首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Evidence for local excitatory synaptic connections in CA1 of the rat hippocampus was obtained by recording excitatory postsynaptic potentials (EPSPs) intracellularly from pyramidal cells during local microapplications of glutamate. 2. Experiments were performed in hippocampal slices cut parallel to (transverse slice) or perpendicular to (longitudinal slice) alvear fibers. In normal solutions, glutamate microdrops (10-20 mM, 10-20 micron diam) applied in CA1 within 400 micron of recorded cells sometimes increased the frequency of inhibitory postsynaptic potentials for 5-10 s in both transverse and longitudinal slices. Increases in EPSP frequency were also occasionally observed, but only in transverse slices. Tetrodotoxin (1 microgram/ml) blocked glutamate-induced increases in PSP frequency, thus indicating that they were not caused by subthreshold effects on presynaptic terminals. Increases in PSP frequency were interpreted to result from glutamate activation of hippocampal neurons with inhibitory and excitatory connections to recorded neurons. 3. In both slice orientations, local excitatory circuits were studied in more isolated conditions by surgically separating CA1 from CA3 (transverse slices) and by blocking GABAergic inhibitory synapses with picrotoxin (5-10 microM). Microdrops were systematically applied at 200 and 400 micron on each side of the recording site. Significant glutamate-induced increases in EPSP frequency were observed in neurons from both slice orientations to microdrops in at least one of the locations. This provided evidence that excitatory synapses are present in both transverse and longitudinal slices. 4. Substantial increases in EPSP frequency only occurred in neurons from longitudinal slices when glutamate was microapplied 200 micron or less from the recording site. In transverse slices, however, large increases in EPSP frequency were observed to glutamate microapplications at 200 or 400 micron. These data suggest that CA1 local excitatory connections project for longer distances in the transverse than in the longitudinal plane of section. 5. Increases in EPSP frequency, averaged across cells, did not differ significantly in the four microapplication sites in either transverse or longitudinal slices. Thus local excitation in CA1 does not appear to be asymmetrically arranged in the way suggested for CA3. 6. The densities of local excitatory circuits in CA1 versus CA3 were studied by quantitatively comparing glutamate-induced increases in EPSP frequency.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
3.
Formation of local excitatory circuits may contribute to epileptogenesis. We tested the hypothesis that epileptogenesis is associated with increased recurrent excitation in the hippocampal CA1 area of rats with kainate-induced epilepsy. Whole cell recordings were obtained during focal flash photolysis of caged glutamate, which served as a focal excitant to activate local pyramidal cells and to study possible connections between neurons. Kainate-treated rats with spontaneous seizures were studied months after status epilepticus and were compared with saline-injected control rats. Experiments were done in isolated CA1 minislices and in bicuculline to block GABA(A) receptors. Spontaneous excitatory postsynaptic currents (sEPSCs) were present in 42% of the CA1 pyramidal cells from controls and 62% from kainate-treated rats. The frequency of sEPSCs in the kainate group was significantly higher than that in the control group, but mean amplitude was not different. Flash photolysis of caged glutamate on the somatodendritic area of CA1 pyramidal neurons caused a burst of action potentials. Local excitatory connections between CA1 pyramidal cells were found in 4 of 48 neurons (8%) in slices from control animals, but in significantly more neurons (12 of 37; 32%) from rats with kainate-induced epilepsy exhibited interconnections (P < 0.001). Photoactivation of glutamate on recorded CA1 pyramidal cells in the kainate group sometimes caused afterdischarges, but not in controls. The kainate-treated rats with pyramidal cells that responded to photostimulaltion with repetitive EPSCs appeared to have experienced more severe seizures. These data provide new electrophysiological evidence for the formation of recurrent excitatory circuits in the CA1 area of rats with kainate-induced epilepsy.  相似文献   

