首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a discipline of public health, environmental health science is the study of the linkage from environmental pollution sources to eventual adverse health outcome. This progression may be divided into two components, (1) "exposure assessment," which deals with the source terms, environmental transport, human exposure routes, and internal dose, and (2) "health effects," which deals with metabolism, cell damage, DNA changes, pathology, and onset of disease. The primary goal of understanding the linkage from source to health outcome is to provide the most effective and efficient environmental intervention methods to reduce health risk to the population. Biomarker measurements address an individual response to a common external environmental stressor. Biomarkers are substances within an individual and are subdivided into chemical markers, exogenous metabolites, endogenous response chemicals, and complex adducts (e.g., proteins, DNA). Standard biomarker measurements are performed in blood, urine, or other biological media such as adipose tissue and lavage fluid. In general, sample collection is invasive, requires medical personnel and a controlled environment, and generates infectious waste. Exploiting exhaled breath as an alternative or supplement to established biomarker measurements is attractive primarily because it allows a simpler collection procedure in the field for numerous individuals. Furthermore, because breath is a gas-phase matrix, volatile biomarkers become more readily accessible to analysis. This article describes successful environmental health applications of exhaled breath and proposes future research directions from the perspective of U.S. Environmental Protection Agency (EPA) human exposure research.  相似文献   

2.
Toluene is a ubiquitous chemical that is commonly used for its solvent properties in industry and manufacturing, and is a component of many paint products. Because of its widespread use, there is potential for both occupational and nonoccupational dermal exposure to toluene. To understand the significance of these exposures, the dermal bioavailability of toluene was assessed in F344 male rats using a combination of real-time exhaled breath analysis and physiologically based pharmacokinetic (PBPK) modeling. Animals were exposed to toluene at 0.5 or 0.2 mg/ml aqueous concentration (0.05% or 0.02%) using a 2.5-cm-diameter occluded glass patch system attached to a clipper-shaved area on the back of the rat. Immediately following exposure, individual animals were placed in a glass off-gassing chamber and exhaled breath was monitored as chamber concentration in real time using an ion-trap mass spectrometer (MS/MS). The real-time exhaled breath profile clearly demonstrated the rapid absorption of toluene, with peak chamber concentrations observed within 1 h from the start of exposure. The PBPK model describing the exposure and off-gassing chamber was used to estimate a dermal permeability coefficient ( K p ) to describe each set of exhaled breath data. Regardless of exposure level, a single K p value of 0.074 - 0.005 cm/h provided a good fit to all data sets. These rat studies using aqueous toluene will form the basis for comparing the dermal bioavailability of toluene in various paint products and may ultimately aid in understanding human health risk under a variety of exposure scenarios.  相似文献   

3.
Biomonitoring data provide evidence of human exposure to environmental chemicals by quantifying the chemical or its metabolite in a biological matrix. To better understand the correlation between biomonitoring data and environmental exposure, physiologically based pharmacokinetic (PBPK) modeling can be of use. The objective of this study was to use a combined PBPK model with an exposure model for showering to estimate the intake concentrations of chloroform based on measured blood and exhaled breath concentrations of chloroform. First, the predictive ability of the combined model was evaluated with three published studies describing exhaled breath and blood concentrations in people exposed to chloroform under controlled showering events. Following that, a plausible exposure regimen was defined combining inhalation, ingestion, and dermal exposures associated with residential use of water containing typical concentrations of chloroform to simulate blood and exhaled breath concentrations of chloroform. Simulation results showed that inhalation and dermal exposure could contribute substantially to total chloroform exposure. Next, sensitivity analysis and Monte Carlo analysis were performed to investigate the sources of variability in model output. The variability in exposure conditions (e.g., shower duration) was shown to contribute more than the variability in pharmacokinetics (e.g., body weight) to the predicted variability in blood and exhaled breath concentrations of chloroform. Lastly, the model was used in a reverse dosimetry approach to estimate distributions of exposure consistent with concentrations of chloroform measured in human blood and exhaled breath.  相似文献   

