首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Neurofibromatosis type 1 (NF1) affects about one in 3,500 people in all ethnic groups. Most NF1 patients have private loss‐of‐function mutations scattered along the NF1 gene. Here, we present an original NF1 investigation strategy and report a comprehensive mutation analysis of 565 unrelated patients from the NF‐France Network. A NF1 mutation was identified in 546 of the 565 patients, giving a mutation detection rate of 97%. The combined cDNA/DNA approach showed that a significant proportion of NF1 missense mutations (30%) were deleterious by affecting pre‐mRNA splicing. Multiplex ligation‐dependent probe amplification allowed the identification of restricted rearrangements that would have been missed if only sequencing or microsatellite analysis had been performed. In four unrelated families, we identified two distinct NF1 mutations within the same family. This fortuitous association points out the need to perform an exhaustive NF1 screening in the case of molecular discordant‐related patients. A genotype–phenotype study was performed in patients harboring a truncating (N = 368), in‐frame splicing (N = 36), or missense (N = 35) mutation. The association analysis of these mutation types with 12 common NF1 clinical features confirmed a weak contribution of the allelic heterogeneity of the NF1 mutation to the NF1 variable expressivity.  相似文献   

2.
Malignant peripheral nerve sheath tumours (MPNSTs) are a malignancy occurring with increased frequency in patients with neurofibromatosis type 1 (NF1). In contrast to the well‐known spectrum of germline NF1 mutations, the information on somatic mutations in MPNSTs is limited. In this study, we screened NF1, KRAS, and BRAF in 47 MPNSTs from patients with (n = 25) and without (n = 22) NF1. In addition, DNA from peripheral blood and cutaneous neurofibroma biopsies from, respectively, 14/25 and 7/25 of the NF1 patients were analysed. Germline NF1 mutations were detected in ten NF1 patients, including three frameshift, three nonsense, one missense, one splicing alteration, and two large deletions. Somatic NF1 mutations were found in 10/25 (40%) NF1‐associated MPNSTs, in 3/7 (43%) neurofibromas, and in 9/22 (41%) sporadic MPNSTs. Large genomic copy number changes accounted for 6/10 and 7/13 somatic mutations in NF1‐associated and sporadic MPNSTs, respectively. Two NF1‐associated and 13 sporadic MPNSTs did not show any NF1 mutation. A major role of the KRAS and BRAF genes was ruled out. The spectrum of germline NF1 mutations in neurofibromatosis patients with MPNST is different from the spectrum of somatic mutations seen in MPNSTs. However, the somatic events share common characteristics with the NF1‐related and the sporadic tumours. Copyright © 2008 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

3.
In the present study the entire NF1 coding region was analyzed for mutations in 132 unrelated Italian NF1 patients. Using PTT, SSCP, and DNA sequencing, we found 8 novel mutations. Clinical diagnosis of NF1 was established according to the NIH consensus criteria. We detected 59 truncated fragments, and 46 of them were characterized by SSCP and direct sequencing. Eight mutations represent novel changes that contribute to the germline mutational spectrum of the NF1 gene. In two patients, premature termination was due to substitutions at nucleotide c.3982C>T (Q1298X) and c.7411C>T (Q2471X), respectively. Two other mutations were caused by the deletions (1756delA, 4699delA), and two by the insertions (c.5266_5267insT, c.7464_7465insTCCA) of a small number of nucleotides. Lastly, we found 2 splice-site mutations (c.2252-2A>C, c.2251+1G>A).  相似文献   

