首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 304 毫秒
1.
The constitutive activity of a number of growth and cell survival pathways are thought to contribute to the inherent resistance of melanoma to chemotherapy and radiotherapy. Many of these pathways are driven through the small GTPase Ras. Novel drugs such as the farnesyl transferase inhibitors (FTIs) and farnesyl thiosalicylic acid (FTS) interfere with the signaling of oncogenic Ras. The aim of our study was to assess the anti-tumour activity of the FTI SCH66336 in melanoma and to assess whether SCH66336 and FTS could modulate chemoresistance in melanoma cells. SCH66336 had marked anti-proliferative activity in both human and mouse melanoma cell lines, but not in non-transformed NIH 3T3 cells. The anti-proliferative activity of SCH66336 was due to G1-phase cell cycle arrest and retinoblastoma protein inactivation, followed by apoptosis. Cisplatin, when administered alone, induced little apoptosis. In combination with cisplatin, both FTS and SCH66336 markedly enhanced the level of cisplatin-induced apoptosis, an effect that was associated with enhanced G2/M cell cycle arrest. Pharmacological inhibitors of either ERK or PI-3 kinase/Akt did not mimic the chemosensitising activity of either SCH66336 or FTS. In summary, our study demonstrates that SCH66336 has good in vitro anti-tumour activity in both human and mouse melanoma cell lines, and suggests that Ras antagonists could be useful in overcoming chemoresistance to cisplatin in melanoma.  相似文献   

2.
While the effects of bisphosphonates on bone-resorbing osteoclasts have been well documented, the effects of bisphosphonates on other cell types are not as well studied. Recently, we reported that bisphosphonates have direct effects on bone-forming human fetal osteoblast cells (hFOB) [1]. In this report, the role of the mevalonate pathway in the actions of bisphosphonates on hFOB, and MDA-MB-231 human breast cancer cells was examined. These studies included a novel bisphosphonate analog, the anhydride formed between arabinocytidine 5 phosphate and etidronate (Ara-CBP). Ara-CBP was the most potent inhibitor of hFOB and MDA-MB-231 cell proliferation, and stimulator of hFOB cell mineralization compared to etidronate, the anhydride formed between AMP and etidronate (ABP), pamidronate, and zoledronate. Inhibition of hFOB cell proliferation by Ara-CBP and zoledronate was partially reversed by mevalonate pathway intermediates, and stimulation of hFOB cell mineralization was completely reversed by mevalonate pathway intermediates. These results suggest that zoledronate and Ara-CBP act, at least in part, via inhibition of the mevalonate pathway in hFOB cells. In contrast, none of the mevalonate pathway intermediates reversed the inhibition of MDA-MB-231 cell proliferation by the bisphosphonates, or the effects of pamidronate on hFOB cells. As a positive control, the effects of mevastatin on hFOB and MDA-MB-231 cells were completely reversed by mevalonate. In summary, these data suggest that zoledronate and Ara-CBP induce human osteoblast differentiation via inhibition of the mevalonate pathway. In contrast, the inhibition of MDA-MB-231 cell proliferation by the bisphosphonates appears to be through mechanisms other than inhibition of the mevalonate pathway.  相似文献   

3.
P-glycoprotein (Pgp)-mediated drug efflux is a major factor contributing to the variance of absorption and distribution of many drugs, particularly cancer chemotherapeutics. Multidrug resistance (MDR) is caused largely by the efflux of therapeutics out of the tumor cell by Pgp, resulting in reduced efficacy of chemotherapy. SCH66336, a farnesyl transferase inhibitor in development for cancer therapy, was examined in the present study for its ability to inhibit Pgp. In a test system consisting of a NIH-G185 cell line presenting an overexpressed amount of the human transporter Pgp, known Pgp inhibitors, such as cyclosporin A, paclitaxel, verapamil, tamoxifen, and vinblastine, were demonstrated to inhibit the Pgp-mediated efflux of daunorubicin. SCH66336 significantly inhibited daunorubicin transport with an IC50 of about 3 microM and similarly affected the transport of rhodamine 123 with a potency similar to cyclosporin A. Additionally, by an ATP-hydrolysis assay, SCH66336 was shown to decrease Pgp-mediated ATP hydrolysis by >70% with a Km of 3 microM. This observation indicates that SCH66336 directly interacts with the substrate binding site of Pgp, a quality unique to SCH66336 and its analogues, although not inherent to farnesyl transferase inhibitors in general. Moreover, low concentrations of SCH66336 exhibit synergy with the Pgp substrate/inhibitors paclitaxel, tamoxifen, and vinblastine respectively by significantly potentiating their inhibition of Pgp. Treatment with SCH66336 would be predicted to be synergistic with coadministered cancer therapeutics that are substrates of Pgp. A further benefit of coadministration of SCH66336 could be reduced chemotherapy dosage, hence, lower exposure to normal cells and, therefore, less undesired toxicity.  相似文献   