4.
Toluene is a ubiquitous chemical that is commonly used for its solvent properties in industry and manufacturing, and is a component of many paint products. Because of its widespread use, there is potential for both occupational and nonoccupational dermal exposure to toluene. To understand the significance of these exposures, the dermal bioavailability of toluene was assessed in F344 male rats using a combination of real-time exhaled breath analysis and physiologically based pharmacokinetic (PBPK) modeling. Animals were exposed to toluene at 0.5 or 0.2 mg/ml aqueous concentration (0.05% or 0.02%) using a 2.5-cm-diameter occluded glass patch system attached to a clipper-shaved area on the back of the rat. Immediately following exposure, individual animals were placed in a glass off-gassing chamber and exhaled breath was monitored as chamber concentration in real time using an ion-trap mass spectrometer (MS/MS). The real-time exhaled breath profile clearly demonstrated the rapid absorption of toluene, with peak chamber concentrations observed within 1 h from the start of exposure. The PBPK model describing the exposure and off-gassing chamber was used to estimate a dermal permeability coefficient (K(p)) to describe each set of exhaled breath data. Regardless of exposure level, a single K(p) value of 0.074 +/- 0.005 cm/h provided a good fit to all data sets. These rat studies using aqueous toluene will form the basis for comparing the dermal bioavailability of toluene in various paint products and may ultimately aid in understanding human health risk under a variety of exposure scenarios.  相似文献   

5.
Environmental health science aims to link environmental pollution sources to adverse health outcomes to develop effective exposure intervention strategies that reduce long-term disease risks. Over the past few decades, the public health community recognized that health risk is driven by interaction between the human genome and external environment. Now that the human genetic code has been sequenced, establishing this “G × E” (gene–environment) interaction requires a similar effort to decode the human exposome, which is the accumulation of an individual’s environmental exposures and metabolic responses throughout the person’s lifetime. The exposome is composed of endogenous and exogenous chemicals, many of which are measurable as biomarkers in blood, breath, and urine. Exposure to pollutants is assessed by analyzing biofluids for the pollutant itself or its metabolic products. New methods are being developed to use a subset of biomarkers, termed bioindicators, to demonstrate biological changes indicative of future adverse health effects. Typically, environmental biomarkers are assessed using noninvasive (excreted) media, such as breath and urine. Blood is often avoided for biomonitoring due to practical reasons such as medical personnel, infectious waste, or clinical setting, despite the fact that blood represents the central compartment that interacts with every living cell and is the most relevant biofluid for certain applications and analyses. The aims of this study were to (1) review the current use of blood samples in environmental health research, (2) briefly contrast blood with other biological media, and (3) propose additional applications for blood analysis in human exposure research.  相似文献   

6.
The clinical utility of biomarkers in asthma and COPD   总被引:1,自引:0,他引:1  
Biomarkers with potential utility in the diagnosis and prognosis of asthma and chronic obstructive pulmonary disease (COPD), and in monitoring the natural history of these diseases and the effect of therapeutic interventions, are being widely researched. This review critically describes the methodologies used for obtaining and analysing appropriate biofluid, tissue and exhaled breath samples for biomarker analysis. Currently measurements of sputum eosinophils and exhaled nitric oxide in asthmatics are the best established markers for disease activity and response to anti-inflammatory therapy. Circulating C-reactive protein (CRP) levels have been shown to predict risk of hospitalisation and death from COPD. Biomarker measurements in exhaled breath condensate are the least well-validated techniques. Other assessments in both conditions have potential value in clinical use but require further research and validation.  相似文献   

7.
8.
The pharmacokinetics of 1,1,1-trichloroethane (TRI) was studied in male Sprague-Dawley rats in order to characterize and quantify TRI uptake and elimination oby direct measurements of the inhaled and exhaled compound. Fifty or 500 ppm TRI was inhaled for 2 hr through a one-way breathing valve by unanesthetized rats of 325-375 g. Repetitive samples of the separate inhaled and exhaled breath streams, as well as arterial blood, were collected concurrently both during and following TRI inhalation and analyzed for TRI by gas chromatography. Respiratory rates and volumes were continuously monitored during and following exposure and were used in conjunction with the pharmacokinetic data to characterize profiles of uptake and elimination. TRI was very rapidly absorbed from the lung, in that substantial levels were present in arterial blood at the first sampling time (i.e., 2 min). Blood and exhaled breath concentrations of TRI increased rapidly after the initiation of exposure, approaching but not reaching steady state during the 2-hr exposures. The blood and exhaled breath concentrations were directly proportional to the exposure concentration during the exposures. Percentage uptake of TRI decreased 30-35% during the first hour of inhalation, diminishing to approximately 45-50% by the end of the exposure. Total cumulative uptake in the 50 and 500 ppm groups over the 2-hr inhalation exposures was determined to be 6 and 48 mg/kg body wt, respectively. By the end of the exposure period, 2.1 and 20.8 mg, respectively, of inhaled TRI was eliminated from rats inhaling 50 and 500 ppm TRI. A physiological pharmacokinetic model for TRI inhalation was utilized to predict blood and exhaled breath concentrations for comparison with observed experimental values. Overall, values predicted by the physiological pharmacokinetic model for TRI levels in the blood and exhaled breath were in close agreement with measured values both during and following TRI inhalation.  相似文献   