4.
5.
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder affecting 1:3,500 individuals. Disease expression is highly variable and complications are diverse. However, currently there is no specific treatment for the disease. NF1 is caused by mutations in the NF1 gene, approximately 2.1% of constitutional mutations identified in our population are deep intronic mutations producing the insertion of a cryptic exon into the mature mRNA. We used antisense morpholino oligomers (AMOs) to restore normal splicing in primary fibroblast and lymphocyte cell lines derived from six NF1 patients bearing three deep intronic mutations in the NF1 gene (c.288+2025T>G, c.5749+332A>G, and c.7908‐321C>G). AMOs were designed to target the newly created 5′ splice sites to prevent the incorporation of cryptic exons. Our results demonstrate that AMO treatment effectively restored normal NF1 splicing at the mRNA level for the three mutations studied in the different cell lines analyzed. We also found that AMOs had a rapid effect that lasted for several days, acting in a sequence‐specific manner and interfering with the splicing mechanism. Finally, to test whether the correction of aberrant NF1 splicing also restored neurofibromin function to wild‐type levels, we measured the amount of Ras‐GTP after AMO treatment in primary fibroblasts. The results clearly show an AMO‐dependent decrease in Ras‐GTP levels, which is consistent with the restoration of neurofibromin function. To our knowledge this is the first time that an antisense technique has been usedsuccessfully to correct NF1 mutations opening the possibility of a therapeutic strategy for this type of mutation not only for NF1 but for other genetic disorders. Hum Mutat 30, 454–462, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
The hypoxanthine-guanine phosphoribosyltransferase (hprt) locus has been widely used as a selectable genetic marker for studies of mammalian cell mutagenesis. We report here the spontaneous mutation spectrum at the hprt locus in 64 independently isolated mutants of Chinese hamster ovary (CHO) cells. All nine hprt exons were simultaneously analyzed via multiplex polymerase chain reaction (PCR) for rapid detection of gene deletions or insertions. Structural point mutations were identified by direct sequence analysis of the PCR amplified cDNA. The molecular nature of RNA splicing errors and insertions was analyzed by solid-phase direct exon sequencing. Single base substitutions were found in 24 mutants (38%), of which 21 were missense and 3 were nonsense mutations. Transversions were about twice as frequent as transitions. Fifteen mutants (23%) had deletions involving either intragenic small fragments (2), single exons (9), or multiple exons (4). The majority of deletion breakpoints (71%) were located in regions surrounding exons 4, 5, and 6. RNA splicing mutations were observed in 15 mutants (23%) and affected exons 3–8; most (6/15) resulted in the loss of exon 7. Two insertion mutants, one with a 209 bp insert in exon 4 and the other with a 88 bp insert accompanied by a 24 bp deletion in exon 6, represent novel mutations reported for the first time in spontaneous mutants of the mammalian hprt gene. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Neurofibromatosis type 1 (NF1) is caused by loss of function mutations of the NF1 gene, which are de novo in 50% of cases. Although this gene shows one of the highest mutation rates in the human genome, germline mosaicism is very rare in this condition. We describe the molecular analysis of a family in which neurofibromatosis type 1 occurred in two out of four siblings born to unaffected parents. Molecular analysis of the NF1 gene identified in both patients the same splicing mutation c.1392+1G>A, which was absent in parental lymphocytes. Microsatellite analysis showed that the two affected siblings shared the same maternal allele, however a specific PCR‐RFLP assay excluded the presence of the NF1 splicing mutation in multiple maternal tissues. Our molecular and clinical findings are consistent with a germline mosaicism for the NF1 splicing mutation. This is the first case of maternal germline mosaicism for a NF1 mutation characterized so far at the molecular level. Our data confirm that germline mosaicism is rare in neurofibromatosis 1, but it has important implications for genetic counseling.  相似文献   

8.
Approximately 5% of all patients with neurofibromatosis type‐1 (NF1) exhibit large deletions of the NF1 gene region. To date, only nine unrelated cases of large NF1 duplications have been reported, with none of the affected patients exhibiting multiple café au lait spots (CALS), Lisch nodules, freckling, or neurofibromas, the hallmark signs of NF1. Here, we have characterized two novel NF1 duplications, one sporadic and one familial. Both index patients with NF1 duplications exhibited learning disabilities and atypical CALS. Additionally, patient R609021 had Lisch nodules, whereas patient R653070 exhibited two inguinal freckles. The mother and sister of patient R609021 also harbored the NF1 duplication and exhibited cognitive dysfunction but no CALS. The breakpoints of the nine NF1 duplications reported previously have not been identified and hence their underlying generative mechanisms have remained unclear. In this study, we performed high‐resolution breakpoint analysis that indicated that the two duplications studied were mediated by nonallelic homologous recombination (NAHR) and that the duplication breakpoints were located within the NAHR hotspot paralogous recombination site 2 (PRS2), which also harbors the type‐1 NF1 deletion breakpoints. Hence, our study indicates for the first time that NF1 duplications are reciprocal to type‐1 NF1 deletions and originate from the same NAHR events.  相似文献   