4.
As farnesylation of the Ras protein by farnesyl transferase is a critical step for the Ras functional activity, the farnesyl transferase inhibitor could affect H-Ras functions and the inhibitors such as arteminolide, SCH66336 and LB42908 completely inhibited Ras-farnesylation. However, they did not induce apoptosis of H-Ras-transformed cells with concentration for blocking H-Ras farnesylation. To determine the antitumor effects of the inhibitors, it was analyzed through the expression profile of genes, regulated by activated H-Ras or FTIs by using cDNA microarray. On the basis of the results, the relationship between H-Ras and MMPs expression was confirmed by RT-PCR, Western bolt, zymographic analysis and angiogenesis assay. Our results suggested that activation of MMP-13 as well as MMP-9 induced by H-Ras is involved in angiogenesis and with farnesyl transferase inhibitors, in part, exerts their anticancer effects. We confirmed that MMP-13 is a critical H-Ras target gene through chemical genomic approaches with farnesyl transferase inhibitors.  相似文献   

5.
Cepharanthine (CEP), a biscoclaurine alkaloid extracted from Stephania Cepharantha Hayata, has been used in Japan for treating patients with radiation-induced leucopenia or thrombocytopenia. We treated a patient with multiple myeloma (MM), who was not responding to preceding chemotherapy, who coincidently received therapy with CEP due to thrombocytopenia. Since the case showed a marked reduction of tumor load, direct anti-tumor effects of CEP to myeloma cells were investigated in vitro. Anti-tumor effects were observed in all myeloma cell lines tested, including a line resistant to melphalan. Exposure to CEP of a myeloma cell line induced the production of reactive oxygen species, activated the caspase-3 pathway and eventually induced apoptosis. Pre-exposure of cells to a pan-caspase inhibitor, Z-VAD-FMK, or a free radical scavenger, Tiron, effectively blocked CEP-induced apoptosis. Interestingly, CEP also inhibited cell growth of myeloma cells by inducing CDK inhibitors. These data show, for the first time, that CEP has anti-myeloma effects by the activation of apoptotic pathways and blocking cell cycle progression via CDK inhibitors. Although analysis of these two pathways should be clarified further, the use of CEP may be considered as a potential therapeutic agent for a subset of MM.  相似文献   

6.
7.
Metastasis is a critical event in the progression of head and neck squamous cell carcinoma (HNSCC) and closely correlates with clinical outcome. We previously showed that the farnesyl transferase inhibitor SCH66336 has antitumor activities in HNSCC by inducing the secretion of insulin-like growth factor binding protein 3 (IGFBP-3), which in turn inhibits tumor growth and angiogenesis. In our study, we found that SCH66336 at a sublethal dose for HNSCC inhibited the migration and invasion of HNSCC cells. The inhibitory effect of SCH66336 was associated with the blockade of the IGF-1 receptor (IGF-1R) pathway via suppressing IGF-1R itself and Akt expression. Consistent with previous work, induction of IGFBP-3 by SCH66336 also contributed in part to the anti-invasive effect. SCH66336 treatment also reduced the expression and activity of the urokinase-type plasminogen activator (uPA) and matrix metalloproteinase 2 (MMP-2), both important regulators of tumor metastasis. The effect of SCH66336 on uPA activity was inhibited partly by knockdown of IGFBP-3 using small interfering RNA. The inhibitory effect of SCH66336 on migration or invasion was attenuated partly or completely by knockdown of IGFBP-3, Akt or IGF-1R expression, respectively. Our results demonstrate that the IGF-1R pathway plays a major role in the proliferation, migration and invasion of HNSCC cells, suggesting that therapeutic obstruction of the IGF-1R pathway would be a useful approach to treating patients with HNSCC.  相似文献   

