首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
The morphology was studied of hippocampal neurons which had their somata in the hilus of the area dentata, and in stratum radiatum or stratum oriens of Ammon's horn, and which sent projections to the septum and contralateral hippocampus, respectively. The fluorescent marker Fast Blue was injected into the septum or contralateral hippocampus. Somata were then identified by their fluorescent label in slices of perfused brains. After intracellular injection of these somata with Lucifer Yellow, it was found that contralaterally projecting neurons were pyramidal cells, inverted fusiform and multipolar cells in CA3c, and stellate, fusiform and multipolar cells in the hilus. After septal injections, we identified two groups of aspiny stellate cells in the hilus; pyramidal basket cells, polygonal basket cells, horizontal basket cells in stratum oriens; and stellate cells in stratum radiatum of CA1 and CA3, as well as pyramid-like aspiny cells in stratum radiatum of CA1. These cells also had short locally arborizing axons, thus probably contributing to local circuits. Such cells may constitute a third class of hippocampal neurons combining the properties of principal cells and interneurons. These results support the opinion that the simple concept of separating hippocampal cells into projection neurons and local-circuit neurons needs reconsideration.  相似文献   

2.
A subset of GABAergic neurons projecting to the medial septum has long been described in the hippocampus. However, the lack of information about their local connectivity pattern or their correspondence with any of the well-established hippocampal interneuron types has hampered the understanding of their functional role. Retrograde tracing combined with immunostaining for neurochemical markers in the adult rat hippocampus showed that nearly all hippocampo-septal (HS) neurons express somatostatin (>95%) and, in the hilus and CA3 stratum lucidum, many contain calretinin (>45%). In contrast, in stratum oriens of the CA1 and CA3 subfields, the majority of HS neurons contain somatostatin (>86%) and calbindin (>73%), but not calretinin. Because somatostatin-positive hippocampal interneurons have been most extensively characterized in the stratum oriens of CA1, we focused our further analysis on HS cells found in this region. In 18-20-day-old rats, intracellularly filled CA1-HS cells had extensive local axon collaterals crossing subfield boundaries and innervating the CA3 region and the dentate gyrus. Electron microscopic analysis provided evidence that the axon terminals of CA1-HS cells form symmetrical synapses selectively on GABAergic interneurons, both locally and in the CA3 region. In addition, double retrograde labelling experiments revealed that many CA1-HS neurons of the dorsal hippocampus also have collateral projections to the ventral hippocampus. Thus, CA1-HS cells innervate inhibitory interneurons locally and in remote hippocampal regions, in addition to targeting mostly GABAergic neurons in the medial septum. This dual projection with striking target selectivity for GABAergic neurons may be ideally suited to synchronize neuronal activity along the septo-hippocampal axis.  相似文献   

3.
The two main glutamatergic pathways to the CA1 area, the Schaffer collateral/commissural input and the entorhinal fibers, as well as the local axons of CA1 pyramidal cells innervate both pyramidal cells and interneurons. To determine whether these inputs differ in their weights of activating GABAergic circuits, we have studied the relative proportion of pyramidal cells and interneurons among their postsynaptic targets in serial electron microscopic sections. Local axons of CA1 pyramidal cells, intracellularly labeled in vitro or in vivo, innervated a relatively high proportion of interneuronal postsynaptic targets (65.9 and 53.8%, in vitro and in vivo, respectively) in stratum (str.) oriens and alveus. In contrast, axons of in vitro labeled CA3 pyramidal cells in str. oriens and str. radiatum of the CA1 area made synaptic junctions predominantly with pyramidal cell spines (92.9%). The postsynaptic targets of anterogradely labeled medial entorhinal cortical boutons in CA1 str. lacunosum-moleculare were primarily pyramidal neuron dendritic spines and shafts (90.8%). The alvear group of the entorhinal afferents, traversing str. oriens, str. pyramidale, and str. radiatum showed a higher preference for innervating GABAergic cells (21.3%), particularly in str. oriens/alveus. These data demonstrate that different glutamatergic pathways innervate CA1 GABAergic cells to different extents. The results suggest that the numerically smaller CA1 local axonal inputs together with the alvear part of the entorhinal input preferentially act on GABAergic interneurons in contrast to the CA3, or the entorhinal input in str. lacunosum-moleculare. The results highlight differences in the postsynaptic target selection of the feed-forward versus recurrent glutamatergic inputs to the CA1 and CA3 areas.  相似文献   

