首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt/β‐catenin signaling is essential for tooth development beyond the bud stage, but little is known about the role of non‐canonical Wnt signaling in odontogenesis. Here we compared the expression of Wnt5a, a representative of noncanonical Wnts, with that of Ror2, the Wnt5a receptor for non‐canonical signaling, in the developing tooth, and analyzed tooth phenotype in Wnt5a mutants. Wnt5a‐deficient mice exhibit retarded tooth development beginning from E16.5, leading to the formation of smaller and abnormally patterned teeth with a delayed odontoblast differentiation at birth. These defects are associated with upregulated Axin2 and Shh expression in the dental epithelium and reduced levels of cell proliferation in the dental epithelium and mesenchyme. Retarded tooth development and defective odontoblast differentiation were also observed in Ror2 mutant mice. Our results suggest that Wnt5a regulates growth, patterning, and odontoblast differentiation during odontogenesis, at least partially by modulating Wnt/β‐catenin canonical signaling. Developmental Dynamics 240:432–440, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
3.
4.
Non‐canonical/planar cell polarity (PCP) Wnt signaling plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Monitoring Wnt/PCP signaling relies mostly on semi‐quantitative bioassays or biochemical analysis. Here we describe a luciferase reporter assay based on an ATF2 response element, which faithfully monitors non‐canonical Wnt signaling in Xenopus embryos. The assay is simple, quantitative, and robust. It can be used to detect non‐canonical Wnt signaling changes following gain and loss of function of pathway components, including Wnt, Frizzled, Ror2, Disheveled, Rac1, MKK7, and JNK. Wnt/PCP signaling has recently been implicated in left‐right asymmetry and our reporter assay suggests that in gastrula embryos there is a right‐ward bias in Wnt/PCP signaling. We also mapped Wnt/PCP signaling in the early Xenopus embryo and find that it peaks in the dorso‐vegetal region, paralleling Wnt/β‐catenin signaling. Developmental Dynamics, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
6.
Ror1 is a member of the Ror‐family receptor tyrosine kinases. Ror1 is broadly expressed in various tissues and organs during mouse embryonic development. However, so far little is known about its function. The closely related family member Ror2 was shown to play a crucial role in skeletogenesis and has been shown to act as a co‐receptor for Wnt5a mediating non‐canonical Wnt‐signaling. Previously, it has been shown that during embryonic development Ror1 acts in part redundantly with Ror2 in the skeletal and cardiovascular systems. In this study, we report that loss of the orphan receptor Ror1 results in a variety of phenotypic defects within the skeletal and urogenital systems and that Ror1 mutant mice display a postnatal growth retardation phenotype. Developmental Dynamics 239:2266–2277, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Spatiotemporally regulated interaction between the metanephric mesenchyme (MM) and Wolffian duct (WD) is essential for the induction of a single ureteric bud (UB). The MM then interacts with the tip of the UB to induce outgrowth and branching of the UB, which in turn promotes growth of the adjacent MM. The Ror family receptor tyrosine kinases, Ror1 and Ror2, have been shown to act as receptors for Wnt5a to mediate noncanonical Wnt signaling. Previous studies have shown that Ror2‐mutant mice exhibit ectopic formation of the UB, due to abnormal juxtaposition of the MM to the WD. We show here that both Ror1 and Ror2 are expressed in the mesenchyme between the MM and WD during UB formation. Although Ror1‐mutant mice show no apparent defects in UB formation, Ror1;Ror2‐double‐mutant mice exhibit either defects in UB outgrowth and branching morphogenesis, associated with the loss of the MM from the UB domain, or ectopic formation of the UB. We also show genetic interactions between Ror1 and Wnt5a during UB formation. These findings suggest that Wnt5a‐Ror1/Ror2 signaling regulates cooperatively the formation of the MM at the proper position to ensure normal development of the UB.  相似文献   

8.