8.
9.
Although preclinical studies have suggested that farnesyltransferase inhibitors (FTI) have promising antitumor activity, clinical trials have shown that FTI activity in patients is actually limited. The mechanism that induces resistance to FTI treatment is still not fully understood. The FTI SCH66336 has been shown to induce apoptotic and antiangiogenic activities in a subset of head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. We therefore investigated the mechanisms mediating resistance to the therapeutic activities of SCH66336 in HNSCC and NSCLC. Our various analyses showed that insulin-like growth factor-I receptor (IGF-IR) activation interferes with the antitumor activity of SCH66336 in HNSCC and NSCLC cells. Treatment with SCH66336 activated the IGF-IR/phosphatidylinositol 3-kinase/Akt pathway, leading to increased mammalian target of rapamycin (mTOR)-mediated protein synthesis of survivin in a subset of HNSCC and NSCLC cell lines that were insensitive to the apoptotic activities of the drug. Inhibition of IGF-IR, Akt, or mTOR or the knockdown of survivin expression abolished resistance to SCH66336 and induced apoptosis in the cells. Overexpression of survivin by the use of adenoviral vector protected SCH66336-sensitive HNSCC cells from the apoptotic activities of the drug. Our results suggest that expression of phosphorylated IGF-IR, phosphorylated Akt, phosphorylated mTOR, and survivin serves as biological markers of SCH66336 responsiveness in HNSCC and NSCLC cells and that SCH66336 induces survivin expression through an IGF-IR/Akt/mTOR-dependent pathway. Thus, combining inhibitors of IGF-IR, phosphatidylinositol 3-kinase/Akt, mTOR, or survivin with SCH66336 may be an effective anticancer therapeutic strategy for patients with HNSCC or NSCLC.  相似文献   

10.
PURPOSE: Bisphosphonates (such as risedronate and zoledronate) are widely used inhibitors of bone resorption. Despite their in vitro antiproliferative effects in various cancer cells, bisphosphonates have not exhibited significant antitumor efficacy in animal models of visceral cancer, which may be due to their poor bioavailability. The diagnostic use of radioactive bisphosphonates has revealed the accumulation of bisphosphonates in mesothelioma, which prompted us to test the antitumor efficacy of bisphosphonates in this disease. EXPERIMENTAL DESIGN AND RESULTS: Treatment with either risedronate or zoledronate (2 x 10(-4) to 2 x 10(-6) mol/L) inhibited the growth of AB12 and AC29 mouse mesothelioma cells and induced the accumulation of unprenylated Rap1A in these cells. Both these in vitro effects were reversed by geranygeraniol, an end product of the mevalonate pathway that these bisphosphonates inhibit. Both bisphosphonates also induced the phosphorylation of the p38 mitogen-activated protein kinase in AB12 and AC29 cells. The inhibition of p38 augmented bisphosphonate-induced growth inhibition in these cells. Bisphosphonate-induced p38 phosphorylation was not reversible by geranylgeraniol. Risedronate (15 mg/kg) and zoledronate (0.5 mg/kg) inhibited the growth of s.c. tumors and increased the median survival of mice with i.p. mesothelioma tumors in vivo. Discussion: In conclusion, risedronate and zoledronate inhibit the mevalonate pathway and induce p38 activation in mesothelioma cells in vitro. The effects on the mevalonate pathway dominate because the net result is growth inhibition. Both bisphosphonates also inhibit mesothelioma tumor growth in vivo and prolong the survival of mesothelioma-bearing mice. These results support further study of bisphosphonates in the management of mesothelioma.  相似文献   

11.
The enzyme protein farnesyltransferase, which catalyzes the first step in the posttranslational modification of ras and a number of other polypeptides, has emerged as an important target for the development of anticancer agents. SCH66336 is one of the first farnesyltransferase inhibitors to undergo clinical testing. In the present study, we examined the effect of combining SCH66336 with several classes of antineoplastic drugs in various human tumor cell lines. Flow cytometry indicated that SCH66336 had no effect on the cell cycle distribution of treated cells. Nonetheless, colony-forming assays revealed that the antiproliferative effects of SCH66336 and 5-fluorouracil were less than additive. In contrast, the effects of SCH66336 and melphalan were additive. Moreover, the combination of SCH66336 + cisplatin produced antiproliferative effects that were additive or synergistic over a broad range of clinically achievable concentrations in A549 non-small cell lung cancer cells and T98G human glioblastoma cells, but less than additive in MCF-7 breast, HCT116 colon, or BxPC-3 pancreatic adenocarcinoma cells. Examination of the effect of drug sequencing in A549 cells revealed synergism when cells were exposed to SCH66336 and then cisplatin and antagonism when drugs were administered in the opposite order. The additive and synergistic effects resulted in enhanced apoptosis with the SCH66336 + cisplatin combination. Additional studies failed to show any effect of SCH66336 on the formation or removal of platinum-DNA adducts, raising the possibility that SCH66336 is affecting survival of cisplatin-treated cells downstream of the DNA lesions. These observations suggest that SCH66336 exhibits additive or synergistic effects when combined with cisplatin in a sequence- and cell line-dependent fashion. Additional preclinical and clinical study of this combination appears warranted.  相似文献   