4.
Neurons and axon terminals containing neuron-specific nitric oxide synthase (nNOS) were examined in the rat subiculum and CA1 area of Ammon's horn. In the subiculum, a large subpopulation of the pyramidal neurons and non-pyramidal cells are immunoreactive for nNOS, whereas in the neighbouring CA1 area of Ammon's horn only non-pyramidal neurons are labelled with the antibody against nNOS. In the pyramidal layer of the subiculum, nNOS-positive axon terminals form both asymmetric and symmetric synapses. In the adjacent CA1 area the nNOS-positive terminals that form symmetric synapses are found in all layers, whereas those terminals that form asymmetric synapses are only in strata radiatum and oriens, but not in stratum lacunosum-moleculare. In both the subiculum and CA1 area, labelled terminals make symmetric synapses only on dendritic shafts, whereas asymmetric synapses are exclusively on dendritic spines. Previous observations demonstrated that all nNOS-positive non-pyramidal cells are GABAergic local circuit neurons, which form exclusively symmetric synapses. We suggest that nNOS-immunoreactive pyramidal cells of the subiculum may innervate neighbouring subicular pyramidal cells and, to a smaller extent, pyramidal cells of the adjacent CA1 area, forming a backward projection between the subicular and hippocampal principal neurons. Electronic Publication  相似文献   

5.
Trains of brief iontophoretic glutamate pulses were delivered onto the apical dendrites of CA1 pyramidal cells at variable frequencies (3-100 Hz) to examine how the activation of a G protein-activated, inwardly rectifying K(+) (GIRK) conductance alters the postsynaptic processing of repetitive excitatory input. Application of the GIRK channel agonist baclofen (20 microM) reduced the amplitude of individual glutamate-evoked postsynaptic potentials (GPSPs) and attenuated summation of GPSPs so that higher stimulus intensities were required to fire the cell. Notably, GIRK channel activation not only decreased GPSPs, but also suppressed the subsequent afterhyperpolarization (AHP), which arises from a transient deactivation of the hyperpolarization-activated cation current (I(h)). Voltage-clamp recordings ruled out a direct modulatory action of baclofen on I(h). GIRK channel activation alone accounts for AHP suppression, firstly because, with smaller GPSP amplitudes, fewer I(h) channels are deactivated, resulting in a diminished AHP, and secondly because, owing to its progressive increase in the hyperpolarizing direction, the GIRK conductance shunts a large portion of the remaining AHP. We provide experimental evidence that the suppression of the I(h)-dependent AHP by GIRK channel activation bears particular significance on the processing of repetitive excitatory inputs at frequencies at which the deactivation kinetics of I(h) exert a prominent depressing effect. In functional terms, activation of GIRK current not only produces a time-independent mitigation of incoming excitatory input, which results directly from the opening of an instantaneous K(+) conductance, but might also cause a time-dependent redistribution of synaptic weight within a stimulus train, which we link to an interplay with the deactivation of I(h).  相似文献   

6.
Watanabe H  Aihara T  Tsukada M 《Neuroscience》2006,140(4):1189-1199
Hippocampal CA1 neurons receive multiple rhythmical inputs with relatively independent phases during theta activity. It, however, remains to be determined how these multiple rhythmical inputs affect oscillation properties in membrane potential of the CA1 pyramidal cell. In order to investigate oscillation properties in the subthreshold membrane potential, we generated oscillations in the membrane potential of the CA1 pyramidal cells in rat hippocampal slices in vitro with a sinusoidal current injection into the pyramidal soma at theta band frequencies (4–7 Hz), and analyzed effect of rhythmically excitatory synaptic inputs. The Schaffer collaterals were stimulated with a cyclic Gaussian stimulation method, whose pulse intervals were distributed at 10 pulses/cycle (5 cycles/s). We found that the cyclic Gaussian stimulations induced membrane potential oscillations and their phase delays from the mean of the pulse distribution were dependent on membrane potential oscillation amplitude. We applied four pairs of cyclic Gaussian stimulations and somatic sinusoidal current stimulations at the same frequency (5 Hz) with varying phase differences (−π/2, 0, π/2, π rad). The paired stimulations induced phase distributions of the oscillation in the membrane potential, which showed a dependency on an increasing membrane potential oscillation amplitude response to cyclic Gaussian stimulation. This membrane potential dynamic was exhibited by the mixture of the membrane potential oscillation-amplitude-dependent phase delay and the linear summation of the two sinusoidal waves. These suggest that phases of the membrane potential oscillation are modulated by excitatory synaptic inputs. This phase-modulation by excitatory synaptic inputs may play a crucial role for memory operation in the hippocampus.  相似文献   