Osteosarcoma is the most common malignant bone tumour, with a peak incidence in children and young adolescents, suggesting a role of rapid bone growth in its pathogenesis. The Wnt/β‐catenin pathway plays a crucial role in skeletal development and is indispensable for osteoblasts' lineage determination. Previous studies suggesting an oncogenic role for the Wnt/β‐catenin pathway in osteosarcoma were based on cytoplasmic staining of β‐catenin or the detection of one component of this pathway. However, those approaches are inappropriate to address whether the Wnt/β‐catenin pathway is functionally active. Therefore, in this study, we examined nuclear β‐catenin expression in 52 human osteosarcoma biopsies, 15 osteoblastomas (benign bone tumours), and four human osteosarcoma cell lines by immunohistochemistry. Furthermore, we modulated Wnt/β‐catenin pathway activity using a GIN (GSK3β inhibitor) and evaluated its effect on cell growth and osteogenic differentiation. Absence of nuclear β‐catenin staining was found in 90% of the biopsies and all osteosarcoma cell lines, whereas strong nuclear β‐catenin staining was observed in all osteoblastomas. Wnt‐luciferase activity was comparable to the negative control in all osteosarcoma cell lines. GIN stimulated the Wnt/β‐catenin pathway, as shown by translocation of β‐catenin into the nucleus and increased Wnt‐luciferase activity as well as mRNA expression of AXIN2, a specific downstream target gene. Stimulation of the Wnt/β‐catenin pathway by GIN significantly reduced cell proliferation in the cell lines MG‐63 and U‐2‐OS and enhanced differentiation in the cell lines HOS and SJSA‐1, as shown by an increase in alkaline phosphatase (ALP) activity and mineralization. In contrast with the oncogenic role of the Wnt/β‐catenin pathway in osteosarcoma as previous studies suggested, here we demonstrate that this pathway is inactivated in osteosarcoma. Moreover, activation of the Wnt/β‐catenin pathway inhibits cell proliferation or promotes osteogenic differentiation in osteosarcoma cell lines. Our data suggest that loss of Wnt/β‐catenin pathway activity, which is required for osteoblast differentiation, may contribute to osteosarcoma development. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

9.
10.
Background: Specification of cranial bone and dermal fibroblast progenitors in the supraorbital arch mesenchyme is Wnt/β‐catenin signaling‐dependent. The mechanism underlying how these cells interpret instructive signaling cues and differentiate into these two lineages is unclear. Twist1 is a target of the Wnt/β‐catenin signaling pathway and is expressed in cranial bone and dermal lineages. Results: Here, we show that onset of Twist1 expression in the mouse cranial mesenchyme is dependent on ectodermal Wnts and mesenchymal β‐catenin activity. Conditional deletion of Twist1 in the supraorbital arch mesenchyme leads to cranial bone agenesis and hypoplastic dermis, as well as craniofacial malformation of eyes and palate. Twist1 is preferentially required for cranial bone lineage commitment by maintaining Wnt responsiveness. In the conditional absence of Twist1, the cranial dermis fails to condense and expand apically leading to extensive cranial dermal hypoplasia with few and undifferentiated hair follicles. Conclusions: Thus, Twist1, a target of canonical Wnt/β‐catenin signaling, also functions to maintain Wnt responsiveness and is a key effector for cranial bone fate selection and dermal condensation. Developmental Dynamics 245:144–156, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
The distal region of neural retina (ciliary marginal zone [CMZ]) contains stem cells that produce non‐neural and neuronal progenitors. We provide a detailed gene expression analysis of the eyes of apc mutant zebrafish where the Wnt/β‐catenin pathway is constitutively active. Wnt/β‐catenin signaling leads to an expansion of the CMZ accompanied by a central shift of the retinal identity gene sox2 and the proneural gene atoh7. This suggests an important role for peripheral Wnt/β‐catenin signaling in regulating the expression and localization of neurogenic genes in the central retina. Retinal identity genes rx1 and vsx2, as well as meis1 and pax6a act upstream of Wnt/β‐catenin pathway activation. Peripheral cells that likely contain stem cells can be identified by the expression of follistatin, otx1, and axin2 and the lack of expression of myca and cyclinD1. Our results introduce the zebrafish apc mutation as a new model to study signaling pathways regulating the CMZ. Developmental Dynamics 239:2066–2077, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
Recent studies have suggested that APC loss alone may be insufficient to promote aberrant Wnt/β‐catenin signalling. Our aim was to comprehensively characterize Wnt signalling components in a set of APC‐associated familial adenomatous polyposis (FAP) tumours. Sixty adenomas from six FAP patients with known pathogenic APC mutations were included. Somatic APC and KRAS mutations, β‐catenin immunostaining, and qRT‐PCR of APC, MYC, AXIN2 and SFRP1 were analysed. Array‐comparative genomic hybridization (aCGH) was also assessed in 26 FAP adenomas and 24 paired adenoma–carcinoma samples. A somatic APC alteration was present in 15 adenomas (LOH in 11 and four point mutations). KRAS mutations were detected in 10% of the cases. APC mRNA was overexpressed in adenomas. MYC and AXIN2 were also overexpressed, with significant intra‐case heterogeneity. Increased cytoplasmic and/or nuclear β‐catenin staining was seen in 94% and 80% of the adenomas. β‐Catenin nuclear staining was strongly associated with MYC levels (p value 0.03) but not with KRAS mutations. Copy number aberrations were rare. However, the recurrent chromosome changes observed more frequently contained Wnt pathway genes (p value 0.012). Based on β‐catenin staining and Wnt pathway target genes alterations the Wnt pathway appears to be constitutively activated in all APC‐FAP tumours, with alterations occurring both upstream and downstream of APC. Wnt aberrations are present at both the DNA and the RNA level. Somatic profiling of APC‐FAP tumours provides new insights into the role of APC in tumourigenesis. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

14.