4.
Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra‐ and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo‐axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum‐moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate‐keeper modulating the spatial memory flow to the PC distal dendrites in a frequency‐dependent manner. A mechanism for spike‐timing‐dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
《Brain research bulletin》2009,78(6):374-381
It has been hypothesized that intra-hippocampal GABAergic inhibitory interneurons mediate formalin pain-induced suppression of dorsal hippocampal CA1 pyramidal cell discharge. The present study performed on anaesthetized rats tested the hypothesis by disrupting GABAergic mechanisms with intra-hippocampal administration of the GABAA receptor antagonist bicuculline methiodide, applied either dorsally into the pyramidal cell layer and stratum oriens (dorsal-bicuculline) or ventrally into the region of apical dendrites (ventral-bicuculline). It was found that ventral-, but not dorsal-bicuculline attenuated formalin-induced suppression of pyramidal cell extracellular discharge. The antagonism was selective in such a way that the excitation of pyramidal cell was unaffected. Interestingly, ventral-bicuculline strongly disinhibited CA1 pyramidal cells and shifted the distribution of their spontaneous discharge to values higher than the control group. However, dorsal-bicuculline disinhibited the local CA1 interneurons that were strongly excited on injection of formalin. Overall, the findings favour the notion that tonic GABAA receptor mechanisms located in the region of apical dendrites facilitate formalin-induced pyramidal cell suppression by masking the background excitatory drive impinging on the pyramidal cells. Interestingly, both the attenuation of formalin-induced inhibition and facilitation of basal discharge of CA1 pyramidal cells by ventral-bicuculline are similar to the effects seen previously with the destruction of medial septal cholinergic neurons. This convergence of effects strengthens the proposal that the network of medial septal cholinergic neurons and hippocampal GABAergic interneurons influence formalin pain-induced CA1 pyramidal cell suppression. In addition, the data point to a non-overlapping excitatory drive whose strength is unaffected by the inhibitory drive that underpins formalin suppression.  相似文献   

6.
It has been hypothesized that intra-hippocampal GABAergic inhibitory interneurons mediate formalin pain-induced suppression of dorsal hippocampal CA1 pyramidal cell discharge. The present study performed on anaesthetized rats tested the hypothesis by disrupting GABAergic mechanisms with intra-hippocampal administration of the GABA(A) receptor antagonist bicuculline methiodide, applied either dorsally into the pyramidal cell layer and stratum oriens (dorsal-bicuculline) or ventrally into the region of apical dendrites (ventral-bicuculline). It was found that ventral-, but not dorsal-bicuculline attenuated formalin-induced suppression of pyramidal cell extracellular discharge. The antagonism was selective in such a way that the excitation of pyramidal cell was unaffected. Interestingly, ventral-bicuculline strongly disinhibited CA1 pyramidal cells and shifted the distribution of their spontaneous discharge to values higher than the control group. However, dorsal-bicuculline disinhibited the local CA1 interneurons that were strongly excited on injection of formalin. Overall, the findings favour the notion that tonic GABA(A) receptor mechanisms located in the region of apical dendrites facilitate formalin-induced pyramidal cell suppression by masking the background excitatory drive impinging on the pyramidal cells. Interestingly, both the attenuation of formalin-induced inhibition and facilitation of basal discharge of CA1 pyramidal cells by ventral-bicuculline are similar to the effects seen previously with the destruction of medial septal cholinergic neurons. This convergence of effects strengthens the proposal that the network of medial septal cholinergic neurons and hippocampal GABAergic interneurons influence formalin pain-induced CA1 pyramidal cell suppression. In addition, the data point to a non-overlapping excitatory drive whose strength is unaffected by the inhibitory drive that underpins formalin suppression.  相似文献   