12.
K-ras alterations have been reported in 20-30% of non-small cell lung cancer (NSCLC) and represent a suitable target for the development of novel anticancer agents, such as Farnesyl transferase inhibitors (FTi), a new class of agents inhibiting the post-translational modification of the K-ras proteins. The effectiveness of FTi SCH66336 in inhibiting cell proliferation and deranging cell cycle of NSCLC cell lines as well as its interaction with chemotherapy or radiation have been evaluated. The activity of FTi SCH66336, alone or in combination with paclitaxel, gemcitabine, and radiotherapy, was examined in 3 cell lines, A-549, LX-1 and CaLu-6, by colorimetric MTT assay. Cell cycle perturbation and apoptosis were also assessed by cytofluorimetric analysis. The activity of SCH 66336 was found to be concentration- and time-dependent. The effect of SCH 66336, as demonstrated by cell growth recovery experiments, resulted cytostatic and it was superimposable in both cell lines bearing 2 different K-ras mutations (A-549 and LX-1) and in K-ras wild-type Ca-Lu-6. In all cell lines the combination of SCH 66336 and paclitaxel resulted in a synergism of action when SCH 66336 followed paclitaxel treatment, whereas, antagonism was found when SCH 66336 preceded paclitaxel treatment. No significant synergism or addition with SCH 66336 followed by radiation treatment was noted. Different cell cycle phase blocks at various drug concentrations were observed. In conclusion, SCH 66336 displays concentration-dependent cytostatic antitumour activity and schedule-dependent synergy with 2 commonly used anticancer agents in NSCLC cell lines. Further clinical testing of these combinations is warranted.  相似文献   

13.
Purpose: SCH66336 is an orally active, farnesyl protein transferase inhibitor. SCH66336 inhibits ras farnesylation in tumor cells and suppresses tumor growth in human xenograft and transgenic mouse cancer models in vivo. The taxanes, paclitaxel (Taxol) and docetaxel (Taxotere) block cell mitosis by enhancing polymerization of tubulin monomers into stabilized microtubule bundles, resulting in apoptosis. We hypothesized that anticancer combination therapy with SCH66336 and taxanes would be more efficacious than single drug therapy. Methods: We tested the efficacy of SCH66336 and taxanes when used in combination against tumor cell proliferation in vitro, against NCI-H460 human lung tumor xenografts in nude mice, and against mammary tumors in wap-ras transgenic mice. Results: SCH66336 synergized with paclitaxel in 10 out of 11 tumor cells lines originating from breast, colon, lung, ovary, prostate, and pancreas. SCH66336 also synergized with docetaxel in four out of five cell lines tested. In the NCI-H460 lung cancer xenograft model, oral SCH66336 (20 mg/kg twice daily for 14 days) and intraperitoneal paclitaxel (5 mg/kg once daily for 4 days) caused a tumor growth inhibition of 56% by day 7 and 65% by day 14 compared to paclitaxel alone. Male transgenic mice of the wap-ras/F substrain [FVB/N-TgN(WapHRAS)69LlnYSJL] spontaneously develop mammary tumors at 6–9 weeks of age which have been previously shown to be resistant to paclitaxel. Paclitaxel resistance was confirmed in the present study, while SCH66336 inhibited growth of these tumors. Most importantly, SCH66336 was able to sensitize wap-ras/F mammary tumors to paclitaxel chemotherapy. Conclusion: Clinical investigation of combination therapy using SCH66336 and taxanes in cancer patients is warranted. Further, SCH66336 may be useful for sensitizing paclitaxel-resistant tumors to taxane treatment. Received: 30 November 1999 / Accepted: 10 May 2000  相似文献   