Valproate (VPA) has been used for decades in the treatment of epilepsy and migraine. However, maternal administration of VPA during pregnancy increases susceptibility to autism spectrum disorders (ASDs) in the offspring. The aim of this study was to investigate the methylation modification and its effects on the activity of Wnt/β‐catenin pathway in the rat brain prenatally exposed to VPA. We exposed the rats in early pregnancy to VPA and found that the prenatal VPA exposure, in comparison with the prenatal vehicle exposure, induced demethylation in the promoter regions of wnt1 and wnt2, but not in those of Wnt inhibitory factor‐1 and Dickkopf 1, in the prefrontal cortexes and hippocampi of the offspring. Consequently, both mRNA and protein expression of wnt1 and wnt2 were increased. Furthermore, the activity of Wnt/β‐catenin pathway was upregulated, as indicated by the increased levels of β‐catenin, hence the growing expression of its target genes. This work suggested an epigenetic action via which VPA, when administered in early pregnancy, induced dysregulation of signaling pathway, further facilitating susceptibility to ASDs. Anat Rec, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
The receptor tyrosine kinase Ror2 acts as a receptor for Wnt5a to mediate noncanonical Wnt signaling, and it plays essential roles in morphogenesis. Ror2?/? embryos exhibit phenotypes similar to, albeit generally milder than, those of Wnt5a?/? embryos. During mouse embryogenesis, Ror2 is expressed in various organs and regions, although little is known about its expression pattern and roles in the developing gut, while Wnt5a is expressed in the developing gut, where its absence causes abnormal phenotypes. Here, we demonstrated that Ror2 was strongly and differentially expressed in the rostral and middle midgut endoderm from embryonic day (E) 10.5 through embryonic day (E) 12.5. At E11.5, Ror2?/? embryos exhibited a shorter middle midgut with a larger diameter and more accumulation of epithelial cells in the middle midgut than control embryos, while the total cell numbers remained unaltered. These findings suggest that Ror2 plays important roles in midgut elongation by means of an epithelial convergent extension mechanism. Developmental Dynamics 239:941–953, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Background: WNT1 and WNT3A drive a dorsal to ventral gradient of β‐catenin‐dependent Wnt signaling in the developing spinal cord. However, the identity of the receptors mediating downstream functions remains poorly understood. Results: In this report, we show that the spatiotemporal expression patterns of FZD10 and WNT1/WNT3A are highly correlated. We further show that in the presence of LRP6, FZD10 promotes WNT1 and WNT3A signaling using an 8xSuperTopFlash reporter assay. Consistent with a functional role for FZD10, we demonstrate that FZD10 is required for proliferation in the spinal cord. Finally, by using an in situ proximity ligation assay, we observe an interaction between FZD10 and WNT1 and WNT3A proteins. Conclusions: Together, our results identify FZD10 as a receptor for WNT1 and WNT3A in the developing chick spinal cord. Developmental Dynamics 243:833–843, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Abnormal activation of the Wnt/β‐catenin signaling pathway is common in human cancers. Several studies have demonstrated that SRY (sex‐determining region Y)‐box (SOX) family genes serve as either tumor suppressor genes or oncogenes by regulating the Wnt signaling pathway in different cancers. However, the role of SOX1 in breast cancer and the underlying mechanism is still unclear. The aim of this study was to explore the effect and mechanism of SOX1 on the breasted cancer cell growth and invasion. In this study, we established overexpressed SOX1 and investigated its function by in vitro experiments. SOX1 was down‐regulated in breast cancer tissues and cell lines. Overexpression of SOX1 inhibited cell proliferation and invasion in vitro, and it promoted cell apoptosis. Furthermore, SOX1 inhibited the expression of β‐catenin, cyclin D1, and c‐Myc in breast cancer cells. Taken together, these data suggest that SOX1 can function as a tumor suppressor partly by interfering with Wnt/β‐catenin signaling in breast cancer.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号