7.
Nerve growth factor receptor immunoreactivity in the septohippocampal pathway of adult Fischer 344 rats was assessed at the light and electron microscope level. The medial septum possesses immunoreactive somata, dendrites, axons, and terminals. Immunostained somata are either bipolar or multipolar in appearance. Dendritic processes of immunoreactive septal neurons are categorized into two groups: proximal dendrites with smooth plasma membranes and distal dendrites with numerous swellings. Immunoreactive axons within the septum are long and slender and do not possess varicosities. At the electron microscope level, immunoreactivity is confined predominantly to the plasma membrane of cell bodies and dendrites of septal neurons, as well as to the plasma membrane of axons and terminals. Both immunoreactive and nonimmunoreactive terminals that contain clear, spherical vesicles are observed contacting immunoreactive dendrites and somata. Although accumulations of vesicles are evident within these terminals at sites of contact, distinct synaptic specializations are difficult to distinguish due to the localization of reaction product on the apposing plasma membranes. Axons possessing immunoreactivity are also observed in the fimbria-fornix pathway, a major source of afferent inputs to the hippocampus. Immunoreactive axons and terminals are topographically organized in the hippocampal dentate gyrus. The density of immunostained axons and terminals is highest immediately adjacent to the granular layer. In comparison, a moderate density of immunoreactive axons is found in the outer molecular layer and a weak density in the inner molecular, granular, and polymorphic layers. Immunoreactivity is found on the plasma membrane of small unmyelinated axons and terminals aggregated into clusters throughout the dentate gyrus. Definitive examples of axosomatic and axodendritic synapses possessing immunoreactivity presynaptically are not observed. Immunoreactive profiles within the medial septum and hippocampus also circumfuse a small number of intracerebral vessels. Ultrastructural examination reveals that immunoreactivity is present within a narrowed extension of the subarachnoid space and appears to be closely associated with the plasma membrane of leptomeningeal cell processes. The present study provides direct evidence for the cellular distribution of nerve growth factor receptor immunoreactivity in the medial septum and dentate gyrus in the adult rat and offers new insight into the ultrastructural localization of nerve growth factor receptor among septal cholinergic neurons and their efferent projections to the hippocampus.  相似文献   

8.
Long‐range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O‐LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin‐labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave‐ripples, most projection cells, including a novel SOM+ GABAergic back‐projecting cell, increased their activity similar to bistratified cells, but unlike O‐LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O‐LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior‐ and network state‐dependent binding of neuronal assemblies amongst functionally‐related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.  相似文献   

9.
Electrophysiological and anatomical techniques were used to determine the role, in the hippocampal circuitry, of local circuit neurons located at the oriens/alveus border (O/A interneurons). Intracellular recording from these cells showed that their response characteristics were clearly nonpyramidal: high input resistance, short membrane time constant, short-duration action potential, pronounced, brief afterhyperpolarizations (AHP), and nondecremental firing during intrasomatic depolarizing current pulses. Intracellular Lucifer yellow (LY) injection and subsequent fluorescence microscopy confirmed their nonpyramidal nature. O/A interneuron somata were bipolar or multipolar; their dendrites projected mostly parallel to the alveus, except for 1 or 2 processes that turned perpendicularly, and ascended through stratum oriens and pyramidale and into radiatum. Their axons were seen to branch profusely in stratum oriens and pyramidale. Simultaneous intracellular recordings from O/A interneurons and CA 1 pyramidal cells showed that pyramidal cells directly excite these interneurons. Major hippocampal afferents also directly excited the O/A interneurons. In a small number of interneuron-pyramidal pairs, stimulation of the O/A interneuron directly inhibited pyramidal cells. In one case, reciprocal connections were observed: The pyramidal cell excited the interneuron, and the interneuron inhibited the pyramidal cell. In 1 interneuron-to-interneuron pair, an inhibitory connection from O/A interneuron to stratum pyramidale interneuron was also observed. With intracellular HRP injections into O/A interneurons and subsequent electron microscopy, we observed that O/A interneuron axons made contacts with pyramidal and nonpyramidal cells. HRP-filled symmetric synaptic contacts were found on pyramidal cell dendrites and somata. HRP-filled axons also made contacts with pyramidal cell initial segments. HRP-filled O/A interneuron axon contacts were also found on nonpyramidal cell dendrites in stratum oriens. These electrophysiological and anatomical results suggest that O/A interneurons make synaptic contact with pyramidal cells and may mediate feedforward and feedback inhibition onto CA 1 pyramidal cells.  相似文献   