9.
Exposure to the range of combustion products from wildland fires has been demonstrated to cause respiratory irritation and decreased lung function among firefighters. The measurement of carbon monoxide (CO) has been previously shown to be highly correlated with the range of contaminants found in wildland fires. In this article, we assess the feasibility of using a simple, noninvasive biological test to assess exposure to CO for a group of wildland firefighters. Measurements of CO exposure were collected using personal monitors as well as in exhaled breath for wildland firefighters who conducted prescribed burns in February-March 2004. Overall, the CO concentrations measured in this study group were low with a shift mean of 1.87 ppm. Correspondingly, the cross-shift difference in carboxyhemoglobin as estimated from exhaled breath CO levels was also low (median increase =+0.2% carboxyhemoglobin). The use of exhaled breath measurements for CO has limitations in characterizing exposures within this worker population.  相似文献   

10.
The development and validation of noninvasive techniques for estimating the dermal bioavailability of solvents in contaminated soil and water can facilitate the overall understanding of human health risk. To assess the dermal bioavailability of trichloroethylene (TCE), exhaled breath was monitored in real time using an ion trap mass spectrometer (MS/MS) to track the uptake and elimination of TCE from dermal exposures in rats and humans. A physiologically based pharmacokinetic (PBPK) model was used to estimate total bioavailability. Male F344 rats were exposed to TCE in water or soil under occluded or nonoccluded conditions by applying a patch to a clipper-shaved area of the back. Rats were placed in off-gassing chambers and chamber air TCE concentration was quantified for 3-5 h postdosing using the MS/MS. Human volunteers were exposed either by whole-hand immersion or by attaching patches containing TCE in soil or water on each forearm. Volunteers were provided breathing air via a face mask to eliminate inhalation exposure, and exhaled breath was analyzed using the MS/MS. The total TCE absorbed and the dermal permeability coefficient (K(P)) were estimated for each individual by optimization of the PBPK model to the exhaled breath data and the changing media and/or dermal patch concentrations. Rat skin was significantly more permeable than human skin. Estimates for K(P) in a water matrix were 0.31 +/- 0.01 cm/h and 0.015 +/- 0.003 cm/h in rats and humans, respectively. K(P) estimates were more than three times higher from water than soil matrices in both species. K(P) values calculated using the standard Fick's Law equation were strongly affected by exposure length and volatilization of TCE. In comparison, K(P) values estimated using noninvasive real-time breath analysis coupled with the PBPK model were consistent, regardless of volatilization, exposure concentration, or duration.  相似文献   

11.
李琦  郭雷  李恩有 《安徽医药》2019,23(6):1061-1064
近年来,胃癌的发病率和病死率都呈现上升趋势,已成为威胁健康的重大疾病之一,其诊断方法一直备受关注。由于呼出气诊断癌症具有无创、依从性高、易于操作、临床应用前景广等优点,目前已经成为癌症诊断的热门研究方向。现将胃癌呼出气诊断的相关研究进展进行归纳总结。介绍目前应用于胃癌呼出气研究的分析技术,并主要阐述呼出气挥发性有机化合物、呼出气冷凝液中与胃癌相关的肿瘤标志物,以期为呼出气早期筛查和诊断胃癌提供更多的参考依据。  相似文献   

