首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective was to evaluate ethylene vinyl acetate (EVA) copolymer membranes with vinyl acetate content of 18% w/w (EVA1802) for transdermal delivery of ondansetron hydrochloride. The EVA1802 membranes containing selected concentrations (0, 5, 10 and 15% w/w) of PEG6000 were prepared, and subjected to in vitro permeation studies from a nerodilol-based drug reservoir. Flux of ondansetron from EVA1802 membranes without PEG6000 was 64.1 +/- 0.6 microg/cm(2.)h, and with 10%w/w of PEG6000 (EVA1802-PEG6000-10) it increased to 194.9 +/- 4.6 microg/cm(2.)h. However, with 15%w/w of PEG6000, EVA1802 membranes produced a burst release of drug which in turn decreased drug flux. The EVA1802-PEG6000-10 membrane was coated with an adhesive emulsion, applied to rat epidermis and subjected to in vitro permeation studies against controls. Flux of ondansetron from transdermal patch across rat epidermis was 111.7 +/- 1.3 microg/cm(2.)h, which is about 1.3 times the required flux. A TTS was fabricated using adhesive-coated EVA1802-PEG6000-10 membrane and other TTS components, and subjected to in vivo delivery in human volunteers against a control. It was concluded from the comparative pharmacokinetic study that TTS of ondansetron, prepared with EVA1802-PEG6000-10 membrane, provided average steady-state plasma concentration on par with multiple-dosed oral tablets, but with a low percent of peak-to-trough fluctuation.  相似文献   

2.
The present investigation was carried out to formulate a terpene-based hydroxypropyl cellulose (HPC) gel drug reservoir system for its optimal transdermal permeation of ondansetron hydrochloride. The HPC gel formulations containing ondansetron hydrochloride (3% w/w) and selected concentrations of either nerodilol (0% w/w, 1% w/w, 2% w/w, 3% w/w, and 4% w/w), carvone (0% w/w, 2% w/w, 4% w/w, 8% w/w, and 10% w/w), or limonene (0% w/w, 2% w/w, 3% w/w, and 4% w/w) were prepared and subjected to in vitro permeation of the drug across rat epidermis. All the 3 terpene enhancers increased the transdermal permeation of ondansetron hydrochloride. The optimal transdermal permeation was observed with 3% w/w of nerodilol (175.3 ± 3.1 μg/cm2.h), 8% w/w of carvone (87.4 ± 1.6 μg/cm2.h), or 3% w/w of limonene (181.9 ± 0.9 μg/cm2.h). The enhancement ratio (ER) in drug permeability with 3% w/w nerodilol, 8% w/w carvone, and 3% w/w limonene were 21.6, 10.8, and 22.5, respectively, when compared with that obtained without a terpene enhancer (control). However, there was 1.04-, 2.09-, and 2.17-fold increase in the optimal drug flux obtained with carvone, nerodilol, and limonene, respectively, when compared with the desired drug flux (84 μg/cm2.h). It was concluded that the HPC gel drug reservoir systems containing either 3% w/w nerodilol or 3% w/w limonene act as optimal formulations for use in the design of membrane-controlled transdermal therapeutic system (TTS) of ondansetron hydrochloride.  相似文献   

