTx) RF pulse design was evaluated with respect to transmit B1 (B1 +) homogeneity and specific absorption rate (SAR) at 3 T for a whole body coil. Five specific coils were modeled and compared: a 32‐rung birdcage body coil (driven either in a fixed quadrature mode or a two‐channel transmit mode), two single‐ring stripline arrays (with either 8 or 16 elements), and two multi‐ring stripline arrays (with two or three identical rings, stacked in the z axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1 + homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to about eightfold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double‐ring array outperformed all coils, including the single‐ring arrays. While the advantage of the double‐ring array became much less pronounced for pelvic imaging, with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the three‐ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1 + homogeneity, particularly for a “z‐stacked” double‐ring design with coil elements arranged on two transaxial rings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Earlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole‐body imaging and dual‐frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil. To mitigate this deficiency, we developed a new approach that relies on the combination of a commercial surface coil and a coupled‐wire structure operated away from its resonance. This strategy enables the extension of the sensitive volume of the surface coil while maintaining its local high sensitivity without any hardware modification. A wireless coil based on a two parallel coupled‐wire structure was designed and electromagnetic field simulations were carried out with different levels of matching and coupling between both components of the coil. For experimental characterization, a prototype was built and tested at two frequencies, 300 MHz for 1H and 282.6 MHz for 19F at 7 T. Phantom and in vivo MRI experiments were conducted in different configurations to study signal and noise figures of the structure. The results showed that the proposed strategy improves the overall sensitive volume while simultaneously maintaining a high signal‐to‐noise ratio (SNR). Metasurfaces based on coupled wires are therefore shown here as promising and versatile elements in the MRI RF chain, as they allow customized adjustment of the sensitive volume as a function of SNR yield. In addition, they can be easily adapted to different Larmor frequencies without loss of performance.  相似文献   

9.
Widespread use of ultrahigh‐field 31P MRSI in clinical studies is hindered by the limited field of view and non‐uniform radiofrequency (RF) field obtained from surface transceivers. The non‐uniform RF field necessitates the use of high specific absorption rate (SAR)‐demanding adiabatic RF pulses, limiting the signal‐to‐noise ratio (SNR) per unit of time. Here, we demonstrate the feasibility of using a body‐sized volume RF coil at 7 T, which enables uniform excitation and ultrafast power calibration by pick‐up probes. The performance of the body coil is examined by bench tests, and phantom and in vivo measurements in a 7‐T MRI scanner. The accuracy of power calibration with pick‐up probes is analyzed at a clinical 3‐T MR system with a close to identical 1H body coil integrated at the MR system. Finally, we demonstrate high‐quality three‐dimensional 31P MRSI of the human body at 7 T within 5 min of data acquisition that includes RF power calibration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The design and construction of a dedicated RF coil setup for human brain imaging (1H) and spectroscopy (31P) at ultra‐high magnetic field strength (7 T) is presented. The setup is optimized for signal handling at the resonance frequencies for 1H (297.2 MHz) and 31P (120.3 MHz). It consists of an eight‐channel 1H transmit–receive head coil with multi‐transmit capabilities, and an insertable, actively detunable 31P birdcage (transmit–receive and transmit only), which can be combined with a seven‐channel receive‐only 31P array. The setup enables anatomical imaging and 31P studies without removal of the coil or the patient. By separating transmit and receive channels and by optimized addition of array signals with whitened singular value decomposition we can obtain a sevenfold increase in SNR of 31P signals in the occipital lobe of the human brain compared with the birdcage alone. These signals can be further enhanced by 30 ± 9% using the nuclear Overhauser effect by B1‐shimmed low‐power irradiation of water protons. Together, these features enable acquisition of 31P MRSI at high spatial resolutions (3.0 cm3 voxel) in the occipital lobe of the human brain in clinically acceptable scan times (~15 min). © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

11.
