首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
This study investigated the feasibility of using a peripheral nerve autograft (NAG) to promote and guide regeneration of sensory axons from the caudal lumbar dorsal roots to the rostral dorsal column following a lower thoracic cordotomy in adult rats. After a left hemicordotomy at the T13 vertebra level and ipsilateral L3 and L4 rhizotomies, a peripheral NAG (peroneal nerve) was connected to the distal roots stumps, then implanted into the left dorsal column 10 mm rostral to hemicordotomy site (n = 12). After surgery, all animals of the experimental group experienced complete anesthesia in their left hindlimb. Three months later, a slight response to nociceptive stimulation reappeared in L3 and/or L4 dermatomes in 6 of the 12 experimental animals. None of these animals exhibited self-mutilation. Nine months after surgery, we performed retrograde tracing studies by injecting horseradish peroxidase (HRP) into the left dorsal column 30 mm rostral to the NAG implantation site. In eight animals, we found HRP-stained neurons in the left L3 and/or L4 dorsal root ganglia (DRG). The mean number of HRP-stained neurons per DRG was 71 +/- 92 (range 2-259). In control groups, no HRP-stained neurons were found in L3 or L4 DRG. Histological analysis of the NAG showed evidence of axonal regeneration in all 8 animals with positive retrograde labeling of DRG neurons. However, we did not find a statistical correlation between the number of HRP-stained neurons and the degree of sensory recovery. This study demonstrates that an NAG joining dorsal roots to the dorsal column, thus shunting the original CNS-PNS junction, can support regeneration of central axons from DRG primary sensory neurons into the dorsal column over distances of at least 30 mm despite the inhibitory influence of the CNS white matter.  相似文献   

3.
Macica CM  Liang G  Lankford KL  Broadus AE 《Glia》2006,53(6):637-648
Parathyroid hormone-related peptide (PTHrP) is widely distributed in the rat nervous system, including the peripheral nervous system, where its function is unknown. PTHrP mRNA expression has recently been shown to be significantly elevated following axotomy of sympathetic ganglia, although the role of PTHrP was not investigated. The role of PTHrP in peripheral nerve injury was investigated in this study using the sciatic nerve injury model and dorsal root ganglion (DRG) explant model of nerve regeneration. We find that PTHrP is a constitutively secreted peptide of proliferating Schwann cells and that the PTHrP receptor (PTH1R) mRNA is expressed in isolated DRG and in sciatic nerve. Using the sciatic nerve injury model, we show that PTHrP is significantly upregulated in DRG and in sciatic nerve. In addition, in situ hybridization revealed significant localization of PTHrP mRNA to Schwann cells in the injured sciatic nerve. We also find that PTHrP causes a dramatic increase in the number of Schwann cells that align with and bundle regrowing axons in explants, characteristic of immature, dedifferentiated Schwann cells. In addition to stimulating migration of Schwann cells along the axonal membrane, PTHrP also stimulates migration on a type 1 collagen matrix. Furthermore, treatment of purified Schwann cell cultures with PTHrP results in the rapid phosphorylation of the cAMP response element protein, CREB. We propose that PTHrP acts by promoting the dedifferentiation of Schwann cells, a critical requirement for successful nerve regeneration and an effect consistent with known PTHrP functions in other cellular differentiation programs.  相似文献   

4.
5.
This study explored the effects of riluzole administration on cell survival and neurite growth in adult and neonatal rat dorsal root ganglion (DRG) neurones in vitro. Neuronal survival was assessed by comparing numbers of remaining neurones in vehicle- and riluzole-treated cultures. A single dose of 0.1 microm riluzole was sufficient to promote neuronal survival in neonatal DRG cultures, whereas repeated riluzole administration was necessary in adult cultures. However, a single administration of riluzole was sufficient to induce neuritogenesis, promote neurite branching and enhance neurite outgrowth in both neonatal and adult DRG cultures. The effects of a single dose of riluzole on adult DRG neurones after peripheral nerve or dorsal root injury were also studied in vitro at 48 h. For both types of injury, riluzole enhanced neurite outgrowth in terms of number, length and branch pattern significantly more on the injured side as compared with the contralateral side. No effect was seen on cell survival. The results suggest that, in addition to its cell survival effects, riluzole has novel growth-promoting effects on sensory neurones in vitro and that riluzole may offer a new way to promote sensory afferent regeneration following peripheral injury.  相似文献   

