首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rocha L  Maidment NT 《Hippocampus》2003,13(4):472-480
It has been suggested that kainic acid enhances opioid peptide release. However, no direct evidence exists to support this hypothesis. The main aim of the present study was to determine whether such release occurs in the hippocampus of the rat after status epilepticus induced by kainic acid. Microdialysis experiments revealed significant opioid peptide release in the hippocampus 90-150 min (100%) and 270-300 min (50%) after kainic acid-induced status epilepticus. The peptides released were identified by high-performance liquid chromatography linked to radioimmunoassay as Met-enkephalin, Leu-enkephalin, Dynorphin-A (1-6), and Dynorphin-A (1-8). Reduced extracellular opioid peptide immunoreactivity was detected 28 days after status epilepticus (38% compared with control situation). The present results indicate an important activation of opioid peptide systems by kainic acid-induced status epilepticus. In addition, the reduced hippocampal extracellular opioid peptide levels long-term after kainic acid administration could have important implications for the progressive nature of epileptogenesis.  相似文献   

2.
Chuang YC  Chang AY  Lin JW  Hsu SP  Chan SH 《Epilepsia》2004,45(10):1202-1209
PURPOSE: Prolonged and continuous epileptic seizure (status epilepticus) results in cellular changes that lead to neuronal damage. We investigated whether these cellular changes entail mitochondrial dysfunction and ultrastructural damage in the hippocampus, by using a kainic acid (KA)-induced experimental status epilepticus model. METHODS: In Sprague-Dawley rats maintained under chloral hydrate anesthesia, KA (0.5 nmol) was microinjected unilaterally into the CA3 subfield of the hippocampus to induce seizure-like hippocampal EEG activity. The activity of key mitochondrial respiratory chain enzymes in the dentate gyrus (DG), or CA1 or CA3 subfield of the hippocampus was measured 30 or 180 min after application of KA. Ultrastructure of mitochondria in those three hippocampal subfields during KA-induced status epilepticus also was examined with electron microscopy. RESULTS: Microinjection of KA into the CA3 subfield of the hippocampus elicited progressive build-up of seizure-like hippocampal EEG activity. Enzyme assay revealed significant depression of the activity of nicotinamide adenine dinucleotide cytochrome c reductase (marker for Complexes I+III) in the DG, or CA1 or CA3 subfields 180 min after KA-elicited temporal lobe status epilepticus. Conversely, the activities of succinate cytochrome c reductase (marker for Complexes II+III) and cytochrome c oxidase (marker for Complex IV) remained unaltered. Discernible mitochondrial ultrastructural damage, varying from swelling to disruption of membrane integrity, also was observed in the hippocampus 180 min after hippocampal application of KA. CONCLUSIONS: Our results demonstrated that dysfunction of Complex I respiratory chain enzyme and mitochondrial ultrastructural damage in the hippocampus are associated with prolonged seizure during experimental temporal lobe status epilepticus.  相似文献   

3.
4.
The specific binding of the tritiated radioligands of dexetimide, serotonin, clonidine, prazosin, WB-4101 and dihydroalprenolol to hippocampal membranes was determined two weeks after producing a virtual complete degeneration of perikarya by the local application of 0.5 μg of kainic acid in the dorsal and ventral parts of the hippocampus. Afferent terminals were unaffected by the neurotoxin since the contents of noradrenaline, serotonin and acetylcholine, as well as the activity of choline acetyltransferase, were not modified.Scatchard analysis is revealed that the kainic acid lesion produced a 60% decrease in the density of both cholinergic muscarinic binding sites and serotonin binding sites. A significant portion ofα1-andα2-adrenoceptor binding sites are also associated with intrinsic neurons of the hippocampus, as shown by the approximately 30% reduction in the densities of tritiated WB-4101, prazosin and clonidine produced by the action of kainic acid. By contrast, the affinity and density of β-adrenoceptor binding sites were unaffected by the lesion. It is suggested that the recognition sites of the different receptor populations surviving the lesion most likely reside on homologous and/or heterologous nerve terminals.  相似文献   

5.
Evidence in support of melatonin's role as an immunomodulator is incomplete and, in some cases, contradictory. The present studies determined whether melatonin modulates the activity of stimulated macrophages. In vitro lipopolysaccharide (LPS, 10-1000 ng/ml) treatment of alveolar, splenic and peritoneal macrophages isolated from mice and/or rats resulted in a dose-dependent increase in interleukin-1beta (IL-1beta) and tumor necrosis factor (TNF-alpha) secretion. Treatment with melatonin (10(-10)-10(-6) M) prior to the addition of LPS, had no effect on IL-1beta or TNF-alpha release. Additionally, melatonin had no effect on stimulated BV2 microglial cell line cytokine secretion. To determine whether melatonin had an indirect effect on macrophage cytokine release via T cells, melatonin was added to unfractionated mouse spleen cells. Again, melatonin showed no priming effect on LPS-stimulated spleen cells. These results suggest that melatonin has no direct or indirect effect on mouse and rat macrophages. In vivo studies, where melatonin was continuously available in the drinking water, showed that melatonin did not have a priming effect on LPS-stimulated mouse peritoneal macrophages. These findings suggest that melatonin is not an important modulator of macrophage and microglia function.  相似文献   