Capecitabine (Cap) is an often prescribed chemotherapeutic agent, successfully used to cure some patients from cancer or reduce tumor burden for palliative care. However, the efficacy of the drug is limited, it is not known in advance who will respond to the drug and it can come with severe toxicity. 19 F Magnetic Resonance Spectroscopy (MRS) and Magnetic Resonance Spectroscopic Imaging (MRSI) have been used to non‐invasively study Cap metabolism in vivo to find a marker for personalized treatment. In vivo detection, however, is hampered by low concentrations and the use of radiofrequency (RF) surface coils limiting spatial coverage. In this work, the use of a 7T MR system with radiative multi‐channel transmit–receive antennas was investigated with the aim of maximizing the sensitivity and spatial coverage of 19 F detection protocols. The antennas were broadband optimized to facilitate both the 1H (298 MHz) and 19 F (280 MHz) frequencies for accurate shimming, imaging and signal combination. B1+ simulations, phantom and noise measurements showed that more than 90% of the theoretical maximum sensitivity could be obtained when using B1+ and B1? information provided at the 1H frequency for the optimization of B1+ and B1? at the 19 F frequency. Furthermore, to overcome the limits in maximum available RF power, whilst ensuring simultaneous excitation of all detectable conversion products of Cap, a dual‐band RF pulse was designed and evaluated. Finally, 19 F MRS(I) measurements were performed to detect 19 F metabolites in vitro and in vivo. In two patients, at 10 h (patient 1) and 1 h (patient 2) after Cap intake, 19 F metabolites were detected in the liver and the surrounding organs, illustrating the potential of the set‐up for in vivo detection of metabolic rates and drug distribution in the body. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this initial work, the in vivo degradation of 17O‐labeled glucose was studied during cellular glycolysis. To monitor cellular glucose metabolism, direct 17O‐magnetic resonance spectroscopy (MRS) was used in the mouse brain at 9.4 T. Non‐localized spectra were acquired with a custom‐built transmit/receive (Tx/Rx) two‐turn surface coil and a free induction decay (FID) sequence with a short TR of 5.4 ms. The dynamics of labeled oxygen in the anomeric 1‐OH and 6‐CH2OH groups was detected using a Hankel–Lanczos singular value decomposition (HLSVD) algorithm for water suppression. Time‐resolved 17O‐MRS (temporal resolution, 42/10.5 s) was performed in 10 anesthetized (1.25% isoflurane) mice after injection of a 2.2 M solution containing 2.5 mg/g body weight of differently labeled 17O‐glucose dissolved in 0.9% physiological saline. From a pharmacokinetic model fit of the H217O concentration–time course, a mean apparent cerebral metabolic rate of 17O‐labeled glucose in mouse brain of CMRGlc = 0.07 ± 0.02 μmol/g/min was extracted, which is of the same order of magnitude as a literature value of 0.26 ± 0.06 μmol/g/min reported by 18F‐fluorodeoxyglucose (18F‐FDG) positron emission tomography (PET). In addition, we studied the chemical exchange kinetics of aqueous solutions of 17O‐labeled glucose at the C1 and C6 positions with dynamic 17O‐MRS. In conclusion, the results of the exchange and in vivo experiments demonstrate that the C6‐17OH label in the 6‐CH2OH group is transformed only glycolytically by the enzyme enolase into the metabolic end‐product H217O, whereas C1‐17OH ends up in water via direct hydrolysis as well as glycolysis. Therefore, dynamic 17O‐MRS of highly labeled 17O‐glucose could provide a valuable non‐radioactive alternative to FDG PET in order to investigate glucose metabolism.  相似文献   

13.
Although regulatory T‐cells (Tregs) have been shown to be expanded in acute dengue, their role in pathogenesis and their relationship to clinical disease severity and extent of viraemia have not been fully evaluated. The frequency of Tregs was assessed in 56 adult patients with acute dengue by determining the proportion of forkhead box protein 3 (FoxP3) expressing CD4CD25+T‐cells (FoxP3+ cells). Dengue virus (DENV) viral loads were measured by quantitative real‐time polymerase chain reaction (PCR) and DENV‐specific T‐cell responses were measured by ex‐vivo interferon (IFN)‐γ enzyme‐linked immunospot (ELISPOT) assays to overlapping peptide pools of DENV‐NS3, NS1 and NS5. CD45RA and CCR4 were used to phenotype different subsets of T‐cells and their suppressive potential was assessed by their expression of cytotoxic T lymphocyte‐antigen 4 (CTLA‐4) and Fas. While the frequency of FoxP3+ cells in patients was significantly higher (P < 0·0001) when compared to healthy individuals, they did not show any relationship with clinical disease severity or the degree of viraemia. The frequency of FoxP3+ cells did not correlate with either ex‐vivo IFN‐γ DENV‐NS3‐, NS5‐ or NS1‐specific T‐cell responses. FoxP3+ cells of patients with acute dengue were predominantly CD45RA+ FoxP3low, followed by CD45RA‐FoxP3low, with only a small proportion of FoxP3+ cells being of the highly suppressive effector Treg subtype. Expression of CCR4 was also low in the majority of T‐cells, with only CCR4 only being expressed at high levels in the effector Treg population. Therefore, although FoxP3+ cells are expanded in acute dengue, they predominantly consist of naive Tregs, with poor suppressive capacity.  相似文献   

14.