6.
7.
Over 3 decades ago, seminal work by Phillip Low and colleagues established exquisite physiology around the measurement of nerve blood flow (NBF). Although not widely explored recently, its connection to the clinic has awaited human methodology. While human studies have not achieved a convincing level of rigour, newer imaging technologies are offering early information. The peripheral nerve trunk has parallel blood flow compartments that include epineurial flow dominated by arteriovenous shunts and downstream endoneurial blood flow (EBF). NBF and EBF have lower values than central nervous system blood flow, lack autoregulation yet have sympathetic and peptidergic neurovascular control. Contrary to expectation, injury to nerves is often associated with rises in NBF rather than ischemia, a finding of biological interest corroborated by human studies. Despite its potential importance, quantitative human measurements of EBF and NBF are not yet available. However, with development, careful NBF analysis may present new insights into nerve disorders. Muscle Nerve 57 : 884–895, 2018  相似文献   

8.
Expression of low-affinity neurotrophin receptor (p75NTR) was immunohistochemically examined in the peripheral nerve trunks, dorsal root ganglia, sympathetic nerve ganglia and spinal cords in various human neurological diseases manifesting peripheral neuropathies. p75NTR was expressed in the nerves with axonal degeneration, and was also prominent in the nerves with newly regenerating axons. In contrast, axonal pathology tended to reduce the expression of p75NTR in the neuronal perikarya of the dorsal root genglion and sympathetic nerve ganglion neurons. In the ventral and lateral horn cells, the p75NTR immunoreactivity was not detected in the normal and diseased nerves except for amyloid polyneuropathy. These p75NTR expressions in the diseased human peripheral nervous tissues would be regulated by an underlying pathology-related process, and could play a role in peripheral nerve repair. Received: 28 April 1997 / Revised: 5 August 1997 / Revised, accepted: 17 November 1997  相似文献   

9.
外周神经损伤后若不能及时准确的修复,则会导致外周神经功能的永久丧失。目前研究显示施万细胞(SC)参与外周神经损伤后碎片清除、轴突和髓鞘再生以及靶器官再支配过程中,外周神经损伤后SC被迅速激活进入修复过程,经历一系列动态的细胞重塑变化,转化为修复表型,促进神经再生、引导对靶器官再支配,从而恢复神经功能,其中有许多信号通路,转录调节因子等调控这些过程。基于此,该文系统总结了SC在外周神经再生过程中的研究进展,为深入研究外周神经修复提供新的方法和策略。  相似文献   

10.
11.
We have previously shown that Achyranthes bidentata polypeptides (ABPP), isolated from Achyranthes bidentata Blume (a medicinal herb), exhibit neurotrophic and neuroprotective effects on the nervous system. To identify the major active component of ABPP, and thus optimize the use of ABPP, we used reverse-phase high performance liquid chromatography to separate ABPP. We obtained 12 fractions, among which the fraction of ABPPk demonstrated the strongest neuroactivity. Immunocytochemistry and western blot analysis showed that ABPPk promoted neurite growth in cultured dorsal root ganglion explant and dorsal root ganglion neurons, which might be associated with activation of Erk1/2. A combination of behavioral tests, electrophysiological assessment, and histomorphometric analysis indicated that ABPPk enhanced nerve regeneration and function restoration in a mouse model of crushed sciatic nerve. All the results suggest that ABPPk, as the key component of ABPP, can be used for peripheral nerve repair to yield better outcomes than ABPP.  相似文献   

