首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In larval frogs the retina and tectum grow in topologically dissimilar patterns: new cells are added as peripheral annuli in the retina and as caudal crescents in the tectum. Retinotopy is maintained by the continual caudalward shifting of the terminals of the optic axons. After metamorphosis the pattern of growth changes. The retina continues to add new ganglion cells peripherally, but there is no neurogenesis in the tectum. To maintain retinotopy in postmetamorphic frogs, the terminals of the optic axons must continually shift toward the central tectum. We tested the proposal of centripetally shifting axons by making punctate injections of horseradish peroxidase (HRP) in the tectum of adult Rana pipiens and observing the patterns of filled cells in the contralateral retina, as was done in the goldfish (Easter and Stuermer, '84). Punctate applications of HRP in the tectum should be taken up: 1) by fascicles, and label a partial anulus of cells, 2) by terminals, and label a cluster of cells in the corresponding retinotopic site, and 3) by the extrafascicular axonal segments, and label a band of cells connecting the partial annulus to the cluster. If the terminals have shifted centripetally, the band of cells labeled through their extrafascicular segments should have a spoke-like orientation, with the center of the retina as the hub. As the tectal site moves from rostral to caudal, this band of cells should move, pendulum-like, from temporal to nasal retina. In general, the patterns of HRP-filled retinal cells we observed were consistent with our predictions. In addition, HRP taken up by the oldest (rostral) tectal axons produced more complex patterns of filled cells that indicated that these axons had shifted both caudally before metamorphosis and centripetally after.  相似文献   

2.
The retinotectal projection is organized in a precise retinotopic manner. We find, though, that during development the growth and arborization of temporal retinal axons within the optic tectum of chick embryos is initially imprecise. Axonal targeting errors occur along the rostral-caudal and medial-lateral tectal axes, and arbors are formed at topographically inappropriate positions. Subsequent course corrections along both tectal axes and large-scale axonal remodeling lead to the retinotopic ordering of terminal arborizations characteristic of the mature projection. The trajectories and branching patterns of temporal retinal axons labeled with Dil or DiO were determined in whole mounts of retina and tectum from chicks ranging in age from embryonic day 9 to posthatching. Within the retina, labeled retinofugal axons travel in a compact bundle but do not maintain strict neighbor relations, as they course to the optic fissure. The axons enter the contralateral tectum at its rostral edge and grow caudally. Many extend well past their appropriate terminal zone within rostral tectum; a proportion of these later reverse their direction of growth. Many axons grow onto the tectum at incorrect positions along the medial-lateral tectal axis. Some correct this error in a directed manner by altering their trajectory or extending collateral branches at right angles. About 80% of the positional changes of this type are made in the direction appropriate to correct axon position, and thus are likely a response to tectal positional cues. After maturation of retinotopic order, about half of the axons that project to a mature terminal zone have made abrupt course corrections along one or both tectal axes, indicating that initially mistargeted axons can establish appropriately positioned arbors and survive. The development of temporal axons within the tectum is characterized by 3 phases: elongation, branch and arbor formation, and remodeling. After considerable rostrocaudal elongation, an axon typically develops numerous side branches and arbors, many at inappropriate locations. Most arbors are formed by side branches that develop as interstitial collaterals; few axons grow directly to their appropriate terminal zone and arborize. Aberrant arbors, and axons and axon segments that fail to form arbors in the appropriate terminal zone, are rapidly eliminated over about a 2 d period. Axon degeneration appears to play a role in this remodeling process.  相似文献   