12.
Biomarkers are useful exposure surrogates given their ability to integrate exposures through all routes and to reflect interindividual differences in toxicokinetic processes. Also, biomarker concentrations tend to vary less than corresponding environmental measurements, making them less-biasing surrogates for exposure. In this article, urinary PAH biomarkers (namely, urinary naphthalene [U-Nap]; urinary phenanthrene [U-Phe]; 1-hydroxypyrene [1-OH-Pyr]; and 1-, (2+3)-, 4-, and 9-hydroxyphenanthrene [1-, (2+3)-, 4-, and 9-OH-Phe]) were evaluated as surrogates for exposure to hot asphalt emissions using data from 20 road-paving workers. Linear mixed-effects models were used to estimate the within- and between-person components of variance for each urinary biomarker. The ratio of within- to between-person variance was then used to estimate the biasing effects of each biomarker on a theoretical exposure–response relationship. Mixed models were also used to estimate the amounts of variation in Phe metabolism to individual OH-Phe isomers that could be attributed to Phe exposure (as represented by U-Phe concentrations) and covariates representing time, hydration level, smoking status, age, and body mass index. Results showed that 1-OH-Phe, (2+3)-OH-Phe, and 1-OH-Pyr were the least-biasing surrogates for exposure to hot asphalt emissions, and that effects of hydration level and sample collection time substantially inflated bias estimates for the urinary biomarkers. Mixed-model results for the individual OH-Phe isomers showed that between 63% and 82% of the observed biomarker variance was collectively explained by Phe exposure, the time and day of sample collection, and the hydration level, smoking status, body mass index, and age of each worker. By difference, the model results also showed that, depending on the OH-Phe isomer, a maximum of 6–23% of the total biomarker variance was attributable to differences in unobserved toxicokinetic processes between the workers. Therefore, toxicokinetic processes are probably less influential on urinary biomarker variance than are exposures and observable covariate effects. The methods described in this analysis should be considered for the selection and interpretation of biomarkers as exposure surrogates in future exposure investigations.  相似文献   

13.
Xylene is a clear, colorless liquid used as a solvent in the printing, rubber, and leather industries and is commonly found in paint thinners, paints, varnishes, and adhesives. Although humans are most likely to be exposed to xylene via inhalation, xylene is also found in well and surface water. Therefore, an assessment of the dermal contribution to total xylene uptake is useful for understanding human exposures. To evaluate the significance of these exposures, the dermal absorption of o-xylene was assessed in F344 male rats and human volunteers using a combination of real-time exhaled breath analysis and physiologically based pharmacokinetic (PBPK) modeling. Animals were exposed to o-xylene dermally. Immediately following the initiation of exposure, individual animals were placed in a glass off-gassing chamber and exhaled breath was monitored. Human volunteers participating in the study placed both legs into a stainless steel hydrotherapy tub containing an initial concentration of approximately 500 microg/L o-xylene. Exhaled breath was continually analyzed from each volunteer before, during, and after exposure to track absorption and subsequent elimination of the compound in real time. In both animal and human studies, a PBPK model was used to estimate the dermal permeability coefficient (K(p)) to describe each set of exhaled breath data. Rat skin was found to be approximately 12 times more permeable to aqueous o-xylene than human skin. The estimated human and rat aqueous o-xylene K(p) values were 0.005 +/- 0.001 cm/h and 0.058 +/- 0.009 cm/h, respectively.  相似文献   

14.
Analysis of exhaled breath condensate for monitoring airway inflammation   总被引:9,自引:0,他引:9  
Several inflammatory mediators have been identified in the exhaled breath condensate (EBC) that is formed by breathing through a cooling system. Analysis of EBC is a noninvasive method that allows repeat measurements of lung inflammation and is potentially useful for monitoring drug therapy. Characterization of the profiles of exhaled markers could help to discriminate between different inflammatory lung diseases; thus, EBC might be a novel, noninvasive approach to monitoring lung diseases. However, several methodological issues, such as standardization of sample collection and validation of analytical techniques, need to be addressed before this method can be applied clinically. Controlled studies are needed to establish the utility of EBC markers for guiding pharmacological treatment in inflammatory lung diseases.  相似文献   