12.
Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor‐like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano‐vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC‐derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro‐regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage. GLIA 2013;61:1795–1806  相似文献   

13.
Dorsal root ganglion (DRG) neurons explanted from human embryos, at stages less than about 8 weeks in utero, appeared to be strongly dependent on nerve growth factor (NGF) for their long-term survival. In cultures containing a high concentration of NGF (1000 units/ml, added only at explantation), most of the DRG neurons survived and developed for many weeks in vitro. In contrast, extensive degeneration of DRG neurons was evident within the 1st week after explantation of these immature ganglia in our normal culture medium without added NGF. On the other hand, although introduction of NGF in cultures of 10- to 12-week-old human fetal DRG neurons enhanced the early outgrowth of neurites, these ganglia showed relatively good growth and maintenance in long-term culture even when NGF was omitted from the medium. DRGs from human fetuses estimated to be between 9 and 10 weeks in utero showed intermediate degrees of survival when NGF was omitted from the culture medium (about 10 to 25% of the DRG neurons survived compared with those in paired cultures treated with NGF). The data demonstrate the existence of a critical period during which human DRG neurons may require high NGF concentrations to ensure long-term survival and maturation. Human fetal DRG cultures may provide a useful model system for studies related to familial dysautonomia where drastic deficits in sensory and sympathetic ganglia occur in utero.  相似文献   

14.
The L1 family of cell adhesion molecules (L1-CAMs) is known to be involved in various neuronal functions such as cell adhesion, axon guidance, and synaptic plasticity. We investigated the detailed expression/changes of a close homolog of the L1 cell adhesion molecule (CHL1) after nerve injury and the possible role on neuropathic pain using the rat spared nerve injury (SNI) model. SNI induced the expression of CHL1 in L4/5 DRG neurons, particularly in small-size injured neurons and in satellite cells. In the spinal cord, CHL1 immunoreactivity increased mainly in laminae I-II of the dorsal horn on the side ipsilateral to the nerve injury. Ultrastructural study clarified the fine localization of CHL1 in axons of primary afferents in the dorsal horn. CHL1 immunoreactivities were localized in the adherence such as axon-axon, axon-dorsal horn neurons (dendrite, soma), and axon-glial cells (astrocyte and microglia). Experimental inhibition of CHL1 adhesion by intrathecal administration of the antibody for CHL1 extracellular domain significantly prevented and reversed SNI-induced mechanical allodynia. Thus, alterations of CHL1 may be involved in the structural plasticity after peripheral nerve injury and have important roles in neuropathic pain.  相似文献   

15.
Every year male deers completely regenerate their antlers. During this process, antlers are reinnervated by sensory fibers, growing at the highest rate recorded for any adult mammal. Despite its clinical potential, only a few studies have dealt with this fascinating phenomenon. Among the possible factors underlying fast growth of the antler's innervation, the effects of the antler's endocrine and paracrine factors were evaluated, using an in vitro assay for sensory neurite growth. We found that soluble molecules secreted by the velvet, the modified skin that covers the antler, strongly promote neurite outgrowth. Using specific blocking antibodies, we demonstrated that nerve growth factor is partially responsible for these effects, although other unidentified molecules are also involved. On the contrary, neither endocrine serum factors nor antler substrates promoted neurite outgrowth, although antler substrata from deep velvet layers cause neurite outgrowth orientation. Taken together, our results point to the existence in the deep velvet of an environment that promotes oriented axon growth, in agreement with the distribution of the antler innervation. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The level of the nerve growth factor protein, NGF, in vivo has a profound influence on axonal sprouting by sensory neurons of vertebrate dorsal root ganglia. There is evidence also that NGF may play similar roles in cholinergic central structures in brain. In both instances, retrograde transport of NGF has been demonstrated. Here we examined uptake of NGF by DRG neurons in response to contusion injury of the spinal cord. Under these conditions there was uptake and transport of NGF into large DRG neurons via central processes but no uptake by non-DRG central neurons. Thus, any effects of NGF on spinal neurons or their processes would be secondary to the direct effects of NGF on DRG neurons.  相似文献   