3.
Positional markers in the tectum, which are thought to guide growing axons to their target sites, have been proposed to be induced by axons, to be only transiently associated with the tectal cells, and then lost after long-term denervation periods (Schmidt: J. Comp. Neurol. 177:279-300, '78). To further investigate this concept, retinal axons were induced to regenerate into ipsilateral tecta which had been deprived of their retinal afferents for shorter (0-4 months) and longer periods (4-8 months). The paths of HRP-labeled regenerating axons of known retinal origin were traced and used as an operational test to decide whether the axons might navigate under the influence of positional markers. Two different kinds of experiments were performed: 1. The axons from a subpopulation of all ganglion cells in the retina were labeled by applying a small crystal of HRP at defined retinal regions. Independent of the denervation period of the tectum, the labeled regenerating axons traveled in abnormal but nonrandom routes. In early regeneration stages, axons exhibited signs of exploratory growth. They extended branches equipped with growth cones and filopodia into various regions of the tectum. In late regeneration stages, the axons lost these branches, exhibited U-turns and bends, and ended in terminal arbors in the retinotopic target region. These findings suggest that the axons travel under the influence of tectal positional markers and that these markers are not transient. 2. Axons from a surgically created temporal hemiretina were labeled by application of HRP to the optic nerve to test whether the temporal axons might expand into the caudal tectum in long-term-denervated tecta. The HRP-labeled axons coursed over rostral and midtectal regions. Instead of invading the caudal tectum they bent and terminated in the rostral tectal half. These results add further support for the conclusion that the path of regenerating retinal axons is governed by long-lasting positional markers.  相似文献   

4.
Single axonal arbors of retinal ganglion cells have been stained by injecting cobalt extracellularly into the retinae of Xenopus embryos and tadpoles. The axonal endings of the earliest retinal axons to arrive in the midbrain were usually simple in appearance, often ended in growth cones, and terminated in tectal regions appropriate to their location in the eye. Thus, a topographic projection exists very early in the development (stages 37 to 39) of the projection, before the elaboration of complex axonal arbors. Retinal axons began acquiring more mature features, exemplified by the elaboration of terminal arbors, by stage 39. The arbors of most ganglion cells were elongated in the rostral-to-caudal dimension during early larval life (stages 40 to 45) and covered a large portion of tectal neuropil. During mid-larval stages (stages 46 to 50), arbors covered a relatively smaller proportion of the tectal neuropil. A quantitative analysis of this change suggests that the apparent decrease in size of the arbors, with respect to the tectum, is due to rapid growth of tectal neuropil and not due to retraction of an initially diffuse arbor. Thus, the refinement in targeting of axonal arbors during development is a phenomenon distinct from that seen during regeneration.  相似文献   

5.
Neuroanatomical tracing of retinal axons and axonal terminals with the fluorescent dye, DiI, was combined with immunohistochemical characterization of radial glial cells in the developing chick retinotectal system. Emphasis was placed on the mode of the tectal innervation by individual retinal axons and on the distribution and fate of the tectal radial glial cells and their spatial relation to retinal axons. It was obvious from fluorescent images obtained from anterogradely filled axons that these axons deserted the superficial stratum opticum (SO) to penetrate the stratum griseum et fibrosum superficiale (SGFS) by making right-angled turns within the SO. Frequently, axons which had invaded the SGFS were bifurcated and had a superficial branch which remained within the SO. Terminal axonal arborization occurred at various depths within the SGFS. Characterization of the tectal glial cells and their radial fibers by means of the anti-filament antibody, R5, and post-mortem staining with the fluorescent dye, DiI, revealed the following. (a) At least from day E8 to P1, tectal glial fibers traversed all tectal layers from the periventricular location of their somata to the superficial interface between SO and pia mater. In this interface they enlarged and formed characteristic endfeet. (b) Glial endfeet covered the whole tectal surface. They showed at early ages anterior-posterior differences having a higher density in the posterior tectum. These differences disappeared at embryonic day E13. (c) After innervation, glial endfeet of the anterior tectal third were arranged in rows parallel to the retinal fibers within the SO. This arrangement was not observed in eyeless embryos. (d) Radial glial fibers could be stained with R5 from day E8 to late embryonic stages throughout their entire length. (e) At the first posthatching days, only the segments of the radial glial fibers restricted to the thickness of the SO were R5-positive, although the fibers still traversed throughout the depth of the tectum. The results are discussed in context to the genesis of the retinotectal projection.  相似文献   