3.
A membrane-moderated transdermal therapeutic system (TTS) of nicardipine hydrochloride was developed using 2%w/w hydroxy propyl cellulose (HPC) gel as a reservoir system containing 8%w/w of carvone as a penetration enhancer. The permeability flux of nicardipine hydrochloride through ethylene vinyl acetate (EVA) copolymer membrane was found to increase with an increase in vinyl acetate content in the copolymer. The effect of various pressure-sensitive adhesives (MA-31, MA-38, or TACKWHITE A 4MED) on the permeability of nicardipine hydrochloride through EVA 2825 membrane (28%w/w vinyl acetate) or EVA 2825 membrane/skin composite also was studied. The results showed that nicardipine hydrochloride permeability through EVA 2825 membrane coated with TACKWHITE A 4MED/skin composite was higher than that coated with MA-31 or MA-38. Thus, a new TTS for nicardipine hydrochloride was formulated using EVA 2825 membrane coated with a pressure-sensitive adhesive TACKWHITE A 4MED and 2%w/w HPC gel as reservoir containing 8%w/w of carvone as a penetration enhancer. The bioavailability studies in healthy human volunteers indicated that the TTS of nicardipine hydrochloride, designed in the present study, provided steady-state plasma concentration of the drug with minimal fluctuations for 23 hr with improved bioavailability in comparison with the immediate-release capsule dosage form.  相似文献   

4.
The purpose of the present study was to design a membrane-moderated transdermal therapeutic system (TTS) of nimodipine using 2%w/w hydroxypropyl methylcellulose (HPMC) gel as a reservoir system containing menthol as penetration enhancer and 60%v/v ethanol-water as solvent system. The flux of nimodipine was markedly increased from 35.51 microg/cm2/h to 167.53+/-3.69 microg/cm2/h with the addition of 8%w/w menthol to HPMC drug reservoir. There was an increase in the flux of nimodipine through ethylene vinyl acetate (EVA) copolymer membrane with an increase in vinyl acetate content (9 to 28%w/w) of the copolymer. The permeability flux of nimodipine from the chosen EVA 2825 (with 28%w/w vinyl acetate content) was 152.05+/-2.68 microg/cm2/h, and this flux decreased to 132.69+/-1.45 microg/cm2/h on application of a water-based acrylic adhesive (TACKWHITE A 4MED) coat. However, the transdermal flux of nimodipine across EVA 2825 membrane coated with TACKWHITE A 4MED/ rat skin composite was found to be 116.05+/-2.39 microg/cm2/h, which is about 1.4 times greater than the required flux. Thus a new transdermal therapeutic system for nimodipine was designed using EVA 2825 membrane coated with a pressure-sensitive adhesive TACKWHITE 4A MED, and 2%w/w HPMC gel as reservoir containing 8%w/w of menthol as a penetration enhancer. The in vivo evaluation of nimodipine TTS patch was carried out to find the ability of the fabricated menthol-based TTS patch in providing the predetermined plasma concentration of the drug in human volunteers. The results showed that the menthol-based TTS patch of nimodipine provided steady plasma concentration of the drug with minimal fluctuations with improved bioavailability in comparison with the immediate release tablet dosage form.  相似文献   

5.
The aim of the present study was to develop a membrane-moderated transdermal therapeutic system (TTS) of nicardipine hydrochloride using 2%w/w hydroxy propyl cellulose (HPC) gel as a reservoir system containing 4%w/w of limonene as a penetration enhancer. The permeability flux of nicardipine hydrochloride through ethylene vinyl acetate (EVA) copolymer membrane was found to increase with an increase in vinyl acetate (VA) content in the copolymer. The effect of various pressure-sensitive adhesives (MA-31, MA-38 or TACKWHITE A 4MED) on the permeability of nicardipine hydrochloride through EVA membrane 2825 (28% w/w VA) or membrane/skin composite was also studied. The results showed that nicardipine hydrochloride permeability through EVA 2825 membrane coated with TACKWHITE 4A MED/skin composite was higher than that coated with MA-31or MA-38. Thus a new TTS for nicardipine hydrochloride was formulated using EVA 2825 membrane coated with a pressure-sensitive adhesive TACKWHITE 4A MED and 2%w/w HPC gel as reservoir containing 4%w/w of limonene as a penetration enhancer. The bioavailability studies in healthy human volunteers indicated that the TTS of nicardipine hydrochloride, designed in the present study, provided steady state plasma concentration of the drug with minimal fluctuations for 20 h with improved bioavailability in comparison with the immediate release capsule dosage form.  相似文献   