6.
Inflammatory responses in the brain are involved in the etiopathogenesis and sequelae of seizures. Ligation of microglial CD40 plays a role in the development of inflammatory responses in the central nervous system (CNS). Our study showed that there was an increased CD40 expression on activated microglia in the brain injury after lithium pilocarpine-induced status epilepticus (SE) in rats. Since peroxisome proliferator-activated receptor gamma (PPARgamma) acts as a regulator of CNS inflammation and a powerful pharmacological target for counteracting CNS diseases, we investigated the role of the PPARgamma agonist, rosiglitazone, in the modulation of CD40 expression and in the pathological processes of inflammation after SE. We found that rosiglitazone inhibited the expression of CD40, tumor necrosis factor (TNF-alpha), and microglial activation in different regions of hippocampus. The results were indicated by immunohistochemistry, Western blot, and ELISA, respectively. Rosiglitazone also prevented neuronal loss in the CA1 area after SE observed by Nissl-staining. These protective effects were significantly reversed by the co-treatment with T0070907, a selective antagonist of the PPARgamma, which clearly demonstrated a PPARgamma-dependent mechanism. Our data provide evidence that rosiglitazone considerably attenuates inflammatory responses after SE by suppressing CD40 expression and microglial activation. Our data also support the idea that rosiglitazone might be a potential neuroprotective agent in epilepsy.  相似文献   

7.
TNF-α has been reported to be relevant in stroke-induced neuronal death. However the precise function of TNF-α in brain ischemia remains controversial since there are data supporting either a detrimental or a protective effect. Here we show that TNF-α is released after oxygen–glucose deprivation (OGD) of cortical cultures and is a major contributor to the apoptotic death observed without affecting the OGD-mediated necrotic cell death. In this paradigm, apoptosis depends on TNF-α-induced activation of caspase-8 and -3 without affecting the activation of caspase-9. By using knock-out mice for TNF-α receptor 1, we show that the activation of both caspase-3 and -8 by TNF-α is mediated by TNF-α receptor 1. The pro-apoptotic role of TNF-α in OGD is restricted to neurons and microglia, since astrocytes do not express either TNF-α or TNF-α receptor 1. Altogether, these results show that apoptosis of cortical neurons after OGD is mediated by TNF-α/TNF-α receptor 1.  相似文献   

8.
Vasopressinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei express oestrogen receptor (ER)β and receive afferent projections from osmosensitive neurones that express ERα. However, which subtype of these receptors mediates the effects of oestradiol on vasopressin (AVP) secretion induced by hydromineral challenge has not yet been demonstrated in vivo. Moreover, AVP secretion induced by hyperosmolality is known to involve activation of TRPV1 (transient receptor potential vanilloid, member 1) in magnocellular neurones, although whether oestradiol modulates expression of this receptor is unknown. Thus, the present study aimed to clarify the mechanisms involved in the modulation exerted by oestradiol on AVP secretion, specifically investigating the involvement of ERβ, ERα and TRPV1 receptors in response to water deprivation (WD). We observed that treatment with an ERβ agonist potentiated AVP secretion and vasopressinergic neuronal activation induced by WD. This increase in AVP secretion induced by WD was reversed by an ERβ antagonist. By contrast to ERβ, the ERα agonist did not alter plasma AVP concentrations or activation of AVP neurones in the SON and PVN. Additionally, Fos expression in the subfornical organ was not altered by the ERα agonist. TRPV1 mRNA expression was increased by WD in the SON, although this response was not altered by any treatment. The results of the present study suggest that ERβ mediates the effects of oestradiol on AVP secretion in response to WD, indicating that the effects of oestradiol occur directly in AVP neurones without affecting TRPV1.  相似文献   