6.
Cytochrome oxidase (C.O.) was histochemically localized in the normal retina and optic tectum of goldfish in order to examine the laminar and cellular oxidative metabolic organization of these structures. In the optic tectum, C.O. exhibited a distinct laminar, regional, and cellular distribution. The laminae with highest C.O. levels were those that receive optic input, suggesting a dominant role for visual activity in tectal function. This was demonstrated by colocalizing C.O. and HRP-filled optic fibers in the same section. However, the distribution of C.O. within the optic laminae was not uniform. Within the main optic layers, the SFGS, four metabolically distinct sublaminae were distinguished and designated from superficial to deep as sublaminae a, b, c, and d. The most intense reactivity was localized within SFGSa and SFGSd, followed by SFGSb, then SFGSc. In SFGSd, intense reactivity was found to occur specifically within a class of large diameter axons and terminals that were apparently optic since these were also labeled with HRP and cobaltous lysine applied to the optic nerve. Regional C.O. differences across the tectum were also noted. Low levels were found in neurons and optic terminals along the growing immature medial, lateral, and posterior edges of tectum, but were higher at the more mature anterior pole and central regions of tectum. This suggests that the oxidative metabolic activity is initially low in newly formed tectal neurons and optic axons, but gradually increases with neuronal growth and functional axon terminal maturation. Most C.O. staining was localized within neuropil, whereas the perikarya of most tectal neurons were only lightly reactive. Only a few neuron classes, mostly the relatively larger projection neurons, had darkly reactive perikarya. In the retina, intense C.O. reactivity was localized within the inner segments of photoreceptors, the inner and outer plexiform layers, and within certain classes of bipolar and ganglion cells. The large ganglion cells in particular were intensely reactive. Like the large diameter optic terminals in SFGSd, the large ganglion cells were preferentially filled with HRP, suggesting that they may project to tectum and are the source of the darkly reactive large diameter axons and terminals in sublamina SFGSd. We propose a new scheme to describe tectal lamination that integrates laminar differences in C.O. reactivity with classical histological work.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The projections of retinal ganglion cell axons within co-cultured tectal explants were analyzed in order to investigate some of the factors that determine the earliest responses of retinal axons to cues present in an isolated target tissue. Half retinas and superior colliculi (tecta) from the embryonal mouse were explanted, separated by a 0.5 mm gap. After 5 days in vitro retinal ganglion cells were labeled by extracellular ionophoresis of HRP into the optic nerve head region. Cleared co-cultures were studied as whole mounts. Growth-cone-bearing retinal fibers were studied in standard tectal co-cultures, and in cases where tectum had been explanted 2 weeks prior to retina. The heterochronously prepared cultures had a higher proportion of fibers with complex branching patterns than the synchronous explants. Cultures in which retinas were explanted 1 week after tecta exhibited intermediate proportions of such fibers. These observations suggest that older tecta facilitate branching of ingrowing retinal fibers, although other alterations during in vitro development must be evaluated. The growth patterns of axons originating in nasal and temporal hemi-retinas were analyzed in terms of possible positional cues provided by the target tecta. Axons originating in temporal hemi-retinas did not show evidence of preferential branching in, or growth toward, appropriate anterior regions of co-cultured tectal explants. In contrast, the majority of nasal retinal axons showed enhanced terminations and complex branching in, and bending towards, the posterior tectum.  相似文献   