6.
The aim of our present study was to prepare and evaluate a carvone-based transdermal therapeutic system (TTS) of nicorandil to find its ability in providing the desired in vivo controlled release profile on dermal application to human volunteers. The effect of EVA 2825, and adhesive-coated EVA 2825, and adhesive-coated EVA 2825-rat skin composite on the in vitro permeation of nicorandil from a carvone-based HPMC gel drug reservoir was studied against a control (rat abdominal skin alone). The carvone-based drug reservoir system was sandwiched between adhesive-coated EVA 2825-release liner composite and a backing membrane. The resultant drug reservoir sandwich was heat-sealed to produce a circle-shaped TTS (20 cm2) that was subjected to in vivo evaluation on dermal application to human volunteers against oral administration of immediate-release tablets of nicorandil. The carvone-based TTS provided a steady-state plasma concentration of 20.5 ng/ml for ~24 hr in human volunteers. We concluded that the carvone-based TTS of nicorandil provided the desired in vivo controlled-release profile of the drug for the predetermined period of time.  相似文献   

7.
Hydroxypropyl methylcellulose (HPMC) gel drug reservoir system prepared with 70:30 v/v ethanol-water solvent system containing 6% w/w of limonene was effective in promoting the in vitro transdermal delivery of nicorandil. The objective of the present study was to fabricate and evaluate a limonene-based transdermal therapeutic system (TTS) for its ability to provide the desired steady-state plasma concentration of nicorandil in human volunteers. The in vitro permeation of nicorandil from a limonene-based HPMC gel drug reservoir was studied across excised rat skin (control), EVA2825 membrane, adhesive-coated EVA2825 membrane and adhesive-coated EVA2825 membrane-excised rat skin composite to account for their effect on the desired flux of nicorandil. The flux of nicorandil from the limonene-based HMPC drug reservoir across EVA2825 membrane decreased to 215.8 +/- 9.7 microg/cm(2).h when compared to that obtained from control, indicating that EVA2825 was effective as a rate-controlling membrane. The further decrease in nicorandil flux across adhesive-coated EVA2825 membrane and adhesive-coated EVA2825 membrane-excised rat skin composite showed that the adhesive coat and skin also controlled the in vitro transdermal delivery. The limonene-based drug reservoir was sandwiched between adhesive-coated EVA2825-release liner composite and a backing membrane. The resultant sandwich was heat-sealed as circle-shaped patch (20 cm(2)), trimmed and subjected to in vivo evaluation in human volunteers against immediate-release tablets of nicorandil (reference formulation). The fabricated limonene-based TTS of nicorandil provided a steady-state plasma concentration of 21.3 ng/ml up to 24 h in healthy human volunteers. It was concluded that the limonene-based TTS of nicorandil provided the desired plasma concentration of the drug for the predetermined period of time with minimal fluctuations and improved bioavailability.  相似文献   

8.
《Drug delivery》2013,20(8):448-457
The aim of this study was to formulate and evaluate in vitro, ceftriaxone sodium lipospheres dispersions for oral administration. Ceftriaxone sodium lipospheres were prepared by melt-emulsification using 30%w/w Phospholipon® 90H in Softisan® 154 as the lipid matrix containing increasing quantities of PEG 4000 (10, 20, 30, and 40%w/w). Characterization based on particle size, particle morphology, encapsulation efficiency, loading capacity and pH were carried out on the lipospheres. Microbiological studies of the ceftriaxone sodium-loaded lipospheres were performed using Escherichia coli as the model organism. In vitro permeation of ceftriaxone sodium from the lipospheres through artificial membrane (0.22?μm pore size) was carried out using Franz cell and simulated intestinal fluid (SIF) without pancreatin as acceptor medium. Photomicrographs revealed spherical particles within a micrometer range with minimal growth after 1 month (Maximum size?=?64.76?±?3.81?μm). Microbiological studies indicated that lipospheres formulated with 20%w/w of PEG 4000 containing 2%w/w or 3%w/w of ceftriaxone sodium gave significantly (p?<?0.05) higher inhibition zone diameter than those with 30%w/w or 40%w/w of PEG 4000. The result also indicated that lipospheres with 10%w/w PEG 4000 resulted in significantly higher encapsulation efficiency (p?<?0.05) while those with 30%w/w gave the least, while the loading capacity values ranged from 3.22?mg of ceftriaxone sodium/100?mg of lipid to 6.36?mg of ceftriaxone sodium/100?mg of lipid. Permeation coefficient values varied and ranged from 8.55?×?10?7 cm/s to 2.08?×?10?6 cm/s depending on the concentration of PEG 4000. The result of this study gave insight that the issue of ceftriaxone stability in oral formulation could be adequately addressed by tactical engineering of lipid drug delivery systems such as lipospheres.  相似文献   