10.
Immunocytochemical techniques have been used to identify a striking interneuronal population which is immunoreactive for the peptide, somatostatin. The cell population, which is seen most densely in stratum oriens and at the oriens/alveus border of the CA1 region of rabbit hippocampus, was characterized in light and electron microscopic observations. The cells have dendrites which extend parallel to and into the alveus, with occasional processes ascending through stratum pyramidale toward the hippocampal fissure. The dendrites receive numerous synaptic contacts directly onto aspinous dendritic shafts. Axon collaterals ramify profusely within the pyramidale region, and among the proximal apical and basal pyramidal cell dendrites in areas of stratum radiatum and stratum oriens. Somatostatin-like immunoreactive terminals make synaptic contact, primarily of the symmetric type, with the somata and proximal dendrites of pyramidal neurons. Somatostatin-like neurons are found at approximately equal density in the hippocampus of immature (8 days postnatal) and mature (30 days postnatal) rabbit. Double-labelling techniques, to identify both somatostatin-like and glutamic acid decarboxylase (GAD) immunoreactive neurons, demonstrated that a large proportion of the somatostatin neurons were also GABAergic.  相似文献   

11.
Light and electron microscopic immunocytochemical techniques were used to study the interneuron population staining for somatostain (SRIF) in cultured slices of rat hippocampus. The SRIF immunoreactive somata were most dense in stratum oriens of areas CA1 and CA3, and in the dentate hilus. Somatostain immunoreactive cells in areas CA1 and CA3 were characteristically fusiform in shape, with dendrites that extended both parallel to and into the alveus. The axonal plexus in areas CA1 and CA3 was most dense in stratum lacunosum-moleculare and in stratum pyramidale. Electron microscopic analysis of this area revealed that the largest number of symmetric synaptic contacts from SRIF immunoreactive axons were onto pyramidal cell somata and onto dendrites in stratum lacunosum-moleculare. In the dentate gyrus, SRIF somata and dendrites were localized in the hilus. Hilar SRIF immunoreactive neurons were fusiform in shape and similar in size to those seen in CA1 and CA3. Axon collaterals coursed throughout the hilus, projected between the granule cells and into the outer molecular layer. The highest number of SRIF synaptic contacts in the dentate gyrus were seen on granule cell dendrites in the outer molecular layer. Synaptic contacts were also observed on hilar neurons and granule cell somata. SRIF synaptic profiles were seen on somata and dendrites of interneurons in all regions. The morphology and synaptic connectivity of SRIF neurons in hippocampal slice cultures appeared generally similar to intact hippocampus. © 1994 Wiley-Liss, Inc.  相似文献   

12.
Intracellular recordings were obtained from nonpyramidal neurons (interneurons) in stratum lacunosum-moleculare (L-M) of the CA1 region of guinea pig hippocampal slices. These interneurons had response characteristics that distinguish them from pyramidal cells and other interneuron types: the L-M neurons had relatively broad action potentials with large spike afterhyperpolarizations, high input resistance and little spike-firing adaptation, and low spontaneous activity. Lucifer Yellow (LY) and horseradish peroxidase (HRP) were injected intracellularly into physiologically identified L-M interneurons, and the cells were characterized morphologically using light and electron microscopy. L-M somata were fusiform-shaped (15 x 25 micron), had multiple processes, and were located at the border between stratum (str.) lacunosum-moleculare and str. radiatum. L-M dendrites coursed through str. lacunosum-moleculare and projected into str. radiatum. L-M axons made axodendritic synaptic contacts primarily in str. lacunosum-moleculare and str. radiatum, but also in str. moleculare of the dentate gyrus. These axodendritic synaptic contacts were made onto spiny dendritic processes (presumably pyramidal cell and granule cell dendrites) and onto aspinous dendrites (presumably interneuron dendrites), and appeared to be of the symmetric type (type 2), characteristic of inhibitory synapses. In separate groups of animals, selective lesions were made of afferents to the CA1 and dentate regions of hippocampus, and subsequent degeneration of contacts and L-M interneuron somata and dendrites was examined at the ultrastructural level. Fibers originating from contralateral and ipsilateral CA3 region, and from ipsilateral entorhinal cortex, were found to make synaptic contact onto presumed L-M interneurons. Degenerating terminals appeared to be of the asymmetric type (type 1), characteristic of excitatory synapses. These morphological data are consistent with electrophysiological results showing that L-M interneurons can mediate feedforward inhibition of CA1 pyramidal cells.  相似文献   