8.
The ability of pre- and postsynaptic populations to achieve the proper convergence ratios during development is especially critical in topographically mapped systems such as the retinotectal system. The ratio of retinal ganglion cells to their target cells in the optic tectum can be altered experimentally either by early partial tectal ablation, which results in an orderly compression of near-normal numbers of retinal projections into a smaller tectal area, or by early monocular enucleation, which results in the expansion of a reduced number of axons in a near-normal tectal volume. Our previous studies showed that changes in cell death and synaptic density consequent to these manipulations can account for only a minor component of this compensation for the population mismatch. In this study, we examine other mechanisms of population matching in the hamster retinotectal system. We used an in vitro horseradish peroxidase labeling method to trace individual retinal ganglion cell axons in superior colliculi partially ablated on the day of birth, as well as in colliculi contralateral to a monocular enucleation. We found that individual axon arbors within the partially lesioned tectum occupy a smaller area, with fewer branches and fewer terminal boutons, but preserve a normal bouton denstiy. In contrst, ipsilaterally projecting axon arbors in monoculary enucleated animals occupy a greater area than in the normal condition, with a much larger arbor length and greater number of boutons and branches compared with normal ipsilaterally projecting cells. Alteration of axonal arborization of retinalganglion cells is the main factor responsible for matching the retinal and tectal cell populations within the tectum. This process conserves normal electrophysiological function over a wide range of convergence ratios and may occur through strict selectivity of tectal cells for their normal number of inputs. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Individual optic arbors, normal and regenerated, were stained via anterograde transport of HRP and viewed in tectal whole mounts. Camera lucida drawings were made of 119 normal optic arbors and of 242 regenerated arbors from fish 2 weeks to 14 months postcrush. These arbors were analyzed for axonal trajectory, spatial extent in the horizontal plane, degree of branching, number of branch endings, average depth, and degree of stratification. Normal optic arbors ranged in size from roughly 100 to 400 microns across in a continuous distribution, had an average of 20 branch endings with average of fifth-order branching, and were highly stratified into one of three planes within the major optic lamina (SO-SFGS). Small arbors arising from fine-caliber axons terminated in the most superficial plane of SO-SFGS; large arbors from coarse axons terminated in the superficial and middle planes; and medium arbors from medium-caliber axons terminated in the middle and deep planes of SO-SFGS, as well as deeper in the central gray and deep white layers. Arbors from central tectum tended to be much more tightly stratified than those in the periphery. No other differences between central and peripheral arbors were noted. Mature regenerated arbors (five months or more postcrush) were normal in their number of branch endings, order of branching, and depth of termination. Their branches covered a wider area of tectum, partially because of their early branching and abnormal trajectories of branches. Axonal trajectories were often abnormal with U-turns and tortuos paths. Fine-, medium-, and coarse-caliber axons were again present and gave rise to small, medium, and large arbors at roughly the same depths as in the normals. There was frequently a lack of stratification in the medium and large arbors, which spanned much greater depths than normal. Overall, however, regenerates reestablished nearly normal morphology except for axonal trajectory and stratification. Early in regeneration, the arbors went through a series of changes. At 2 weeks postcrush, regenerated axons had grown branches over a wider-than-normal extent of tectum, though they were sparsely branched and often tipped with growth cones. At 3 weeks, the branches were more numerous and covered a still wider extent (average of five times normal), many covering more than half the tectal length or width. At 4-5 weeks smaller arbors predominated, although a few enlarged arbors were present for up to 8 weeks. Additional small changes occurred beyond 8 weeks as the arbors became progressively more normal in appearance.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Retrograde transport of horseradish peroxidase (HRP) from the region of retinal genglion cell axon terminals back to the cell bodies has been studied by light and electron microscopy. After injection of HRP into the chick optic tectum, it was taken up by axon terminals and unmyelinated axons as well as by other processes and cell bodies of the outer tectal layers. Subsequently the HRP was obseved in vesicles, multivesicular bodies, cup-shaped organelles and small tubules within axons in the stratum opticum, optic tract, optic nerve and optic fiber layer of the retina with accumulation in the retinal ganglion cell bodies. Pinocytosis of extracellular HRP along the axon shaft was rare. After a short postinjection interval, HRP was found in organelles within the axons of the optic nerve but not in the extracellular spaces. After larger injections or longer postinjection intervals, extracellular HRP diffused from the injection site to the back of the eye, but none was found in the extracellular spaces of the retina; ganglion cells were the only cells of the retina which contained HRP product. HRP disappeared from the cell bodies 3–4 days after transport. These findings suport the concept of intraaxonal retrograde movement of HRP. Within axons the vesicles carrying HRP frequently were partially or completely surrounded by a regualr array of microtubules. Doses of colchicine greater than 5–10 µ/eye administered 4 days before tectal injection of HRP interfered with the uptake and/or transport of HRP. HRP also moved in an anterograde direction in membrane-bound vesicles within the ganglion cell axons, although apparently more slowly and in smaller quantities than in the retrograde direction. The localization of HRP in neurons of the isthmo-optic nucleus following intravitreal injections has also been studied. The marker enzyme was found in neuronal cell bodies 4 hours after injection, indicating a rate of retrograde transport of at least 84 mm/day in these neurons.  相似文献   