9.
The purpose of this investigation was to develop a membrane-moderated transdermal therapeutic system (TTS) of nimodipine using 2% w/w hydroxypropylmethylcellulose (HPMC) gel as a reservoir system containing 10% w/w of carvone (penetration enhancer) in 60% v/v ethanol. The flux of nimodipine through an ethylene vinyl acetate (EVA) copolymer membrane was found to increase with an increase in vinyl acetate content in the copolymer. The effect of a pressure-sensitive adhesive (TACKWHITE A 4MED) on the permeability of nimodipine through an EVA 2825 membrane (28% w/w vinyl acetate) or an EVA 2825 membrane/skin composite was also studied. An EVA 2825 membrane coated with TACKWHITE 4A MED was found to provide the required flux of nimodipine (117 +/- 5 microg/cm2/h) across rat abdominal skin. Thus a new transdermal therapeutic system for nimodipine was formulated using EVA 2825 membrane, coated with a pressure-sensitive adhesive TACKWHITE 4A MED, and 2% w/w HPMC gel as reservoir containing 10% w/w of carvone as a penetration enhancer. Studies in healthy human volunteers indicated that the TTS of nimodipine, designed in the present study, provided steady-state plasma concentration of the drug with minimal fluctuations.  相似文献   

10.
The aim of this investigation was to study the effect of an ethanol-water solvent system and ehtanolic solution of menthol on the permeation of ondansetron hydrochloride across the rat epidermis in order to select a suitable ethanol-water vehicle and optimal concentration of menthol for the development of a transdermal therapeutic system. The solubility of ondansetron hydrochloride in ethanol, water and selected concenetrtaion of ethanol-water vehicles (20:80 v/v, 40:60 v/v and 60:40 v/v) was determined. The effect of these solvent vehicles, containing 1.5% w/v of ondansetron hydrochloride, on the in vitro permeation of the drug was studied across the rat epidermis. The highest permeation was observed from 60% v/v of ethanol-water vehicle that showed highest solubilty. Hence, the hydroxypropyl cellulose (HPC) (2% w/w) gel formulations containing 1.5% w/w of ondansetron hydrochloride and selected concentrations of menthol (0, 2, 4, 8 and 10% w/w) were prepared using 60% v/v of ethanol-water vehicle, and subjected to in vitro permeation of the drug across rat epidermis. The transdermal permeation of ondansetron hydrochloride was enhanced markedly by the addition of menthol to HPC gel drug reservoir formulations. A maximum flux of ondansetron hydrochloride (77.85 ± 2.85 μ g/cm2.h) was observed with a mean enhancement ratio of 13.06 when menthol was incorporated at a concentration of 8% w/w in HPC gels. However, there was no significant increase in the drug flux with 10% w/w menthol when compared to that obtained with 8% w/w of menthol in HPC gel formulations. The results suggest that 2% w/w HPC gel drug reservoir formulation, prepared with 60% v/v ethanol-water, containing 8% w/w of menthol provides an optimal transdermal permeation of ondansetron hydrochloride.  相似文献   