7.
GABA(B) agonists inhibit excitatory transmission to hippocampal CA3 neurons during low frequency stimulation. We examined whether GABA(B) receptor activation can also enhance synaptic efficacy, when investigated at an input with high initial release probability. Short-term depression of field excitatory postsynaptic potential (EPSP) amplitude was observed during trains of stimuli applied to associational/commissural inputs (10-50 Hz; 22 degrees C). Baclofen (10 microM) reduced the amplitude of initial EPSPs in a train, and also reduced the degree of short-term depression. EPSPs recorded late in a train were significantly larger in baclofen than those recorded in control solution. These dual effects were mimicked by another selective GABA(B) agonist (SKF 97541, 10 microM), and abolished by a GABA(B)-selective antagonist (SCH 50911, 20 microM). The effects of baclofen were similar at a higher recording temperature (32 degrees C), where short-term depression was observed at higher stimulation frequencies. These results are consistent with the idea that a reduction of transmitter release probability could increase the fidelity of high-frequency transmission at this input, an effect that could help account for excitatory effects of GABA(B) agonists in some seizure models.  相似文献   

8.
Lilly SM  Alvarez FJ  Tietz EI 《Neuroscience》2005,134(1):155-163
Excitatory and inhibitory ionotropic receptors are regulated by protein kinases and phosphatases, which are localized to specific subcellular locations by one of several anchoring proteins. One of these is the A-kinase anchoring protein (AKAP150), which confers spatial specificity to protein kinase A and protein phosphatase 2B in the rat brain. The distribution of AKAP150 was examined at rat hippocampal CA1 pyramidal cell asymmetric and symmetric post-synaptic densities and with respect to the distribution of markers of excitatory (vesicular glutamate transporter 1, glutamate receptor subunit 1) and inhibitory receptors (vesicular GABA transporter, GABA receptor type A beta2/3 subunits, gephyrin) and the Golgi marker, trans-Golgi network glycoprotein 38. AKAP150 was close to asymmetric synapses, consistent with numerous molecular and biochemical studies suggesting its interaction with components of the excitatory postsynaptic density. In contrast, we did not find AKAP150-immunoreactivity associated with inhibitory synapses in rat CA1 neurons, despite reports demonstrating an in vitro interaction between AKAP150 and GABA receptor type A receptor beta subunits, and the reported co-localization of these proteins in rat hippocampal cultures. There was some overlap between AKAP150 and GABA receptor type A receptor beta2/3-immunoreactivity intracellularly in perinuclear clusters. These findings support previous work indicating the integration of kinase and phosphatase activity at excitatory synapses by AKAP150, but do not support a role for selective targeting of AKAP150 and its accompanying proteins to inhibitory synapses.  相似文献   

9.
The integrative properties of neurons depend strongly on the number, proportions and distribution of excitatory and inhibitory synaptic inputs they receive. In this study the three-dimensional geometry of dendritic trees and the density of symmetrical and asymmetrical synapses on different cellular compartments of rat hippocampal CA1 area pyramidal cells was measured to calculate the total number and distribution of excitatory and inhibitory inputs on a single cell.A single pyramidal cell has approximately 12,000 microm dendrites and receives around 30,000 excitatory and 1700 inhibitory inputs, of which 40 % are concentrated in the perisomatic region and 20 % on dendrites in the stratum lacunosum-moleculare. The pre- and post-synaptic features suggest that CA1 pyramidal cell dendrites are heterogeneous. Strata radiatum and oriens dendrites are similar and differ from stratum lacunosum-moleculare dendrites. Proximal apical and basal strata radiatum and oriens dendrites are spine-free or sparsely spiny. Distal strata radiatum and oriens dendrites (forming 68.5 % of the pyramidal cells' dendritic tree) are densely spiny; their excitatory inputs terminate exclusively on dendritic spines, while inhibitory inputs target only dendritic shafts. The proportion of inhibitory inputs on distal spiny strata radiatum and oriens dendrites is low ( approximately 3 %). In contrast, proximal dendritic segments receive mostly (70-100 %) inhibitory inputs. Only inhibitory inputs innervate the somata (77-103 per cell) and axon initial segments. Dendrites in the stratum lacunosum-moleculare possess moderate to small amounts of spines. Excitatory synapses on stratum lacunosum-moleculare dendrites are larger than the synapses in other layers, are frequently perforated ( approximately 40 %) and can be located on dendritic shafts. Inhibitory inputs, whose percentage is relatively high ( approximately 14-17 %), also terminate on dendritic spines.Our results indicate that: (i) the highly convergent excitation arriving onto the distal dendrites of pyramidal cells is primarily controlled by proximally located inhibition; (ii) the organization of excitatory and inhibitory inputs in layers receiving Schaffer collateral input (radiatum/oriens) versus perforant path input (lacunosum-moleculare) is significantly different.  相似文献   