13.
The neuron-specific potassium-chloride cotransporter 2 (KCC2) plays a crucial role in adjusting intracellular Cl(-) concentrations. The lack of KCC2 in the plasma membrane of the axon initial segment (AIS) of pyramidal cells contributes to variable reversal potentials for perisomatic γ-aminobutyric acid (GABA)(A) receptor-mediated postsynaptic potentials, but the distribution of KCC2 in pyramidal dendrites remains to be established. We applied high-resolution pre-embedding immunolocalization to quantify KCC2 concentrations along dendritic, somatic and axonal regions of rat hippocampal principal cells. Confirming our results on neocortical pyramidal cells, membranes of AIS of CA1 pyramidal cells and dentate granule cells contained 6.4 ± 11.9% and 6.6 ± 14.1% of somatic KCC2 concentrations, respectively. Concentrations of KCC2 in basal dendritic shafts of stratum (str.) oriens were similar to somatic levels (109.2 ± 48.8%). Along apical dendritic shafts of CA1 pyramidal cells, the concentration of KCC2 showed a complex profile: normalized to somatic levels, the density of KCC2 was 124.5 ± 15.7%, 79 ± 12.4% and 98.2 ± 33.5% in the proximal and distal part of str. radiatum and in str. lacunosum moleculare, respectively. Dendritic spines of CA1 receiving excitatory inputs contained 39.9 ± 8.5% of KCC2 concentration measured in shafts of the same dendritic segments targeted by GABAergic inputs. Dendrites of dentate granule cells showed higher KCC2 concentration compared with the soma (148.9 ± 54%), but no concentration gradient was detected between proximal and distal dendrites. In conclusion, the density of KCC2 in hippocampal principal cells increases along the axo-somato-dendritic axis with cell type-specific distribution profiles within the dendritic tree.  相似文献   

14.
Brain 5-HT2A receptors have been implicated in various behavioural and physiological processes including hippocampus-dependent learning and memory. To clarify the cellular localization and chemical identity of 5-HT2A receptor-immunoreactive (-ir) neurons in the rat septal complex and dorsal hippocampus, an immunofluorescence histochemical study was performed using a monoclonal antibody to the 5-HT2A receptor. Pretreatment with colchicine increased the number of 5-HT2A receptor-ir cell bodies, indicating that the 5-HT2A receptor protein undergoes microtubule-dependent anterograde transport in axons and dendrites. 5-HT2A receptor immunoreactivity was detected in septal cholinergic neurons, identified with an antiserum to the vesicular acetylcholine transporter (VAChT), and in GABAergic cell bodies in the medial septum/diagonal band of Broca, identified with antisera to glutamic acid decarboxylase (GAD) and the calcium-binding protein parvalbumin. In the dorsal hippocampus, 5-HT2A receptor immunoreactivity was demonstrated in cells located in the pyramidal cell layer (CA1-3) throughout the Ammon's horn and in the granular cell layer of the dentate gyrus. Furthermore, 5-HT2A receptor immunoreactivity was present in most hippocampal interneurons identified by the presence of GAD65, parvalbumin, calbindin D-28k, somatostatin and neuropeptide Y. In contrast, 5-HT2A receptor immunoreactivity was present in only a few interneurons containing cholecystokinin and calretinin immunoreactivity. The results suggest that serotonin acting on 5-HT2A receptors can modulate hippocampal functions via direct actions on hippocampal glutamatergic principal cells and indirectly via actions on hippocampal interneurons with different phenotypes as well as GABAergic and cholinergic septohippocampal neurons.  相似文献   

15.
We have described a method for the microtransplantation of a suspension of a few thousand cells from mid to late embryonic mouse hippocampi into the fimbria of immunosuppressed adult rat hosts. There was close graft-to-host contact, across a non-scarred interface. The transplanted cells included CA3 type pyramids, and were enclosed within the host myelinated fibre tract, whose glial framework was largely undisturbed. Immunohistochemistry of two species-specific markers (M6 and Thy-1.2) showed that the donor mouse neurons grew fine (<0.5 μm diameter) axons which extended singly or in fascicles through the rat host fimbria for a maximum distance of at least 10 mm. The donor axons were intimately integrated among and closely aligned to the host tract axons and to the interfascicular glial rows of the host tract. The axons travelled (i) laterally through the ipsilateral fimbria, (ii) medially across the midline in the ventral hippocampal commissure to reach the contralateral fimbria and alveus, and (iii) rostro-medially to the septum. On approaching the terminal fields appropriate to hippocampal CA3 pyramidal cell axons, the transplant axons gave rise to fine preterminal branches which were continuous with a reticular or amorphous immunoreactivity in the stratum oriens and stratum pyramidale of the ipsilateral hippocampus, and in the lateral and triangular septal nuclei. The donor axons extended along the host fimbria at a rate of ∼ 1 mm per day, reaching their terminal field destinations by ∼1–2 weeks. At 7 weeks the projections were maintained, but with little further extension. These observations indicate that the microenvironment of myelinated adult fibre tracts is permissive for an abundant and rapid growth of axons from transplanted embryonic cell suspensions. These axons can leave host tracts to invade appropriate terminal fields.  相似文献   