15.
Health risks from ostensible occupational and environmental toxicant exposure are difficult to quantify. Maximal use of limited biological measurements of xenobiotic or metabolite concentration in the body is therefore essential. Elimination rates of exhaled [2H8]toluene and urinary metabolites were analyzed from 33 exposures of males to 50 ppm [2H8]toluene for 2 h at rest. It was hypothesized that the shapes from our decay curves would be applicable to any occupational or environmental toluene exposure. Except for a rapid decline in toluene blood and breath levels in the 0-0.1 h period, this "curve reconstruction" method successfully fit data from published studies. Urinary hippuric acid concentrations were not well fit due to substantial background levels, whereas o-cresol levels were accurately described. Our approach was able to reconstruct data from studies where exposure duration ranged from 10 min to 7 h, and where activity level ranged from rest to 150 W (strenuous exercise). Using this approach, limited biological data following toluene exposure could be back-extrapolated to immediate postexposure concentrations, which in turn could be compared to biological indicators of exposure to determine risk.  相似文献   

16.
Smoking conventional lit-end cigarettes results in exposure of nonsmokers to potentially harmful cigarette smoke constituents present in environmental tobacco smoke (ETS) generated by sidestream smoke emissions and exhaled mainstream smoke. ETS constituent concentrations generated by a conventional lit-end cigarette and a newly developed electrically heated cigarette smoking system (EHCSS) that produces only mainstream smoke and no sidestream smoke emissions were investigated in simulated “office” and “hospitality” environments with different levels of baseline indoor air quality. Smoking the EHCSS (International Organisation for Standardization yields: 5 mg tar, 0.3 mg nicotine, and 0.6 mg carbon monoxide) in simulated indoor environments resulted in significant reductions in ETS constituent concentrations compared to when smoking a representative lit-end cigarette (Marlboro: 6 mg tar, 0.5 mg nicotine, and 7 mg carbon monoxide). In direct comparisons, 24 of 29 measured smoke constituents (83%) showed mean reductions of greater than 90%, and 5 smoke constituents (17%) showed mean reductions between 80% and 90%. Gas–vapor phase ETS markers (nicotine and 3-ethenylpyridine) were reduced by an average of 97% (range 94–99%). Total respirable suspended particles, determined by online particle measurements and as gravimetric respirable suspended particles, were reduced by 90% (range 82–100%). The mean and standard deviation of the reduction of all constituents was 94?±?4%, indicating that smoking the new EHCSS in simulated “office” and “hospitality” indoor environments resulted in substantial reductions of ETS constituents in indoor air.  相似文献   

17.
The ambient air of urban centres is polluted with potentially toxic chemicals mostly arising from the combustion or fuels used for transport. Among these compounds, benzene raises particular concern due to its haematoxicity and leukaemogenic risks. Although limits of benzene in air have been established in the European Union (5 microg/m(3)), individual exposure levels--and therefore risk estimates--cannot merely be extrapolated from environmental concentrations. Molecular epidemiology can facilitate health risk assessment by investigating the relationship between exposure to environmental pollutants and quantification of biomarkers that lie on the pathway of carcinogenesis upstream of clinical disease. We review the available for biomarker studies regarding health risks linked to environmental benzene exposure, and make some suggestions for future work.  相似文献   

18.
Various hydrofluorocarbons (HFCs) have replaced the ozone-depleting chlorofluorocarbons and hydrochlorofluorocarbons during the last decades. The objective of this study was to examine the usefulness of blood and breath for exposure biomonitoring of HFCs. We compared data on blood and exhaled air from a series of experiments where healthy volunteers were exposed to vapors of four commonly used HFCs; 1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, and 1,1,1,3,3-pentafluoropropane. All four HFCs had similar toxicokinetic profiles in blood with a rapid initial increase and an apparent steady-state reached within a few minutes. For all HFCs, the inhalation uptake during exposure was low (less than 6%), most of which was exhaled post-exposure. No metabolism could be detected and only minor amounts were excreted unchanged in urine. The observed time courses in blood and breath were well described by physiologically-based pharmacokinetic (PBPK) modeling. Simulations of 8-h exposures show that the HFC levels in both blood and breath drop rapidly during the first minutes post-exposure, whereafter the decline is considerably slower and mainly reflects washout from fat tissues. We conclude that blood and exhaled air can be used for biological exposure monitoring. Samples should not be taken immediately at the end of shift but rather 20–30 min later.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号