9.
PTHrP, a peptide induced in parenchymal organs during endotoxemia and in the synovium in rheumatoid arthritis, has recently been shown to be expressed in immature or transformed human astrocytes, but not in normal cells. This finding has led us to postulate that PTHrP might also be induced in reactive astrocytes in inflamed brain and, thus, act as a mediator of CNS inflammation. To test this hypothesis, PTHrP expression was examined following cortical stab wound injury in rats, a classical model of reactive gliosis. To determine whether PTHrP was induced in glia by TNF-alpha, a known mediator of inflammation in brain and of PTHrP induction in peripheral tissues, and to determine whether PTHrP, in turn, mediated inflammatory changes in glia, in vitro studies with rat astrocytes and glial-enriched mixed brain cells were also undertaken. Consistent with previous reports of PTHrP expression in normal brain, neurons were the primary site of immunoreactive PTHrP expression in the injured cortex 1 day after stab wound injury. Over the subsequent 3 days, specific immunostaining for PTHrP and for GFAP, a marker of reactive astrocytes, appeared in reactive astrocytes at the wound edge and in perivascular astrocytes, reaching a maximum level of expression at the last time point examined (day 4). TNF-alpha induced PTHrP expression in astrocyte and glial-enriched brain cells in vitro, suggesting that this pro-inflammatory peptide was a possible mediator of PTHrP expression in CNS inflammation. PTHrP(1-34) acted in an additive fashion with TNF-alpha to induced astrocyte expression of IL-6, a cytokine with demonstrated neuroprotective effects. Astrocyte proliferation was inhibited by PTHrP(1-34) and PTHrP(1-141), acting via a PTH/PTHrP receptor cAMP signaling pathway. These studies suggest that PTHrP, analogous to its regulatory functions in other non-CNS models of inflammation, may be an important mediator of the inflammatory response in brain.  相似文献   

10.
11.
We evaluated the proinflammatory cytokines, TNF-α and IL-1β, mRNA expression in the rat sciatic and tibial nerves following ischemia–reperfusion (IR) injury, using competitive RT–PCR, to explore the role of cytokines in IR injury. The expressions of both TNF-α and IL-1β mRNA were related to severity of ischemia and occurred with reperfusion rather than ischemia alone. TNF-α gene expression peaked at 24 h of reperfusion, while that of IL-1β peaked at 12 h. These data support the notion that the proinflammatory cytokines TNF-α and IL-1β are involved in the inflammatory response of IR injury to the peripheral nervous system and may be involved in the pathophysiology of ischemic fiber degeneration.  相似文献   

12.
The exact role of TNF-alpha in excitotoxic neurodegeneration of the brain is unclear. To address this issue, the kainic acid (KA)-induced hippocampal injury model, a well-characterized model of human neurodegenerative diseases, was used in TNF-alpha receptor 1 (TNFR1)-knockout (TNFR1-/-) mice in the present study. After nasal application of a single dose of 40 mg of KA per kilogram body weight, TNFR1-/- mice showed significantly more severe seizures than the wild-type mice. In addition, obvious neurodegeneration, enhanced microglia activation, and astrogliosis in the hippocampus, as well as increased locomotor activity, were found in TNFR1-/- mice compared with the wild-type controls 8 days after KA delivery. Moreover, CC chemokine receptor 3 expression on activated microglia was increased 3 days after KA treatment in TNFR1-/- mice, as measured by flow cytometry. These data suggest that TNF-alpha may play a protective role through TNFR1 signaling.  相似文献   

13.
Mossy fiber sprouting and other forms of synaptic reorganization may form the basis for a recurrent excitatory network in epileptic foci. Four major classes of axon guidance molecules--the ephrins, netrins, slits, and semaphorins--provide targeting information to outgrowing axons along predetermined pathways during development. These molecules may also play a role in synaptic reorganization in the adult brain and thereby promote epileptogenesis. We studied semaphorin gene expression, as assessed by in situ hybridization, using riboprobes generated from rat cDNA in an adult model of synaptic reorganization, kainic acid (KA)-induced status epilepticus (SE). Within the first week after KA-induced SE, semaphorin 3C, a class III semaphorin, mRNA content is decreased in the CA1 area of the hippocampus and is increased in the upper layers of cerebral cortex. Another class III semaphorin, semaphorin 3F, is also decreased in CA1 and CA3 of hippocampus within the first week after KA-SE. These changes in gene expression are principally confined to neurons. By contrast, there was little change in the semaphorin 4C mRNA content of CA1 neurons at this time. No changes in expression of semaphorin 3A and 4C genes were detected 28 days after KA-induced SE. Regulation of semaphorin gene expression after KA-induced SE suggests that neurons may regulate the expression of axonal guidance molecules and thereby contribute to synaptic reorganization after injury of the mature brain. The anatomic locale of the altered semaphorin gene expression may serve as a marker for specific networks undergoing synaptic reorganization in the epileptic brain.  相似文献   