10.
The effects of ammonium acetate or chloride, perfused through the lateral ventricle, were studied on the hippocampal formation of the rat. During perfusion with ammonia, the population spikes, evoked by stimuli delivered to the fimbria, were first increased and then reduced. On the other hand, the late positive wave gradually decreased throughout the application of ammonia. The inhibition, studied by the paired-pulse test, was found to be reduced when the population spike was transiently enhanced, indicating that disinhibition could be responsible for the enhancement of synaptically evoked responses. Neither antidromically evoked population spikes nor the typical effects of iontophoretically applied glutamate, aspartate or gamma-aminobutyrate were changed by ammonia. These findings can be accounted for by a single action of ammonia, a depression of excitatory synaptic transmission, the excitatory synapses on inhibitory interneurons being more readily depressed than those on the pyramidal cells. Both effects, early hyperexcitability and late depression, are probably due to a reduction in the release of the excitatory neurotransmitter, glutamate and/or aspartate. We tentatively suggest that these mechanisms are responsible for some of the symptoms observed during the development of hyperammonemic encephalopathies.  相似文献   

11.
Enoki R  Namiki M  Kudo Y  Miyakawa H 《Neuroscience》2002,113(4):1003-1014
The primary function of neurons is to integrate synaptic inputs and to transmit the results to other cells. Recent studies with somatic whole-cell recordings have shown that separate excitatory inputs to hippocampal or cortical pyramidal neurons are summated non-linearly. In the present study, we examined how postsynaptic potentials (PSPs) are summated along the dendrites employing fast optical voltage imaging techniques. Rat hippocampal slices were stained with a fluorescent voltage-sensitive dye (JPW1114) and optical signals were monitored with a 16 x 16 photodiode array system. Two independent input pathways were stimulated individually or in pairs through glass electrodes such that different locations of the dendrites received separate synaptic inputs. We found that (1) the summation of PSPs was sub-linear along the entirety of dendrites, (2) the blockade of GABA(A) receptors suppressed sub-linearity and (3) further blockade of GABA(B) receptors suppressed sub-linearity of the summation of separate inputs on apical dendrites. Our study demonstrates that pyramidal neurons integrate PSPs linearly along the entirety of dendrites; moreover, GABAergic inputs are responsible for maintaining sub-linear summation in CA1 pyramidal neurons.  相似文献   

12.
Using the single-electrode voltage-clamp technique, we have examined the effects of a non-N-methyl-D-aspartate (NMDA) antagonist. Joro spider toxin (JSTX), and of an NMDA antagonist, zinc, on excitatory postsynaptic currents (EPSCs) evoked by stimulation of stratum radiatum in CA1 pyramidal cells of the guinea-pig hippocampal slice. Pressure application of a synthesized JSTX (JSTX-3) at 10-200 microM greatly reduced the EPSCs (14/19 cells). The block by JSTX-3 was observed in pyramidal cells where the EPSCs showed linear peak current-voltage (I-V) relations in the control. EPSCs remaining after JSTX-3 application showed non-linear peak I-V relationships (10/14 cells), and were blocked by puff application of the selective NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (APV) at 200 microM (6/10 cells). In the presence of JSTX-3, the decay time constant of the EPSC was increased and was less affected by membrane potential. JSTX-3 had no detectable effects on EPSCs apparently mediated solely by NMDA receptor. These observations suggest that JSTX-3 blocks excitatory synaptic transmission mainly by suppressing non-NMDA-receptor-mediated EPSCs, and that the JSTX-3-insensitive component is mediated at least in part by NMDA receptors in the hippocampal slice. Zinc (100-200 microM) reversibly attenuated EPSCs (6/9 cells) and appeared to block a slower component of the EPSCs, suggesting that mainly NMDA receptor-mediated currents were affected.  相似文献   