9.
10.
11.
In 5‐10% of patients, neurofibromatosis type 1 (NF1) results from microdeletions that encompass the entire NF1 gene and a variable number of flanking genes. Two recurrent microdeletion types are found in most cases, with microdeletion breakpoints located in paralogous regions flanking NF1 (proximal NF1‐REP‐a and distal NF1‐REP–c for the 1.4 Mb type‐1 microdeletion, and SUZ12 and SUZ12P for the 1.2 Mb type‐2 microdeletion). A more severe phenotype is usually associated with NF1 microdeletion patients than in those with intragenic mutations. We characterized NF1 microdeletions in 70 unrelated NF1 microdeleted patients using a high‐resolution NF1 custom array comparative genomic hybridization (CGH). Genotype‐phenotype correlations were studied in 58 of these microdeletion patients and compared to 389 patients with intragenic truncating NF1 mutations and phenotyped in the same standardized way. Our results confirmed in an unbiased manner the existence of a contiguous gene syndrome with a significantly higher incidence of learning disabilities and facial dysmorphism in microdeleted patients compared to patients with intragenic NF1 mutations. Microdeleted NF1 patients also showed a trend toward significance for childhood overgrowth. High‐resolution array‐CGH identified a new recurrent ~1.0 Mb microdeletion type, designated as type‐3, with breakpoints in the paralogous regions middle NF1‐REP‐b and distal NF1‐REP–c. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
We report a 21-year-old male with symptomatic optic glioma who does not fulfill the diagnosis of neurofibromatosis 1 (NF1) according to standard NIH criteria. Analysis of the NF1 gene revealed a recurrent mutation in exon 37 (C6792A or Y2264X). This nonsense mutation causes skipping of exon 37 during the splicing process and is predicted to result in a protein shortened by 34 amino acid residues. The mutation was detected in all tissues examined (blood lymphocytes, oral mucosa, and dermal fibroblasts). The same mutation was previously found in 3 patients with clinically confirmed NF1. To our knowledge, this is the first report of an adult patient carrying a putative (non-mosaic) NF1 gene mutation in multiple tissues but not fulfilling the NIH criteria for the clinical diagnosis of NF1. Am. J. Med. Genet. 86:328–330, 1999.  相似文献   

13.
Malignant peripheral nerve sheath tumours (MPNSTs) are a major cause of mortality in patients with neurofibromatosis 1 (NF1). We have analysed lymphocyte DNA samples from 30 NF1 patients with MPNSTs to determine their underlying constitutional NF1 gene mutations. Mutations were detected in 27/30 (90%) of these patients. NF1 mutations identified included nonsense, missense, frameshift, splice site mutation and single or multi-exonic deletions and with no obvious clustering of the mutations across the gene. Fourteen of the mutations represent novel gene changes. There did not appear to be any relationship between the mutation type and the level of clinical severity observed. Of the 20 patients with high grade MPNSTs, seven patients had small (<20 bp) and multi-exonic deletions and three had small insertions (<20 bp). Several studies have suggested that NF1 patients with a constitutional 1.5 Mb deletion of the NF1 gene have an increased risk of developing malignant peripheral nerve sheath tumours (MPNSTs). None of our patients had a 1.5 Mb deletion. Larger prospective studies are needed to ascertain whether there is a different spectrum of NF1 mutations in NF1 patients with high grade compared to low grade MPNSTs and of patients with the 1.5Mb deletion, in order to determine the true frequency of MPNST in this sub-group of NF1 patients.  相似文献   