14.
The effects of kainic acid (KA)-induced limbic seizures have been investigated on cytochrome c oxidase (COx) activity, COx subunit IV mRNA abundance, ATP and phosphocreatine (PCr) levels in amygdala, hippocampus and frontal cortex of rat brain. Rats were killed either 1 h, three days or seven days after the onset of status epilepticus (SE) by CO2 and decapitation for the assay of COx activity and by head-focused microwave for the determination of ATP and PCr. Within 1 h COx activity and COx subunit IV mRNA increased in all brain areas tested between 120% and 130% of control activity, followed by a significant reduction from control, in amygdala and hippocampus on day three and seven, respectively. In amygdala, ATP and PCr levels were reduced to 44% and 49% of control 1 h after seizures. No significant recovery was seen on day three or seven. Pretreatment of rats with the spin trapping agent N-tert-butyl-α-phenylnitrone (PBN, 200 mg kg−1, i.p.) 30 min before KA administration had no effect on SE, but protected COx activity and attenuated changes in energy metabolites. Pretreatment for three days with the endogenous antioxidant vitamin E (Vit-E, 100 mg/kg, i.p.) had an even greater protective effect than PBN. Both pretreatment regimens attenuated KA-induced neurodegenerative changes, as assessed by histology and prevention of the decrease of COx subunit IV mRNA and COx activity in hippocampus and amygdala, otherwise seen following KA-treatment alone. These findings suggest a close relationship between SE-induced neuronal injury and deficits in energy metabolism due to mitochondrial dysfunction.  相似文献   

15.
16.
In the present study we analyzed aquaporin-4 (AQP4) immunoreactivity in the piriform cortex (PC) and the hippocampus of pilocarpine-induced rat epilepsy model to elucidate the roles of AQP4 in brain edema following status epilepticus (SE). In non-SE-induced animals, AQP4 immunoreactivity was diffusely detected in the PC and the hippocampus. AQP4 immunoreactivity was mainly observed in the endfeet of astrocytes. Following SE the AQP4-deleted area was clearly detected in the PC, not in the hippocampus. Decreases in dystrophin and α-syntrophin immunoreactivities were followed by reduction in AQP4 immunoreactivity. These alterations were accompanied by the development of vasogenic edema and the astroglial loss in the PC. In addition, acetazolamide (an AQP4 inhibitor) treatment exacerbated vasogenic edema and astroglial loss both in the PC and in the hippocampus. These findings suggest that SE may induce impairments of astroglial AQP4 functions via disruption of the dystrophin/α-syntrophin complex that worsen vasogenic edema. Subsequently, vasogenic edema results in extensive astroglial loss that may aggravate vasogenic edema.  相似文献   

17.
18.
The concentration of acute phase α2-macroglobulin (APα2M) was measured in the cerebrospinal fluid (csf) and plasma of fetal (12–22 days gestation) and neonatal (0–10 days post partum) rats. APα2M was detectable in the fetus as early as samples could be obtained (12 days) and increased in both fluids to reach a peak near the time of birth (17 mg/100 ml in csf and 168 mg/100 ml in plasma). During the neonatal period APα2M concentration declined markedly in both fluids. The results are compared with values for albumin and α-fetoprotein in fetal rats. It was concluded that maintenance of the csf:plasma ratios for the three proteins are incompatible with an explanation of passive diffusion from plasma to csf. Other mechanisms to explain the occurrence of high concentrations of plasma proteins in fetal csf are discussed.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which is currently untreatable. Inflammation plays a major role in the pathogenesis of motor neuron death in ALS. Pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and Fas ligand (FasL) are amongst the most important mediators of neuro-inflammation. We have previously demonstrated that elevation of these pro-inflammatory cytokines occurs in both ALS transgenic mice and in human ALS postmortem spinal cord tissues. Lenalidomide is a potent immunomodulatory agent, with the ability to down-regulate pro-inflammatory cytokines and up-regulate anti-inflammatory cytokines. We previously reported the neuroprotective effects of lenalidomide, when treatment was started 2 months prior to onset of disease in the G93A SOD1 transgenic mouse model of ALS. Since in ALS patients, treatment can only begin after the appearance of symptoms, we sought to determine the efficacy of lenalidomide administration starting at symptom onset in the G93A SOD1 mice. We found that lenalidomide treatment extended the survival interval from the age of onset by 18.3 days ( 45%). Additionally, lenalidomide treatment improved rotarod performance, reduced weight loss, and attenuated neuronal cell death in the lumbar spinal cord. Qualitative histological analysis showed that lenalidomide treatment modestly reduced the expression of the proinflammatory cytokines Fas Ligand, IL-1β, TNF-α and CD40 ligand. RNA protection Assay (RPA) on a pre-selected panel of cytokines showed that proinflammatory cytokines were reduced and anti-inflammatory cytokines were up-regulated. These data encourage further clinical evaluation of lenalidomide as therapeutic strategy to block or slow disease progression in human ALS patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号