16.
The two neuronal populations that have been typically investigated in the septum use acetylcholine and GABA as neurotransmitters. The existence of noncholinergic, non-GABAergic, most likely glutamatergic septal neurons has recently been reported. However, their morphological characteristics, numbers, distribution, and connectivity have not been determined. Furthermore, the projection of septal glutamatergic neurons to the hippocampus has not been characterized. To address these issues, subpopulations of cholinergic and GABAergic neurons were identified by immunohistochemistry. In addition, the retrograde tracer fluorogold was injected into the hippocampus to determine the characteristics of a glutamatergic septo-hippocampal projection. Our work revealed that although glutamatergic neurons are found throughout the septum, they concentrate in medial septal regions. Using stereological probes, approximately 16,000 glutamatergic neurons were estimated in the medial septal region. Triple immunostaining showed that most glutamatergic neurons do not immunoreact with cholinergic or GABAergic neuronal markers (anti-ChAT or anti-GAD67 antibodies, respectively). Fluorogold injections into CA1, CA3, and dentate gyrus of the hippocampus showed that septal glutamatergic neurons project to each of these hippocampal regions, forming approximately 23% of the septo-hippocampal projection. Most cell bodies of septo-hippocampal glutamatergic neurons were located in the medial septum. The remaining cell bodies were found in the diagonal band. This data shows that glutamatergic neurons constitute a significant neuronal population in the septum and that a subpopulation of these neurons projects to hippocampal regions. Thus, the septo-hippocampal projection needs to be reconsidered as a three neurotransmitter pathway.  相似文献   

17.
Jinno S  Kosaka T 《Brain research》2002,945(2):219-231
The neurochemical contents of hippocamposeptal projecting nonprincipal neurons were examined in the mouse brain by using retrograde labeling techniques. We used the immunofluorescent multiple labeling method with a confocal laser-scanning microscope. First of all, the hippocamposeptal projecting nonprincipal neurons were glutamic acid decarboxylase 67-immunoreactive (IR), i.e., these hippocamposeptal projecting nonprincipal neurons were immunocytochemically GABAergic in the mouse brain. Next, most (93.0%) of the hippocamposeptal projecting GABAergic neurons were somatostatin-like immunoreactive (SS-LIR). The SS-LIR hippocamposeptal projecting neurons were frequently found in the stratum oriens of the CA1 and CA3 regions, and were also occasionally found in the stratum radiatum, stratum lucidum, and stratum pyramidale of the CA3 region. They were also frequently found in the dentate hilus. On the other hand, at least 40.6% of SS-LIR neurons in the hippocampus projected to the medial septum. Next, 38.0% of hippocamposeptal projecting GABAergic neurons were calbindin D28K (CB)-IR. Although the distribution of the CB-IR hippocamposeptal projecting neurons was generally similar to that of the SS-LIR projecting neurons in Ammon's horn, they were never seen in the dentate hilus. At least 22.1% of CB-IR GABAergic neurons in the hippocampus projected to the medial septum. Furthermore, 5.8% of hippocamposeptal projecting GABAergic neurons were parvalbumin-IR, which were most always found in Ammon's horn. Finally, no hippocamposeptal projecting GABAergic neurons were neuronal nitric oxide synthase-IR nor calretinin-IR. These results indicate that the SS-LIR neurons play a crucial role in the hippocamposeptal projection of the mouse brain, and they are also assumed to be involved in the theta oscillation of the mouse hippocampus.  相似文献   