13.
14.
Serotonin and norepinephrine, in addition to direct postsynaptic excitatory effects, also enhances glutamate release onto layer V pyramidal cells of the prefrontal cortex/neocortex via G(q/11)-coupled 5-hydroxytryptamine(2A) (5-HT(2A)) and alpha(1)-adrenergic receptors, respectively. Therefore, the present study was designed to test whether a metabotropic glutamate (mGlu) receptor subtype also coupled to G(q/11)-proteins, the mGlu5 receptor, also induces EPSCs when recording from layer V cortical pyramidal cells of the rat medial prefrontal cortex (mPFC). The mGlu1/5 receptor agonist (S)-3,5-dihydroxyphenylglycine (DHPG) induces EPSCs at a similar frequency as a near-maximally effective 5-HT concentration. The mGlu5 receptor negative allosteric modulator 2-methyl-6-(phenylethynyl)pyridine (MPEP, 300nM) potently blocked DHPG-induced EPSCs. Previous work has suggested that activation of 5-HT(2A) and OX2 receptors induces glutamate release, while mGlu2, mGlu4, and mGlu8 receptor activation suppress transmitter release from thalamocortical terminals. Taken together with past results, these findings suggest that mGlu2, mGlu4, mGlu5 and mGlu8 may all act to modulate glutamate release from afferents impinging on layer V pyramidal cells of the mPFC. These findings further suggest that monoamines, neuropeptides and glutamate itself all enhance the excitability of prefrontal cortical output cells indirectly via modulation of glutamate release.  相似文献   

15.
Low concentration of Ni(2+), a T- and R-type voltage-dependent calcium channel (VDCC) blocker, is known to inhibit the induction of long-term potentiation (LTP) in the hippocampal CA1 pyramidal cells. These VDCCs are distributed more abundantly at the distal area of the apical dendrite than at the proximal dendritic area or soma. Therefore we investigated the relationship between the Ni(2+)-sensitivity of LTP induction and the synaptic location along the apical dendrite. Field potential recordings revealed that 25 microM Ni(2+) hardly influenced LTP at the proximal dendritic area (50 microM distant from the somata). In contrast, the same concentration of Ni(2+) inhibited the LTP induction mildly at the middle dendritic area (150 microM) and strongly at the distal dendritic area (250 microM). Ni(2+) did not significantly affect either the synaptic transmission at the distal dendrite or the burst-firing ability at the soma. However, synaptically evoked population spikes recorded near the somata were slightly reduced by Ni(2+) application, probably owing to occlusion of dendritic excitatory postsynaptic potential (EPSP) amplification. Even when the stimulating intensity was strengthened sufficiently to overcome such a reduction in spike generation during LTP induction, the magnitude of distal LTP was not significantly recovered from the Ni(2+)-dependent inhibition. These results suggest that Ni(2+) may inhibit the induction of distal LTP directly by blocking calcium influx through T- and/or R-type VDCCs. The differentially distributed calcium channels may play a critical role in the induction of LTP at dendritic synapses of the hippocampal pyramidal cells.  相似文献   

16.
Summary (1) In order to compare responses to dendritic vs. somatic depolarization, CA1 pyramidal cells in rat hippocampal slices were stimulated by iontophoresis of glutamate to sensitive spots in the dendrites, and by somatic current injection. (2) Low intensities of either stimulus elicited slow repetitive firing. Each action potential was preceded by a slow depolarizing prepotential (SPP), lasting 50–300 ms and was followed by fast (3–5 ms) and slow (more than 100 ms) afterhyperpolarizations (AHPs). The SPPs, and AHPs were indistinguishable for the two types of stimuli. (3) In response to strong depolarizations, most cells showed an initial burst of spikes, followed by a pause before the steady discharge. This pattern was elicited by both glutamate and current. (4) The input resistance usually increased 5–20% during subthreshold depolarizations by glutamate or current. In contrast, large doses of glutamate caused a slow decline in the resistance (up to 40%), which was larger than during comparable current-induced discharge, and the response was followed by a longer AHP. (5) It is concluded that both dendritic and somatic depolarization, induced by glutamate and current, respectively, can elicit sustained repetitive firing with SPPs, fast and slow AHPs and burst-pause pattern, thus, increasing the likelihood that these phenomena play a role during natural activation of CA1 cells.  相似文献   