11.
The morphology of single retinal terminals in the optic tectum of the eastern garter snake was demonstrated by orthograde filling from extracellular injections of horseradish peroxidase (HRP) into the optic tract. HRP-filled terminals share a characteristic shape and structure. Their parent axons course caudally in the stratum opticum within fascicles of 200-300 fibers of varying diameters. Single axons exit a fascicle and course into either the stratum fibrosum et griseum superficiale, ventrally, or the stratum zonale, dorsally, where they bifurcate successively two or three times into preterminal branches. Each preterminal branch gives rise to many thin, terminal branchlets laden with boutons. The arbors are ellipsoidal with their long axes oriented mediolaterally and their short axes oriented rostrocaudally. Arbors vary in their overall size (from 45 to 150 micron), in the diameters of their parent axons (from less than 0.5 to 3.0 micron), and in the size of their terminal boutons (from 0.5 to 3.5 micron). Bouton size increased with increasing diameter of the parent axon. The great majority of arbors are confined to one of three retinorecipient sublayers in the superficial tectum. However, the full range of arbor sizes and axon diameters is present in each sublayer.  相似文献   

12.
HRP was applied to small sites in the dorsotemporal or dorsonasal retina in fish at 10-36 days after optic nerve section. The anterogradely labeled axons were visualized in tectal whole mounts. Axons traveled through all regions of the tectum in various abnormal routes. Misrouted axons were also seen to alter their orientation and to direct their course toward their target. At all regeneration stages the majority of dorsotemporal axons coursed and achieved target-related orientations preferentially within the rostral tectal half whereas dorsonasal axons proceeded into the caudal tectum. The growing axons exhibited various morphologies. All axons in the superficial fascicle layer stratum opticum (SO) and some in the synaptic layer stratum fibrosum et griseum superficiale (SFGS) were unbranched and tipped with a leading growth cone. Other axons in the synaptic layer carried one to several growth cones at their ends and often filopodia proximal to the growth cone, or they had sprouted numerous side branches with growth cones and filopodia on the shaft and on branches. Some axons at retinotopic or ectopic sites gave rise to several long branches of several hundred microns in length, with growth cones and filopodia. From 32 days onward axons ending in terminal arbors at retinotopic sites became apparent. Thus, numerous axons at early regeneration stages go through a phase of exploratory growth on their way toward their target sites.  相似文献   

13.
After unilateral optic tectum ablation in the goldfish, regenerating optic axons grow into the optic layers of the remaining ipsilateral tectal lobe and regain visual function. The terminal arbors of the foreign fibers are initially diffusely distributed among the resident optic axons, but within two months the axon terminals from each retina are seen to segregate into irregular ocular dominance patches. Visual recovery is delayed until after segregation. This suggests that the foreign fibers compete with the residents for tectal targets and that the segregation of axon terminations is an anatomical characteristic of the process. Here we investigate whether inhibiting axonal transport in the resident fibers inhibits competition with foreign fibers. The eye contralateral to the intact tectal lobe received a single injection of 0.1 μg colchicine, which does not block vision with the intact eye. We measured visual function using a classical conditioning technique. Segregation of axon terminations was examined shortly following visual recovery by autoradiography. The no-drug control fish showed reappearance of vision with the experimental eye at 9 weeks postoperatively and ocular dominance patches were well developed. Colchicine administered to the intact eye (resident fibers) several weeks postsurgery decreased the time to reappearance of vision with the experimental eye by several weeks. Autoradiography revealed some signs of axonal segregation but the labeled foreign axons were mainly continuously distributed. Administration of colchicine at the time of tectum ablation, or of lumicolchicine at two weeks postoperatively produced normal visual recovery times. Fast axonal transport of3H-labeled protein was inhibited by 1.0 and 0.5 μg but not by 0.1 μg of colchicine or by 1.0 μg of lumicolchicine. Previous studies showed that while 0.1 μg of colchicine does not block vision it is sufficient to inhibit axonal regeneration following optic nerve crush. We conclude that two retinas can functionally innervate one tectum without forming conspicuous ocular dominance columns, and that the ability of residents to compete with the in-growing foreign axons is very sensitive to inhibition of axoplasmic transport or other processes that are inhibited by intraocular colchicine.  相似文献   