14.
Objective: To explore the genetic etiology for 11 sporadic patients with neurofibromatosis type 1. Methods: Chip targeting capture and high-throughput sequencing were employed to detect potential mutations of NF1 and NF2 genes among the 11 patients. The data was filtered through multiple mutational databases and in-house whole exome sequence database. Sanger sequencing was used for analysis of family members of the patients. Results: Eleven pathogenic variants were found among the 11 patients, which included two splicing mutations, one missense mutation, two nonsense mutations, and six frame-shifting mutations. None of the mutations was recorded by the public database or the in-house database generated from 1775 samples through whole exome sequencing. None of the unaffected parents carried the same mutation. Seven mutations were associated with neurofibromatosis type 1 previously, while the remaining four were discovered for the first time. Prenatal diagnosis of two high-risk pregnancies suggested that neither fetus has inherited the NF1 mutation from their affected parents. Conclusion: Identification of causative mutations in patients with sporadic-type neurofibromatosis type 1 has provided a basis for genetic counseling. The four novel mutations have enriched the spectrum of NF1 gene mutations. © 2018 MeDitorial Ltd. All rights reserved.  相似文献   

15.
Microdeletions of the entire NF1 gene and surrounding genomic region occur in about 5% of patients with neurofibromatosis 1 (NF1). NF1 microdeletion patients usually have more cutaneous and plexiform neurofibromas and a higher risk of developing malignant peripheral nerve sheath tumors than other people with NF1. Somatic overgrowth has also been observed in NF1 microdeletion patients, an observation that is remarkable because most NF1 patients are smaller than average for age and sex. We studied longitudinal measurements of height, weight, and head circumference in 56 patients with NF1 microdeletions and 226 NF1 patients with other kinds of mutations. Although children with NF1 microdeletions were much taller than non‐deletion NF1 patients at all ages after 2 years, the lengths of deletion and nondeletion NF1 patients were similar in early infancy. NF1 microdeletion patients tended to be heavier than other NF1 patients, but height or weight more than 3 standard deviations above the mean for age and sex was infrequent in children with NF1 microdeletions. Head circumference and age of puberty were similar in deletion and non‐deletion NF1 patients. The pattern of growth differs substantially in deletion and non‐deletion NF1 patients, but the pathogenic basis for this difference is unknown.  相似文献   

16.
Neurofibromatosis type 1 (NF1), an autosomal dominantly-inherited disorder, is mainly characterized by the occurrence of multiple dermal neurofibromas and is caused by mutations in the NF1 gene, a tumor suppressor gene. The variable expressivity of the disease and the lack of a genotype/phenotype correlation prevents any prediction of patient outcome and points to the action of genetic factors in addition to stochastic factors modifying the severity of the disease. The analysis of somatic NF1 gene mutations in neurofibromas from NF1 patients revealed that each neurofibroma results from an individual second hit mutation, indicating that factors that influence somatic mutation rates may be regarded as potential modifiers of NF1. A mutational screen of numerous neurofibromas from two NF1 patients presented here revealed a predominance of point mutations, small deletions, and insertions as second hit mutations in both patients. Seven novel mutations are reported. Together with the results of studies that showed LOH as the predominant second hit in neurofibromas of other patients, our results suggest that in different patients different factors may influence the somatic mutation rate and thereby the severity of the disease.  相似文献   

17.
The aim of this study was to characterize cardiac features of patients with neurofibromatosis 1 (NF1) and large deletions of the NF1 gene region. The study participants were 16 patients with large NF1 deletions and 16 age‐ and sex‐matched NF1 patients without such deletions. All the patients were comprehensively characterized clinically and by echocardiography. Six of 16 NF1 deletion patients but none of 16 non‐deletion NF1 patients have major cardiac abnormalities (p = 0.041). Congenital heart defects (CHDs) include mitral insufficiency in two patients and ventricular septal defect, aortic stenosis, and aortic insufficiency in one patient each. Three deletion patients have hypertrophic cardiomyopathy. Two patients have intracardiac tumors. NF1 patients without large deletions have increased left ventricular (LV) diastolic posterior wall thickness (p < 0.001) and increased intraventricular diastolic septal thickness (p = 0.001) compared with a healthy reference population without NF1, suggestive of eccentric LV hypertrophy. CHDs and other cardiovascular anomalies are more frequent among patients with large NF1 deletion and may cause serious clinical complications. Eccentric LV hypertrophy may occur in NF1 patients without whole gene deletions, but the clinical significance of this finding is uncertain. All patients with clinical suspicion for NF1 should be referred to a cardiologist for evaluation and surveillance.  相似文献   