Although MRI offers highly diagnostic medical imagery, patient access to this modality worldwide is very limited when compared with X‐ray or ultrasound. One reason for this is the expense and complexity of the equipment used to generate the switched magnetic fields necessary for MRI encoding. These field gradients are also responsible for intense acoustic noise and have the potential to induce nerve stimulation. We present results with a new MRI encoding principle which operates entirely without the use of conventional B0 field gradients. This new approach – ‘Transmit Array Spatial Encoding’ (TRASE) – uses only the resonant radiofrequency (RF) field to produce Fourier spatial encoding equivalent to conventional MRI. k‐space traversal (image encoding) is achieved by spin refocusing with phase gradient transmit fields in spin echo trains. A transmit coil array, driven by just a single transmitter channel, was constructed to produce four phase gradient fields, which allows the encoding of two orthogonal spatial axes. High‐resolution two‐dimensional‐encoded in vivo MR images of hand and wrist were obtained at 0.2 T. TRASE exploits RF field phase gradients, and offers the possibility of very low‐cost diagnostics and novel experiments exploiting unique capabilities, such as imaging without disturbance of the main B0 magnetic field. Lower field imaging (<1 T) and micro‐imaging are favorable application domains as, in both cases, it is technically easier to achieve the short RF pulses desirable for long echo trains, and also to limit RF power deposition. As TRASE is simply an alternative mechanism (and technology) of moving through k space, there are many close analogies between it and conventional B0‐encoded techniques. TRASE is compatible with both B0 gradient encoding and parallel imaging, and so hybrid sequences containing all three spatial encoding approaches are possible. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Increased sensitivity and chemical shift dispersion at ultra‐high magnetic fields enable the precise quantification of an extended range of brain metabolites from 1H MRS. However, all previous neurochemical profiling studies using single‐voxel MRS at 7 T have been limited to data acquired from the occipital lobe with half‐volume coils. The challenges of 1H MRS of the human brain at 7 T include short T2 and complex B1 distribution that imposes limitations on the maximum achievable B1 strength. In this study, the feasibility of acquiring and quantifying short‐echo (TE = 8 ms), single‐voxel 1H MR spectra from multiple brain regions was demonstrated by utilizing a 16‐channel transceiver array coil with 16 independent transmit channels, allowing local transmit B1 (B1+) shimming. Spectra were acquired from volumes of interest of 1–8 mL in brain regions that are of interest for various neurological disorders: frontal white matter, posterior cingulate, putamen, substantia nigra, pons and cerebellar vermis. Local B1+ shimming substantially increased the transmit efficiency, especially in the peripheral and ventral brain regions. By optimizing a STEAM sequence for utilization with a 16‐channel coil, artifact‐free spectra were acquired with a small chemical shift displacement error (<5% /ppm/direction) from all regions. The high signal‐to‐noise ratio enabled the quantification of neurochemical profiles consisting of at least nine metabolites, including γ‐aminobutyric acid, glutamate and glutathione, in all brain regions. Significant differences in neurochemical profiles were observed between brain regions. For example, γ‐aminobutyric acid levels were highest in the substantia nigra, total creatine was highest in the cerebellar vermis and total choline was highest in the pons, consistent with the known biochemistry of these regions. These findings demonstrate that single‐voxel 1H MRS at ultra‐high field can reliably detect region‐specific neurochemical patterns in the human brain, and has the potential to objectively detect alterations in neurochemical profiles associated with neurological diseases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
To explore the use of five meandering dipole antennas in a multi‐transmit setup, combined with a high density receive array for breast imaging at 7 T for improved penetration depth and more homogeneous B1 field. Five meandering dipole antennas and 30 receiver loops were positioned on two cups around the breasts. Finite difference time domain simulations were performed to evaluate RF safety limits of the transmit setup. Scattering parameters of the transmit setup and coupling between the antennas and the detuned loops were measured. In vivo parallel imaging performance was investigated for various acceleration factors. After RF shimming, a B1 map, a T1‐weighted image, and a T2‐weighted image were acquired to assess B1 efficiency, uniformity in contrast weighting, and imaging performance in clinical applications. The maximum achievable local SAR10g value was 7.0 W/kg for 5 × 1 W accepted power. The dipoles were tuned and matched to a maximum reflection of ?11.8 dB, and a maximum inter‐element coupling of ?14.2 dB. The maximum coupling between the antennas and the receive loops was ?18.2 dB and the mean noise correlation for the 30 receive loops 7.83 ± 8.69%. In vivo measurements showed an increased field of view, which reached to the axilla, and a high transmit efficiency. This coil enabled the acquisition of T1‐weighted images with a high spatial resolution of 0.7 mm3 isotropic and T2‐weighted spin echo images with uniformly weighted contrast.  相似文献   

17.