14.
Developing blood vessels were observed directly on the dorsal surface of the optic tectum of anesthetized, transparent albino Xenopus laevis tadpoles, stages 41-54. Case histories of individual tadpoles indicated that pial capillaries developed by the classical mechanism of sprouting of endothelial cells from existing blood vessels. 'Deep sources' appeared on the tectal surface during development. These were sites of upwelling blood cells from capillaries within the nervous tissue of the tectum into vessels on the surface. Few 'deep sinks' were observed in the dorsal tectum of normal tadpoles. The earliest deep sources were probably formed by sprouts from the surface vessels through the basement membrane and into the nervous tissue; later ones may also have formed from internal sprouts back to the surface. Maps of deep sources and of surface vessels in case histories indicated that neural tissue and blood vessels in the caudal half of the tectum grew faster than in the rostral half. The medial venules on the dorsal tectum originated as ordinary-sized rostrocaudal capillaries. They enlarged in diameter as they drained the increasing flow of blood from the tectum into the choroid plexus over the 4th ventricle. Some capillaries disappeared or regressed during development. Our observations on the tectum were consistent with the classical sequence of loss of flow, narrowing, collapse of the lumen, and retraction of endothelial cells into adjacent vessels. Likely sites for regression were upstream from a deep source and at crosslinks between transverse vessels on the lateral tectum. Morphometric parameters for tectal angiogenesis were (a) surface density (mm-1) calculated as total length of surface vessels divided by the dorsally projected surface area, and (b) density of deep sources (mm-2) calculated as total number divided by surface area. From stages 41/42 to 50 average surface density approximately doubled, and average density of deep sources increased about 5-fold. Some of the factors which might be expected to alter brain angiogenesis include nervous activity, availability of O2, and metabolic rate. Removal of one eye deprived the contralateral tectum of direct retinal inputs, while the ipsilateral side was a control in the same animal. Anterograde labeling of retinal axons with diI18 from the remaining eye confirmed projections only to the opposite side. No significant differences in densities of surface vessels or of deep sources were observed between the contralateral and ipsilateral sides of the tectum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The development of the optic tectum and the establishment of retinotectal projections were investigated in the quail embryo from day E2 to hatching day (E16) with Cresyl violet-thionine, silver staining and anterograde axonal tracing methods. Both tectal cytodifferentiation and retinotectal innervation occur according to a rostroventral-caudodorsal gradient. Radial migration of postmitotic neurons starts on day E4. At E14, the tectum is fully laminated. Optic fibers reach the tectum on day E5 and cover its surface on day E10. 'Golgi-like' staining of optic fibers with HRP injected in vitro on the surface of the tectum reveals that: growing fronts are formed exclusively by axons extending over the tectal surface; fibers penetrating the outer tectal layers are always observed behind the growing fronts; the penetrating fibers are either the tip of the optic axons or collateral branches; as they penetrate the tectum, optic fibers give off branches which may extend for long distances within their terminal domains; the optic fiber terminal arbors acquire their mature morphology by day E14. The temporal sequence of retinotectal development in the quail was compared to that already established for the chick, thus providing a basis for further investigation of the development of the retinotectal system in chimeric avian embryos obtained after xenoplastic transplantation of quail tectal primordia into the chick neural tube.  相似文献   