14.
In this study, the feasibility and activity of combined chemotherapy of the farnesyl transferase inhibitor SCH66336 and gemcitabine was evaluated. This therapy was used as second-line treatment in patients with advanced urothelial tract cancer and the influence of SCH66336 exposure on the pharmacokinetics of gemcitabine was also determined. Patients who had received one previous chemotherapy regime for advanced urothelial cancer were treated with a combination of SCH66336 (150 mg in the morning and 100 mg in the evening) and Gemcitabine (1000 mg/m2 on day 1, 8 and 15 per 28-day cycle). Dosages of gemcitabine and its metabolite dFdU were performed on day one of cycle 1 before exposure to SCH66336 and day one of cycle 2. A total of 152 cycles were administered in 33 patients (median 3, range: 1-15). No patients had severe hematological toxicity, defined as Grade 4 thrombocytopenia or febrile neutropenia. Nine partial responses and one complete response were achieved in 31 assessable patients and corresponded to an overall response rate of 32.3% [95% CI:17%-51%]. There was no influence of exposure to SCH66336 on the level of gemcitabine or dFdU in 11 assessable patients. In conclusion, a combination of SCH66336 and gemcitabine is feasible in terms of toxicity and active as second-line treatment in patients with advanced urothelial tract cancer. SCH66336 had no effect on the pharmacokinetics of gemcitabine. Randomised trials should be undertaken to clarify the role of SCH66336 in combination with gemcitabine in cancer treatment.  相似文献   

15.
SCH66336 is a p.o.-active, farnesyl protein transferase inhibitor. SCH66336 inhibits farnesylation of RAS and other proteins in tumor cells and suppresses tumor growth in human xenograft and transgenic mouse cancer models in vivo. SCH58500 is a replication-deficient, recombinant adenovirus, which expresses the human p53 tumor suppressor. In preclinical models, SCH58500 has therapeutic efficacy against a wide range of human tumor types containing nonfunctional p53 and enhanced activity in combination with many chemotherapeutic drugs. Here we report that combination therapy with SCH66336 and SCH58500 has synergistic or additive antiproliferative effects on a panel of tumor cells lines in vitro. The efficacy of the three-drug combination of SCH66336, SCH58500, and paclitaxel was also examined in vitro. Each two-drug interaction displayed such marked synergy, the addition of a third drug to the statistical model could only yield additivity. Greater combined efficacy for SCH66336 and SCH58500 was also observed in vivo in the DU-145 human prostate and wap-ras/F transgenic mouse cancer models.  相似文献   

16.
The farnesyl transferase inhibitor (FTI) SCH66336 has been shown to have antitumor activities in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. However, its mechanism of action has not been well defined. Here, we report that the insulin-like growth factor (IGF) binding protein (IGFBP)-3 mediates antitumor activities of SCH66336 in HNSCC by inhibiting angiogenesis. SCH66336 significantly suppressed HNSCC tumor growth and angiogenesis via mechanisms that are independent of H-Ras and RhoB. By inducing IGFBP-3 secretion from HNSCC cells, this compound suppresses angiogenic activities of endothelial cells, including vessel formation in chorioallantoic membranes of chick, endothelial cell sprouting from chick aorta, and capillary tube formation of human umbilical vascular endothelial cells (HUVEC). Knockdown of IGFBP-3 expression in HNSCC cells by RNA interference or depletion of IGFBP-3 in HUVECs by neutralizing antibody effectively blocked the effects of IGFBP-3 secreted from SCH66336-treated HNSCC cells on HUVECs. These findings suggest that IGFBP-3 could be a primary target for antitumor activities of FTIs and that IGFBP-3 is an effective therapeutic approach against angiogenesis in HNSCC.  相似文献   

17.
Previous data suggest that lipophilic statins such as fluvastatin and N-bisphosphonates such as zoledronic acid, both inhibitors of the mevalonate metabolic pathway, have anti-cancer effects in vitro and in patients. We have examined the effect of fluvastatin alone and in combination with zoledronic acid in the ATP-based tumour chemosensitivity assay (ATP-TCA) for effects on breast and ovarian cancer tumour-derived cells. Both zoledronic acid and fluvastatin showed activity in the ATP-TCA against breast and ovarian cancer, though fluvastatin alone was less active, particularly against breast cancer. The combination of zoledronic acid and fluvastatin was more active than either single agent in the ATP-TCA with some synergy against breast and ovarian cancer tumour-derived cells. Sequential drug experiments showed that pre-treatment of ovarian tumour cells with fluvastatin resulted in decreased sensitivity to zoledronic acid. Addition of mevalonate pathway components with zoledronic acid with or without fluvastatin showed little effect, while mevalonate did reduced inhibition due to fluvastatin. These data suggest that the combination of zoledronic acid and fluvastatin may have activity against breast and ovarian cancer based on direct anti-cancer cell effects. A clinical trial to test this is in preparation.  相似文献   