11.
脉冲电流对胰岛素经皮渗透的促进作用   总被引:4,自引:0,他引:4  
实验结果表明,脉冲电流能有效地提高胰岛素的透皮扩散速率,并随着释放池中胰岛素浓度的递增,透皮扩散速率呈线性增加。同时,胰岛素在pH值偏离等电点的酸性溶液(pH3.6)中透皮速率最高,为324.2±33.4μU/(cm2·h),而在pH值高于等电点的溶液(pH7.4)中其透皮速率降至143.7±27.3μU/(cm2·h),在pH值接近等电点(pH5.3)时,胰岛素的透皮速率最低,为78.4±21.9μU/(cm2·h)。  相似文献   

12.
The aim of the present study was to design a membranemoderated transdermal therapeutic system (TTS) of nimodipine using 2% w/w hydroxypropyl methylcellulose (HPMC) gel as a reservoir system containing 4% w/w of limonene as a penetration enhancer. The permeability flux of nimodipine through ethylene vinyl acetate (EVA) copolymer membrane was found to increase with an increase in vinyl acetate content in the copolymer (9 to 28%). The effect of pressure-sensitive adhesives such as TACKWHITE A 4MED® on the permeability of nimodipine through EVA membrane 2825 (28% w/w vinyl acetate) or membrane/rat skin composite also was studied. The permeability flux of nimodipine from the chosen EVA 2825 (with 28% vinyl acetate content) was 159.72 ± 1.96 μg/cm2/hr, and this flux further decreased to 141.85 ± 1.54 μg/cm2/hr on application of pressure-sensitive adhesive (TACKWHITE A 4MED®). However, the transdermal permeability flux of nimodipine across EVA 2825 membrane coated with TACKWHITE A 4MED®/rat skin composite was found to be 126.59 ± 2.72 μg/cm2/hr, which is 1.3-fold greater than the required flux. Thus, a new transdermal therapeutic system for nimodipine was formulated using EVA 2825 membrane coated with a pressure-sensitive adhesive TACKWHITE 4A MED® and 2% w/w HPMC gel as reservoir containing 4% w/w of limonene as a penetration enhancer. The bioavailability studies in healthy human volunteers indicated that the TTS of nimodipine, designed in the present study, provided steady-state plasma concentration of the drug with minimal fluctuations for 20 hr with improved bioavailability in comparison with the immediate release tablet dosage form.  相似文献   

13.
The effects of molecular weight of polyethylene glyeols (PEGs) on the dissolution rates and crystallinity of its solid dispersions with indoniethacin and phenylbutazone have been examined. The dissolution rates of both solid-dispersed drugs decreased as the molecular weight of PEG increased. The indoniethacin dissolution profiles were essentially linear using constant surface area disc methodology and a limiting dissolution rate of about 10.6 mg · min−1 was observed. The phenylbutazone dissolution profiles were. however, generally linear-curvic usually giving lower release rates than the comparative indomethacin weight fractions. A limiting dissolution rate for the linear portions of the profiles was about 1.8 mg · min−1. Infra-red spectra indicated that the differences between the two drugs could partly be explained on the basis of PEG crystallinity. Generally bands in the ranges 1100–1130 and 1200–1400 cm−1 were poorly differentiated in indomethacin dispersions (PEG 1500, PEG 4000 and PEG 6000) but were better differentiated in phenylbutazone dispersions (PEG 4000, PEG 6000 and PEG 20,000). A greater proportion of amorphousness within the PEG moiety was predicted in indomethacin dispersions by the appearance of a new weak band at 1326 cm−1 and by a decrease in intensity of the band at 845 cm−1 at the expense of the peak at 960 cm−1. The evidence was supported by differential scanning calorimetry. The heats of fusion were 44.7, 46.4, 47.2 and 39.5 cal · g−1 for PEG 1500, PEG 4000, PEG 6000 and PEG 20.000 respectively. Heats of fusion for indomethacin dispersions (2, 5 and 10% drug) were generally lower than for the corresponding values for phenylbutazone dispersions-with the exception of PEG 20,000 dispersions. For example, values were obtained of 30.6 and 37.9 cal · g−1 for PEG 1500 dispersions containing 10% indomethacin and phenylbutazone, respectively.  相似文献   