16.
After unilateral ablation of the optic tectum in the frog (Rana pipiens), retinal ganglion cell axons enter the lateral thalamic neuropil in large numbers. This area is normally a target of the tectal efferent projection but is not innervated directly from the retina in normal frogs nor in frogs undergoing optic nerve regeneration in the presence of an intact tectum. The ability of retinal axons to form synaptic contacts in this nonstandard target, previously suspected only from light microscope studies, has been ultrastructurally verified in the present investigation. Retinal axon terminals were selectively labeled for light and electon microscope study by introducing horseradish peroxidase (HRP) into the optic nerve 73-413 days after unilateral ablation of the contralateral optic tectum. In some of the frogs, the optic nerve had also been crushed to test the ability of retinal axons regenerating over a long distance to form this connection. The HRP-labeled retinal axon terminals had the same untrastructural morphology whether located in the lateral thalamic neuropil or in the correct regions of projection, e.g., the lateral geniculate complex. They contained clear, spherical synaptic vesicles and made Gray type I synapses on the unlabeled postsynaptic dendrites. The magnitude of the projection was disproportionately greater in animals having complete or nearly complete tectal ablation than in a specimen in which the lesion was significantly incomplete. An aberrant projection was also observed in the nucleus isthmi in some of the specimens. These findings have significance for chemoaffinity theories of the specification of synaptic connections in that the ability of retinal axons to synapse in nonstandard targets in this experimental context may be considered evidence for the expression of appropriate cell-surface recognition-molecules by the abnormally targeted postsynaptic neurons. The likelihood that the expression of these postsynaptic labels is normally repressed transynaptically by molecular signals from the intact tectal input is discussed.  相似文献   

17.
We have examined the detailed order of retinal ganglion cell (RGC) axons in the optic nerve and tract of the frog, Ranapipiens. By using horseradish peroxidase (HRP) injections into small regions of theretina, the tectum, and at various points along the visual pathway, it hasbeen possible to follow labelled fibers throughout their course in the nerve and tract. Several surprising features in the order of fibers in the visual pathway were discovered in our investigation. The fascicular pattern of RGC axons in che retina is similar to that described in other vertebrates; however, immediately central to their entry into the optic nerve head, approximately half of the fibers from the nasal or temporal retina cross over to the opposite side of the nerve. Although the axons from the dorsal and ventral regions of the retina generally remain in the dorsal and ventral regions of the nerve, some fiber crossing occurs in those axons as well. The result of this seemingly complex rearrangement is that the optic nerve of Rana pipiens contains mirror symmetric representations of the retinal surface on either side of the dorsal ventral midline of the nerve. The fibers in each of these representation are arranged as semicircles representing the full circumference of the retina. This precise fiber order is preserved in the nerve until immediately periphearal to the optic chiasm, at which point age-related axon from both side of the nerve bundle together. Consequently, when a small pellet of HRP is placed in the chiasmic region of the nerve, an annualus of retinal ganglion cells and a corresponding annulus of RGC terminals in the tectum are la belled. As the age-related bundles of fibers emerge from the chiasm they split to form a medial bundle and a lateral bundle, which grow in the medial and lateral branches of the optic tract, respectively. Although the course followed by RGC axons in the visual pathv/ay is complex, we propose a model in which the organization of fibers in the nerve and tract can arise from a few rules of axon guidance. To determine whether the optic tecta, the primary retinal targets, play a role in the development and organization of the optic nerve and tract, we removed the tectal primordia in Rana embryos and examined the order in the nerve when the animals had reached larval stages. We found that the order in the nerve and tract was well preserved in tectumless frogs. Therefore, we propose that guidance factors independent of the target direct axon growth in the frog visual system.  相似文献   