18.
Lovastatin is an inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major regulatory enzyme of the mevalonate pathway. We have previously reported that lovastatin induces a significant apoptotic response in human acute myeloid leukemia (AML) cells. To identify the critical biochemical mechanism(s) essential for lovastatin-induced apoptosis, add-back experiments were conducted to determine which downstream product(s) of the mevalonate pathway could suppress this apoptotic response. Apoptosis induced by lovastatin was abrogated by mevalonate (MVA) and geranylgeranyl pyrophosphate (GGPP), and was partially inhibited by farnesyl pyrophosphate (FPP). Other products of the mevalonate pathway including cholesterol, squalene, lanosterol, desmosterol, dolichol, dolichol phosphate, ubiquinone, and isopentenyladenine did not affect lovastatin-induced apoptosis in AML cells. Our results suggest that inhibiting geranylgeranylation of target proteins is the predominant mechanism of lovastatin-induced apoptosis in AML cells. In support of this hypothesis, the geranylgeranyl transferase inhibitor (GGTI-298) mimicked the effect of lovastatin, whereas the farnesyl transferase inhibitor (FTI-277) was much less effective at triggering apoptosis in AML cells. Inhibition of geranylgeranylation was monitored and associated with the apoptotic response induced by lovastatin and GGTI-298 in the AML cells. We conclude that blockage of the mevalonate pathway, particularly inhibition of protein geranylgeranylation holds a critical role in the mechanism of lovastatin-induced apoptosis in AML cells.  相似文献   

19.
Bisphosphonates--mechanisms of action in multiple myeloma   总被引:4,自引:0,他引:4  
Bisphosphonates are a class of anti-resorptive drugs, which are effective in the treatment of osteoclast-mediated bone disease, including the osteolytic bone disease, which is a major clinical feature of patients with multiple myeloma. Recently, increases in survival following treatment with pamidronate have been observed in some patients with multiple myeloma, raising the possibility that bisphosphonates may also have an anti-tumour effect. We have demonstrated that bisphosphonates can have an anti-tumour effect in human myeloma cell in vitro, and that these anti-tumour effects induced by potent nitrogen-containing bisphosphonates are a result of inhibition of enzymes of the mevalonate pathway. However, we and others have been unable to demonstrate an anti-tumour effect of the potent bisphosphonate ibandronate in vivo, using murine models of multiple myeloma. It is therefore likely that only by studying patients receiving bisphosphonates will we be able to determine whether these compounds have a clinically important anti-tumour effect.  相似文献   

20.
Wu X  Shi J  Wu Y  Tao Y  Hou J  Meng X  Hu X  Han Y  Jiang W  Tang S  Zangari M  Tricot G  Zhan F 《Cancer biology & therapy》2010,10(11):1201-1214
Arsenic trioxide (ATO) is a well-known inhibitor of cell proliferation. Preclinical and clinical studies showed that ATO has anti-myeloma effects. However, the underlying mechanism remains elusive. In this study, the molecular mechanisms of ATO-induced myeloma apoptosis were explored on four myeloma cell lines of wild type or mutant p53 status and also on six primary myeloma cells. ATO induced potent inhibition of myeloma cell growth and myeloma cell apoptosis compared with controls. Further investigation showed that ATO down-regulated c-Myc and phosphorylated (p)-Rb while up-regulating p53, p21Cip1, and p27Kip1 proteins, resulting in G0/G1 or G2/M cell cycle arrest. ATO treatment increased mRNA levels of interferon regulatory factor-1 and TRAIL, as well as protein levels of caspase 8 and cleaved caspase 3, indicating the involvement of the extrinsic apoptotic pathway in the mutated p53 myeloma cells. ATO also activated caspases 3 and 9, indicating involvement of the intrinsic apoptotic pathway in the wild type p53 myeloma cells. More importantly, these molecular changes induced by ATO-treated myeloma cells are very similar to the baseline expression pattern of hyperdiploid myeloma, which has a relative good prognosis with high expression of TRAIL and interferon related genes. Together, our data suggest that ATO induces apoptosis in MM through either extrinsic or intrinsic signaling pathway, depending on the p53 genetic background. These observations may be employed as prognostic tools and lead to novel therapies in primary myelomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号