14.
A membrane-moderated transdermal therapeutic system of nicardipine hydrochloride was developed using 2% w/w hydroxypropylcellulose (HPC) gel as a reservoir system containing 5% w/w of menthol as a penetration enhancer. The permeability flux of nicardipine hydrochloride through the ethylene vinyl acetate (EVA) copolymer membrane was found to increase with an increase in vinyl acetate content in the copolymer. The effect of various pressure-sensitive adhesives (MA-31, MA-38 or TACKWHITE A 4MED on the permeability of nicardipine hydrochloride through EVA 2825 membrane (28% w/w vinyl acetate) or EVA 2825 membrane/skin composite was also studied. The results showed that nicardipine hydrochloride permeability through EVA 2825 membrane coated with TACKWHITE A 4MED/skin composite was higher than that coated with MA-31 or MA-38. Thus, a new transdermal therapeutic system for nicardipine hydrochloride was formulated using EVA 2825 membrane coated with a pressure-sensitive adhesive TACKWHITE A 4MED, and 2% w/w HPC gel as reservoir containing 5% w/w of menthol as a penetration enhancer. In vivo studies in healthy human volunteers indicated that the TTS of nicardipine hydrochloride, designed in the present study, provided steady-state plasma concentration of the drug with minimal fluctuations for 26h with improved bioavailability in comparison with the immediate release capsule dosage form.  相似文献   

15.
The aim of our present study was to prepare and evaluate a carvone-based transdermal therapeutic system (TTS) of nicorandil to find its ability in providing the desired in vivo controlled release profile on dermal application to human volunteers. The effect of EVA 2825, and adhesive-coated EVA 2825, and adhesive-coated EVA 2825-rat skin composite on the in vitro permeation of nicorandil from a carvone-based HPMC gel drug reservoir was studied against a control (rat abdominal skin alone). The carvone-based drug reservoir system was sandwiched between adhesive-coated EVA 2825-release liner composite and a backing membrane. The resultant drug reservoir sandwich was heat-sealed to produce a circle-shaped TTS (20 cm2) that was subjected to in vivo evaluation on dermal application to human volunteers against oral administration of immediate-release tablets of nicorandil. The carvone-based TTS provided a steady-state plasma concentration of 20.5 ng/ml for ∼24 hr in human volunteers. We concluded that the carvone-based TTS of nicorandil provided the desired in vivo controlled-release profile of the drug for the predetermined period of time.  相似文献   