18.
To visualize and compare the intratectal path of normal and regenerated retinal axons, HRP was applied to localized sites in the dorsotemporal and dorsonasal retina in normal goldfish and in goldfish at 3-12 months after optic nerve section. The anterogradely labeled axons were traced in tectal whole mounts. In normal animals the axons were confined to the appropriate ventral hemitectum. Therein they ran in very orderly routes (Stuermer and Easter: J. Neurosci. 4:1045-1051, '84) and terminated in regions retinotopic to the labeled ganglion cells in the retina. The terminal arbors of dorsotemporal axons resided in the ventrorostral tectum and those of dorsonasal axons in the ventrocaudal tectum. In regenerating animals the terminal arbors also resided at retinotopic regions, where they sometimes formed two separate clusters. In contrast to normal axons, the regenerating ones traveled in abnormal routes through the appropriate and inappropriate hemitectum. From various ectopic positions, they underwent course corrections to redirect their routes toward the retinotopic target region. In their approach toward their target sites, dorsotemporal and dorsonasal axons behaved differently in that the vast majority of dorsotemporal axons coursed over the more rostral tectum whereas dorsonasal axons progressed into the caudal tectal half. This differential behavior of regenerating dorsonasal and dorsotemporal axons was substantiated by a quantitative evaluation of axon numbers and orientations.  相似文献   

19.
The pattern in which optic axons invade the tectum and begin synaptogenesis was studied in the chick. The anterogradely transported marker, horseradish peroxidase, was injected into one eye of embryos between 5 and 16 days of development (E5 to E16). This labeled the optic axons in the brain. The first retinal axons arrived in the most superficial lamina of the tectum on E6. They entered the tectum at the rostroventral margin. During the next 6 days of development the axons grew over the tectal surface. First they filled the rostral tectum, the oldest portion of the tectum, and then they spread to the caudal pole. Shortly after the first axons entered the tectum on E6, labeled retinal axons were found penetrating from the surface into deeper tectal layers. In any given area of the tectum, optic axons were seen penetrating deeper layers shortly after arriving in that area. Electron microscopic examination showed that at least some of the labeled axons in rostral tectum formed synapses with tectal cells by E7. These results show two things which contrast with results from previous studies. First, there is no delay between the time the retinal axons enter the tectum and the time they penetrate into synaptic layers of the tectum. Second, the first retinotectal connections are formed in rostral tectum and not central tectum. Retrograde tracing showed the first optic axons that arrived in the tectum were from ganglion cells in central retina. Previous studies have shown that the ganglion cells of central retina project to the central tectum in the mature chick. This opens the possibility that the optic axons from central retina, which connect to rostral tectum in the young embryo, shift their connections to central tectum during subsequent development. As they enter the tectum the growth cones of retinal axons appear to be associated with the external limiting membrane. During the time that connections would begin to shift in the tectum a second population of axons appears at the bottom of stratum opticum, some with characteristics of growth cones. This late-appearing population may represent axons shifting their connections. These results have implications for theories on how the retinotopic pattern of retinotectal connections develops.  相似文献   

20.
After injection of tritiated gamma-aminobutyric acid (GABA) into the pigeon optic tectum and thalamus it was possible to correlate certain aspects of the autoradiographic labeling pattern with observations made from Golgi material. Three neuronal, GABA specific systems were identified both from the uptake of the amino acid and from the subsequent and bidirectional in tracellular transport of labe. The first system derives from cell bodies within sublayer IIi the axons of which could be selectively labelled throughout their course within layer I and to the areas of termination within the pretectum and ventral thalamus. The radially ascending dendrites and axon collaterals of these neurons arbourised within sublayer IIf, and could be labelled in a retrograde fashion after tectal or thalamic injections. The second system was represented by small perikarya within sublayer IIc with locally and superficially directed dendrites and with a radially and deep directed axon from which an extensive axon collateral system arose. It was found possible to label these perikarya either directly or indirectly after tangential tectal injections which preferentially labelled the axons and terminals of these neurons within the deeper regions of the tectal cortex and resulted in the retrograde axonal movement of label to theoverlying cell bodies. A third system was found within sublayer IId, was horizontally organized and from a correlation with degeneration, other autoradiographic and Golgi preparations thought to be mainly dendritic in nature. The biochemical and anatomical implications of specific GABA uptake and subsequent transport of label are discussed and a model of the tectal cortex, based on the three proposed inhibitory systems and their relation to a number of tectal afferent inputs, considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号