The sensitivity of proton MR Spectroscopic Imaging (1H‐MRSI) of the prostate can be optimized by using the high magnetic field strength of 7 T in combination with an endorectal coil. In the work described in this paper we introduce an endorectal transceiver at 7 T, validate its safety for in vivo use and apply a pulse sequence, optimized for three‐dimensional (3D) 1H‐MRSI of the human prostate at 7 T. A transmit/receive endorectal RF coil was adapted from a commercially available 3 T endorectal receive‐only coil and validated to remain within safety guidelines for radiofrequency (RF) power deposition using numerical models, MR thermometry of phantoms, and in vivo temperature measurements. The 1H‐MRSI pulse sequence used adiabatic slice selective refocusing pulses and frequency‐selective water and lipid suppression to selectively obtain the relevant metabolite signals from the prostate. Quantum mechanical simulations were used to adjust the inter‐pulse timing for optimal detection of the strongly coupled spin system of citrate resulting in an echo time of 56 ms. Using this endorectal transceiver and pulse sequence with slice selective adiabatic refocusing pulses, 3D 1H‐MRSI of the human prostate is feasible at 7 T with a repetition time of 2 s. The optimized inter‐pulse timing enables the absorptive detection of resonances of spins from spermine and citrate in phase with creatine and choline. These potential tumor markers may improve the in vivo detection, localization, and assessment of prostate cancer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Skin sodium (Na+) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na+ storage in humans (23Na MRI) at 3.0 T. This work examines the feasibility of high in‐plane spatial resolution 23Na MRI in skin at 7.0 T. A two‐channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two‐dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20–79 years) were investigated. Transverse slices of the calf were imaged with 23Na MRI using a high in‐plane resolution of 0.9 × 0.9 mm2. Skin Na+ content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra‐subject reproducibility, each volunteer was examined three to five times with each session including a 5‐min walk and repositioning/preparation of the subject. The age dependence of skin Na+ content was investigated. The 23Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in‐plane spatial resolution imaging of human skin. Intra‐subject variability of human skin Na+ content in the volunteer population was <10.3%. An age‐dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with 23Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na+ storage function of skin. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The in vivo rat model is a workhorse in neuroscience research, preclinical studies and drug development. A repertoire of MR tools has been developed for its investigation; however, high levels of B0 magnetic field homogeneity are required for meaningful results. The homogenization of magnetic fields in the rat brain, i.e. shimming, is a difficult task because of a multitude of complex, susceptibility‐induced field distortions. Conventional shimming with spherical harmonic (SH) functions is capable of compensating for shallow field distortions in limited areas, e.g. in the cortex, but performs poorly in difficult‐to‐shim subcortical structures or for the entire brain. Based on the recently introduced multi‐coil approach for magnetic field modeling, the DYNAmic Multi‐coIl TEchnique (DYNAMITE) is introduced for magnetic field shimming of the in vivo rat brain and its benefits for gradient‐echo echo‐planar imaging (EPI) are demonstrated. An integrated multi‐coil/radiofrequency (MC/RF) system comprising 48 individual localized DC coils for B0 shimming and a surface transceive RF coil has been developed that allows MR investigations of the anesthetized rat brain in vivo. DYNAMITE shimming with this MC/RF set‐up is shown to reduce the B0 standard deviation to a third of that achieved with current shim technology employing static first‐ through third‐order SH shapes. The EPI signal over the rat brain increased by 31%, and a 24% gain in usable EPI voxels could be realized. DYNAMITE shimming is expected to critically benefit a wide range of preclinical and neuroscientific MR research. Improved magnetic field homogeneity, together with the achievable large brain coverage of this method, will be crucial when signal pathways, cortical circuitry or the brain's default network are studied. Together with the efficiency gains of MC‐based shimming compared with SH approaches demonstrated recently, DYNAMITE shimming has the potential to replace conventional SH shim systems in small‐bore animal scanners. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Ultrahigh‐field (UHF) (≥7 T) transmit (Tx) human head surface loop phased arrays improve both the Tx efficiency (B 1+/√P ) and homogeneity in comparison with single‐channel quadrature Tx volume coils. For multi‐channel arrays, decoupling becomes one of the major problems during the design process. Further insight into the coupling between array elements and its dependence on various factors can facilitate array development. The evaluation of the entire impedance matrix Z for an array loaded with a realistic voxel model or phantom is a time‐consuming procedure when performed using electromagnetic (EM) solvers. This motivates the development of an analytical model, which could provide a quick assessment of the Z‐matrix. In this work, an analytical model based on dyadic Green's functions was developed and validated using an EM solver and bench measurements. The model evaluates the complex coupling, including both the electric (mutual resistance) and magnetic (mutual inductance) coupling. Validation demonstrated that the model does well to describe the coupling at lower fields (≤3 T). At UHFs, the model also performs well for a practical case of low magnetic coupling. Based on the modeling, the geometry of a 400‐MHz, two‐loop transceiver array was optimized, such that, by simply overlapping the loops, both the mutual inductance and the mutual resistance were compensated at the same time. As a result, excellent decoupling (below ?40 dB) was obtained without any additional decoupling circuits. An overlapped array prototype was compared (signal‐to‐noise ratio, Tx efficiency) favorably to a gapped array, a geometry which has been utilized previously in designs of UHF Tx arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号