18.
The CA2 region of the hippocampus has distinctive properties and inputs and may be linked with the pathology of specific psychiatric and neurological disorders. It is, therefore, important to understand CA2 circuitry and its involvement in the circuitry of the hippocampus. Properties of CA2 basket cells have been reported. However, other classes of CA2 interneurones with cell bodies located in stratum pyramidale remained to be described. In this study, the unusual axonal arbors of a novel subclass of dendrite‐preferring CA2 interneurones whose somata are located in the pyramidal cell layer was revealed following intracellular recordings and biocytin labeling. One to four apical dendrites emerged from the soma, branched in stratum radiatum (SR) forming a tuft, but rarely penetrated stratum lacunosum‐moleculare (SLM). One or two basal dendrites branched close to the soma, the branches extended through stratum oriens (SO) and often reached the alveus. Unlike CA2 bistratified cells, the axons of these cells arborized almost exclusively in SR with few, if any, branches extending to stratum pyramidale (SP), SO, or SLM. These interneurones again, unlike bistratified cells, were immunonegative for parvalbumin and cholecystokinin. Electrophysiologically, they were similar to some CA2 basket and bistratified cells in that they presented a “sag” in response to hyperpolarizing current injections and displayed spike frequency adaptation. They targeted the apical dendrites of neighboring CA2 pyramidal cells and received inputs from them. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The axonal arborization and postsynaptic targets of calbindin D28k (CB)-immunoreactive nonprincipal neurons have been studied in the rat dorsal hippocampus. Two types of neurons were distinguished on the basis of soma location, the characteristics of the dendritic tree, and the axon arborisation pattern. Type I cells were located in stratum radiatum of the CA1 and CA3 regions and occasionally in strata pyramidale and oriens. These cells had multipolar or bitufted dendritic trees primarily located in stratum radiatum. Their axons could be followed for a considerable distance, arborised within stratum radiatum, and were covered with regularly spaced small boutons. As demonstrated with postembedding immunogold staining, their axon terminals were γ-aminobutyric acid (GABA) immunoreactive, and formed symmetrical synapses pre-dominantly on proximal and distal dendrites of pyramidal cells (28% and 58%, respectively), and occasionally on spines (9%) or on GABA-positive dendrites (5%). Type II cells were found exclusively in stratum oriens of the CA1 and CA3 regions and possessed large, fusiform cell bodies and long, horizontally oriented dendrites. Their axon initial segments turned towards the alveus and disappeared in a myelin sheet, which was often possible to follow into the white matter. We conclude that type I CB-immunoreactive cells are likely to represent a major source of inhibitory synapses in the dendritic region of pyramidal cells, which are responsible for the control of dendritic electrogenesis. The distribution of local collaterals of type II cells—if they have any—remains unknown, but their main axon is likely to project to the medial septum. © 1996 Wiley-Liss, Inc.  相似文献   

20.
This study evaluates the distribution of two high affinity gamma-aminobutyric acid (GABA) transporters (GAT-1 and GAT-3) in the rat hippocampus using immunocytochemistry and affinity purified antibodies. GAT-1 immunoreactivity was prominent in punctate structures and axons in all layers of the dentate gyrus. In Ammon's horn, immunoreactive processes were concentrated around the somata of pyramidal cells, particularly at their basal regions. The apical and basal dendritic fields of pyramidal cells also displayed numerous GAT-1 immunoreactive punctate structures and axons. The zone of termination of the mossy fibers that includes both the hilus of the dentate gyrus and stratum lucidum of the CA3 area was the lightest immunolabeled region of the hippocampal complex. Electron microscopic preparations demonstrated that GAT-1 immunoreactive axon terminals form symmetric synapses with somata, axon initial segments, and dendrites of granule and pyramidal cells in the dentate gyrus and Ammon's horn, respectively. Immunoreactivity was localized to the plasma membrane and the cytoplasm of axon terminals. The somata of previously described local circuit neurons in the dentate gyrus and Ammon's horn contained GAT-1 immunoreactivity associated with the Golgi complex. Light, diffuse GAT-3 immunoreactivity was present throughout the hippocampal formation. Thin, astrocytic glial processes displayed GAT-1 and GAT-3 immunoreactivity. This localization of GAT-1 and GAT-3 indicates that they are involved in the uptake of GABA from the extracellular space into GABAergic axon terminals and astrocytes. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号