16.
The objective of the study was to design membrane-controlled transdermal therapeutic system (TTS) for trimetazidine. The optimization of (i) concentration of ethanol-water solvent system, (ii) HPMC concentration of drug reservoir and (iii) limonene concentration in 2% w/v HPMC gel was done based on the in vitro permeation of trimetazidine across excised rat epidermis. A limonene-based membrane-controlled TTS of trimetazidine was fabricated and evaluated for its in vivo drug release in rabbit model. The in vitro permeation of trimetazidine from water, ethanol and selected concentrations (25, 50 and 75% v/v) of ethanol-water co-solvent systems showed that 50% v/v of ethanol-water solvent system provided an optimal transdermal flux of 233.1+/-3.8 microg/cm(2.)h. The flux of the drug decreased to 194.1+/-7.4 microg/cm(2.)h on adding 2% w/v of HPMC to ethanolic (50% v/v ethanol-water) solution of trimetazidine. However, on adding selected concentrations of limonene (0, 2, 4, 6 and 8% w/v) to 2% w/v HPMC gel drug reservoir, the flux of the drug increased to 365.5+/-7.1 microg/cm(2.)h. Based on these results, 2% w/v HPMC gel drug reservoir containing 6% w/v of limonene was chosen as an optimal formulation for studying the influence of rate-controlling EVA2825 membrane and adhesive-coated EVA2825 membrane. The flux of the drug across EVA2825 membrane (mean thickness 31.2 microm) decreased to 285.8+/-2.2 microg/cm(2.)h indicating that the chosen membrane was effective as rate-controlling membrane. On applying an adhesive coat (mean thickness 10.2 microm) to EVA2825 membrane, the drug flux further decreased to 212.4+/-2.6 microg/cm(2.)h. However, the flux of the drug across adhesive-coated EVA2825 membrane-rat epidermis composite was 185.9+/-2.9 microg/cm(2.)h, which is about 2-times higher than the desired flux. The fabricated limonene-based TTS patch of trimetazidine showed a mean steady state plasma concentration of 71.5 ng/mL for about 14 h with minimal fluctuation when tested in rabbits. It was concluded from the investigation that the limonene-based TTS patch of trimetazidine provided constant drug delivery across the skin in rabbit model.  相似文献   

17.
The present investigation was carried out to formulate a terpene-based hydroxypropyl cellulose (HPC) gel drug reservoir system for its optimal transdermal permeation of ondansetron hydrochloride. The HPC gel formulations containing ondansetron hydrochloride (3% w/w) and selected concentrations of either nerodilol (0% w/w, 1% w/w, 2% w/w, 3% w/w, and 4% w/w), carvone (0% w/w, 2% w/w, 4% w/w, 8% w/w, and 10% w/w), or limonene (0% w/w, 2% w/w, 3% w/w, and 4% w/w) were prepared and subjected to in vitro permeation of the drug across rat epidermis. All the 3 terpene enhancers increased the transdermal permeation of ondansetron hydrochloride. The optimal transdermal permeation was observed with 3% w/w of nerodilol (175.3 +/- 3.1 microg/cm(2.)h), 8% w/w of carvone (87.4 +/- 1.6 microg/cm(2.)h), or 3% w/w of limonene (181.9 +/- 0.9 microg/cm(2.)h). The enhancement ratio (ER) in drug permeability with 3% w/w nerodilol, 8% w/w carvone, and 3% w/w limonene were 21.6, 10.8, and 22.5, respectively, when compared with that obtained without a terpene enhancer (control). However, there was 1.04-, 2.09-, and 2.17-fold increase in the optimal drug flux obtained with carvone, nerodilol, and limonene, respectively, when compared with the desired drug flux (84 microg/cm(2.)h). It was concluded that the HPC gel drug reservoir systems containing either 3% w/w nerodilol or 3% w/w limonene act as optimal formulations for use in the design of membrane-controlled transdermal therapeutic system (TTS) of ondansetron hydrochloride.  相似文献   

18.
Increasing demands for individualized drug treatment has led to an increase in the practice of compounded medications. In this study, we determined the impact of the chemical and physical stability of ketoprofen (10%w/w) cream on its topical/transdermal delivery over a 6-month period. The shelf life of ketoprofen at 25?°C in the pharmaceutical bases LipoDerm and LipoBase (109.94 and 85.9 days) was significantly longer than that in Pluronic Lecithin Organogel (PLO; 44.81 days), justifying extending its beyond use date (BUD) from 30 (USP37/NF32) to at least 60 days in LipoDerm and LipoBase. All the creams evaluated exhibited shear-thinning flow behavior with moderate thixotropy, while the flow properties for LipoBase and PLO creams were altered at storage times greater than 90 days. The percentage of ketoprofen permeated through porcine ear skin was 13.7, 19.1 and 12.7% of the dose from LipoDerm, LipoBase and PLO, respectively and decreased 2- to 3-fold after 28 days of storage. Flux ranging from 85.3 to 446.7?µg/cm2/h and topical delivery, on the other hand, were not influenced by storage duration past 28 days. In conclusion, this study justifies extending the BUD of ketoprofen in LipoDerm and LipoBase to 60 days if used for topical delivery only.  相似文献   