17.
The growth-associated protein B-50/GAP-43 is thought to play a crucial role in axonal growth. We investigated, by quantitative immunoelectron microscopy, whether there are differences in the subcellular distribution of B-50 in unmyelinated and myelinated axons of intact and regenerating sciatic nerves. Adult rats received an unilateral sciatic nerve crush and were euthanized 8 days later. Nerve pieces proximal from the crush site were embedded, and B-50 was visualized by specific B-50 antibodies and immunogold detection in ultrathin sections. The density of B-50 at the plasma membrane of unmyelinated axon shafts was significantly increased in the ipsilateral regenerating nerve in comparison to that of the contralateral intact nerve. In contrast, there was no significant difference in the B-50 density at the axolemma of myelinated regenerating and intact axon shafts. In the contralateral intact nerve, more B-50 was associated with the axolemma of unmyelinated axons than with the plasma membrane of myelinated axons. The density of axoplasmic B-50 was similar in intact unmyelinated and myelinated axon shafts, but was higher in regenerating nerve than in intact nerve. This suggests that enhanced axonal transport of B-50 occurs during axon outgrowth. Our study demonstrates a differential subcellular distribution of B-50 in unmyelinated and myelinated axon shafts in both the intact and regenerating sciatic nerve, indicating a differential inducible capacity for remodeling of the axon shafts. © 1995 Wiley-Liss, Inc.  相似文献   

18.
Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of NGF are generally recognized. NGF may enhance axonal regeneration and myelination of peripheral nerves, as well as cooperatively promote functional recovery of injured nerves and limbs. The clinical efficacy of NGF and its therapeutic potentials are reviewed here. This paper also reviews the latest NGF research developments for repairing injured peripheral nerve, thereby providing scientific evidence for the appropriate clinical application of NGF.  相似文献   

19.
The proximal stump of a transected rat sciatic nerve has been observed to regenerate through a cylindrical silicone chamber across a 10 mm gap to the distal stump. The fluid filling such in vivo chambers contains trophic factors that ensure in vitro survival and growth of at least sensory neurons from rodent dorsal root ganglia — as already demonstrated for fluid generated in vitro from Schwann and other cell cultures.  相似文献   

20.
A possible role for nitric oxide in growth and regeneration of dorsal root ganglion (DRG) afferents has been explored in lesion experiments by comparing immunocytochemistry for nitric oxide synthase (NOS) with that for the growth-associated phosphoprotein 43 (GAP-43). Sciatic nerve ligature induced a progressive increase in the number of small DRG cell profiles immunopositive for NOS between 2 days and 4 weeks of survival. In the proximal stump of the ligature, NOS-immunopositive fibers began to appear 2 days after injury and their growth cones were especially evident after 7 days. NOS-immunopositive fibers appeared past (i.e., distal to) the ligature at 14 days of survival and extended for at least 6 mm in either direction 4 weeks after the lesion. Dorsal root ligature alone at L4–L5 did not result in expression of NOS in DRG neurons or in the appearence of NOS-immunopositive fibers. In rats with dorsal root ligature and nerve ligature, the results were similar to those with nerve ligature only. DRG cell profiles immunopositive for GAP-43 kept increasing from 2 days to 4 weeks after sciatic nerve ligature and included small neurons initially and large neurons subsequently. Numerous axons became GAP-43 immunopositive on both sides of the ligature from 2 days after injury. In double-labeled material, about 80% of DRG cell profiles immunopositive for NOS were also immunopositive for GAP-43. The two antigens co-occurred in peripheral nerve axons proximal to the ligature starting at about 7 days and distal to it at about 2 weeks after ligature. Thus, in response to nerve lesion, nitric oxide may not only provide an injury signal to the central nervous system but may also contribute to the growth and regeneration of injured axons. J. Comp. Neurol. 404:64–74, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号