18.
Incontinentia pigmenti (IP) is an X‐linked‐dominant Mendelian disorder caused by mutation in the IKBKG/NEMO gene, encoding for NEMO/IKKgamma, a regulatory protein of nuclear factor kappaB (NF‐kB) signaling. In more than 80% of cases, IP is due to recurrent or nonrecurrent deletions causing loss‐of‐function (LoF) of NEMO/IKKgamma. We review how the local architecture of the IKBKG/NEMO locus with segmental duplication and a high frequency of repetitive elements favor de novo aberrant recombination through different mechanisms producing genomic microdeletion. We report here a new microindel (c.436_471delinsT, p.Val146X) arising through a DNA‐replication‐repair fork‐stalling‐and‐template‐switching and microhomology‐mediated‐end‐joining mechanism in a sporadic IP case. The LoF mutations of IKBKG/NEMO leading to IP include small insertions/deletions (indel) causing frameshift and premature stop codons, which account for 10% of cases. We here present 21 point mutations previously unreported, which further extend the spectrum of pathologic variants: 14/21 predict LoF because of premature stop codon (6/14) or frameshift (8/14), whereas 7/21 predict a partial loss of NEMO/IKKgamma activity (two splicing and five missense). We review how the analysis of IP‐associated IKBKG/NEMO hypomorphic mutants has contributed to the understanding of the pathophysiological mechanism of IP disease and has provided important information on affected NF‐kB signaling. We built a locus‐specific database listing all IKBKG/NEMO variants, accessible at http://IKBKG.lovd.nl .  相似文献   

19.
The hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by heterozygous mutations of the GATA3 gene. In the last 20 years, since the identification of the genetic cause of the HDR syndrome, GATA3 mutations have been reported in 124 families (177 patients). The clinical aspects and molecular genetics of the HDR syndrome are reviewed here together with the reported mutations and phenotypes. Reported mutations consist of 40% frameshift deletions or insertions, 23% missense mutations, 14% nonsense mutations, 6% splice‐site mutations, 1% in‐frame deletions or insertions, 15% whole‐gene deletions, and 1% whole‐gene duplication. Missense mutations were found to cluster in the regions encoding the two GATA3 zinc‐finger domains. Patients showed great clinical variability and the penetrance of each HDR defect increased with age. The most frequently observed abnormality was deafness (93%), followed by hypoparathyroidism (87%) and renal defects (61%). The mean age of diagnosis of HDR was 15.3, 7.5, and 14.0 years, respectively. However, patients with whole‐gene deletions and protein‐truncating mutations were diagnosed earlier than patients with missense mutations.  相似文献   

20.
Large deletions in the NF1 gene region at 17q11.2 are caused by nonallelic homologous recombination (NAHR). The recurrent type‐2 NF1 deletions span 1.2 Mb, with breakpoints in the SUZ12 gene and SUZ12P. Type‐2 NF1 deletions occur preferentially during mitosis and are associated with somatic mosaicism. A panel of 16 type‐2 NF1 deletions was used as a model system in which to investigate whether extended homozygosity across 17q11.2 might be associated with somatic deletion. Using SNP arrays, a 3.2 Mb interval encompassing the NF1 deletion region was found to harbor runs of homozygosity (ROHs) in different human populations. However, ROHs ≥500 kb directly flanking the NF1 deletion region on both sides were not found to occur disproportionately in NF1 patients harboring type‐2 deletions compared to controls. Although low allelic diversity in 17q11.2 is unlikely to be a key factor in promoting NAHR‐mediated somatic type‐2 deletions, a specific ROH of 588 kb (roh1), located some 525 kb proximal to the deletion interval, was found to occur more frequently (P=0.012) in the type‐2 deletion patients compared with controls. We postulate that roh1 may act remotely, via an as yet unknown mechanism, to increase the frequency of somatic recombination between the distally duplicated SUZ12 sequences. Hum Mutat 30:1–10, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号