首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 312 毫秒
1.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

2.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

3.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

4.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

5.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

6.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

7.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

8.
目的:合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料.方法:用胆固醇对氨基匍萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质.结果:CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式.结论:通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料.  相似文献   

9.
目的合成新型的两亲性小分子,并通过新的自组装方法制备其纳米材料。方法用胆固醇对氨基葡萄糖进行疏水改性,使其具有两亲性;用核磁和红外表征目标产物N-胆固醇基琥珀酰基氨基葡萄糖(CSG)的化学结构,结合纳米共沉淀法和超声分散法制备其自组装体,并用扫描电镜、圆二色谱考察其自组装体的性质。结果CSG通过这种新的方法形成具有高轴向比的纳米纤维状自组装体,分子在自组装过程中采取手性排列的方式。结论通过设计分子的化学结构、控制自组装的方法和条件,可以得到先进的纳米材料。  相似文献   

10.
纳米材料由于其独特的光、热、电、磁学性质,已数年持续成为研究热点.而生物分子,包括多肽、核酸适配体、蛋白质以及DNA,与纳米材料间的相互作用也引起了国内外研究工作者的持续关注.而利用生物分子的高度选择性和特异性来诱导纳米材料组装,对于构建纳米结构单元的器件和实现纳米材料的周期性组装,成为获得有序的纳米结构最为有效的方法之一[1],也已经成为纳米科技领域所面临的巨大挑战[1-3].  相似文献   

11.
We report a new method to create a biofunctional surface in which the accessibility of a ligand is used as a means to influence the cell behavior. Supported bioactive bilayer membranes were created by Langmuir-Blodgett (LB) deposition of either a pure poly(ethylene glycol) (PEG) lipid, having PEG head groups of various lengths, or 50 mol % binary mixtures of a PEG lipid and a novel collagen-like peptide amphiphile on a hydrophobic surface. The peptide amphiphile contains a peptide synthetically lipidated by covalent linkage to hydrophobic dialkyl tails. The amphiphile head group lengths were determined using neutron reflectivity. Cell adhesion and spreading assays showed that the cell response to the membranes depends on the length difference between head groups of the membrane components. Cells adhere and spread on mixtures of the peptide amphiphile with the PEG lipids having PEG chains of 120 and 750 molecular weight (MW). In contrast, cells adhered but did not spread on the mixture containing the 2000 MW PEG. Cells did not adhere to any of the pure PEG lipid membranes or to the mixture containing the 5000 MW PEG. Selective masking of a ligand on a surface is one method of controlling the surface bioactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号