19.
The aim of this investigation was to study the effect of an ethanol-water solvent system and ehtanolic solution of menthol on the permeation of ondansetron hydrochloride across the rat epidermis in order to select a suitable ethanol-water vehicle and optimal concentration of menthol for the development of a transdermal therapeutic system. The solubility of ondansetron hydrochloride in ethanol, water and selected concenetrtaion of ethanol-water vehicles (20:80 v/v, 40:60 v/v and 60:40 v/v) was determined. The effect of these solvent vehicles, containing 1.5% w/v of ondansetron hydrochloride, on the in vitro permeation of the drug was studied across the rat epidermis. The highest permeation was observed from 60% v/v of ethanol-water vehicle that showed highest solubilty. Hence, the hydroxypropyl cellulose (HPC) (2% w/w) gel formulations containing 1.5% w/w of ondansetron hydrochloride and selected concentrations of menthol (0, 2, 4, 8 and 10% w/w) were prepared using 60% v/v of ethanol-water vehicle, and subjected to in vitro permeation of the drug across rat epidermis. The transdermal permeation of ondansetron hydrochloride was enhanced markedly by the addition of menthol to HPC gel drug reservoir formulations. A maximum flux of ondansetron hydrochloride (77.85 ± 2.85 μ g/cm2.h) was observed with a mean enhancement ratio of 13.06 when menthol was incorporated at a concentration of 8% w/w in HPC gels. However, there was no significant increase in the drug flux with 10% w/w menthol when compared to that obtained with 8% w/w of menthol in HPC gel formulations. The results suggest that 2% w/w HPC gel drug reservoir formulation, prepared with 60% v/v ethanol-water, containing 8% w/w of menthol provides an optimal transdermal permeation of ondansetron hydrochloride.  相似文献   

20.
The objective of the study was to develop, optimize and evaluate a nanoemulsion (NE) of Amphotericin B (AmB) using excipients with inherent antifungal activities (Candida albicans and Aspergillus niger) for topical delivery. AmB-loaded NE was prepared using Capmul PG8 (CPG8), labrasol and polyethylene glycol-400 by spontaneous titration method and evaluated for mean particle size, polydispersity index, zeta potential and zone of inhibition (ZOI). NE6 composed of CPG8 (15%w/w), Smix (24%w/w) and water (61%w/w) was finally selected as optimized NE. AmB-NE6 was studied for improved in vitro release, ex vivo skin permeation and deposition using the Franz diffusion cell across the rat skin followed with drug penetration using confocal laser scanning microscopy (CLSM) as compared to drug solution (DS) and commercial Fungisome®. The results of in vitro studies exhibited the maximum ZOI value of NE6 as 19.1?±?1.4 and 22.8?±?2.0?mm against A. niger and C. albicans, respectively, along with desired globular size (49.5?±?1.5?nm), zeta potential (?24.59?mV) and spherical morphology. AmB-NE6 revealed slow and sustained release of AmB as compared to DS in buffer solution (pH 7.4). Furthermore, AmB-NE6 elicited the highest flux rate (22.88?±?1.7?μg/cm2/h) as compared to DS (2.7?±?0.02?μg/cm2/h) and Fungisome® (11.5?±?1.0?μg/cm2/h). Moreover, the enhancement ratio and drug deposition were found to be highest in AmB-NE6 than DS across the stratum corneum barrier. Finally, CLSM results corroborated enhanced penetration of the AmB-NE6 across the skin as compared to Fungisome® and DS suggesting an efficient, stable and sustained topical delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号