17.
1. The metabotropic glutamate (mGlu) response was investigated in dissociated rat hippocampal CA1 pyramidal neurones using conventional and nystatin-perforated whole-cell modes of the patch recording configuration. 2. In the perforated patch recording configuration, the application of glutamate (Glu), quisqualate (QA), aspartate (Asp) and N-methyl-D-aspartate (NMDA) induced a slow outward current superimposed on a fast ionotropic inward current, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate (KA) induced only an ionotropic inward current at a holding potential (VH) of -20 mV. A specific agonist of the mGlu receptor (mGluR), trans-1-aminocyclopentane-1,3-dicarboxylate (tACPD), induced an outward current in approximately 80% of the neurones tested. Asp- and NMDA-induced outward currents were antagonized by D-2-amino-5-phosphonopentanoate (D-AP5) whereas Glu-, QA- and tACPD-induced outward currents were not antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 6,7-dinitroquinoxaline-2,3-dione (DNQX) and D-AP5, indicating that the mGlu response is an outward current component. 3. L-2-Amino-3-phosphonopropionate (L-AP3) and DL-2-amino-4-phosphonobutyrate (AP4) did not block the mGlu response. 4. The relative potencies of mGlu agonists were QA > Glu > tACPD. The threshold and EC50 values of metabotropic outward currents were 10-100 times lower than those of the ionotropic inward current (iGlu response). 5. The reversal potential of the mGlu response (EmGlu) was close to EK (K+ equilibrium potential), and it shifted 59.5 mV for a tenfold change in extracellular K+ concentration. 6. In Ca(2+)-free external solution, the mGlu response was elicited by an initial application of Glu, but subsequent applications failed to induce the response. There was also an increase in the intracellular free Ca2+ concentration ([Ca2+]i) during the application of Glu and QA but not of AMPA, indicating Ca2+ release from an intracellular Ca2+ store. 7. During the activation of a Ca(2+)-dependent K+ current (IK(Ca)) by inositol trisphosphate (IP3) in the internal solution, the mGlu response was suppressed. Addition of GDP-beta-S, neomycin or heparin to the internal solution also suppressed the mGlu response, but staurosporine had no effect. The mGlu response was abolished by pretreatment with either caffeine or ryanodine, but treatment with pertussis toxin (IAP) for 6-8 h had no effect. 8. The mGlu response was suppressed by tetraethylammonium, but not by either apamin or iberiotoxin, suggesting that intermediate-conductance Ca(2+)-dependent K+ (KCa+) channels are involved.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Although the function of sleep remains elusive, there is compelling evidence to suggest that sleep plays an important role in learning and memory. A number of studies have now shown that sleep deprivation (SD) results in significant impairment of long-term potentiation (LTP) in the hippocampus. In this study, we have attempted to determine the mechanisms responsible for this impairment. After 72 h SD using the multiple-platform technique, we observed a reduction in the whole-cell recorded NMDA/AMPA ratio of CA1 pyramidal cells in response to Schaffer collateral stimulation. This impairment was specific to sleep deprivation as rats placed over a single large platform, which allowed sleep, had a normal NMDA/AMPA ratio. mEPSCs evoked by local application of a high osmolarity solution revealed no differences in the AMPA receptor function. NMDA currents recorded from outside-out patches excised from the distal dendrites of CA1 cells displayed a reduction in amplitude after SD. While there were no alterations in the glutamate sensitivity, channel open probability or the single channel conductance of the receptor, a crosslinking assay demonstrated that the NR1 and NR2A subunits of NMDA receptors were preferentially retained in the cytoplasm after SD, indicating that SD alters NMDAR surface expression. In summary, we have identified a potential mechanism underlying SD-induced LTP impairment. This synaptic alteration may underlie the cognitive deficits seen following sleep deprivation and could represent a target for future intervention studies.  相似文献   

19.
20.
CA1 pyramidal neurons from animals that have acquired a hippocampus-dependent task show a reduced slow postburst afterhyperpolarization (sAHP). To understand the functional significance of this change, we examined and characterized the sAHP activated by different patterns of synaptic stimuli and its impact on postsynaptic signal integration. Whole cell current-clamp recordings were performed on rat CA1 pyramidal neurons, and trains of stratum radiatum stimuli varying in duration, frequency, and intensity were used to activate the AHP. At -68 mV, a short train of subthreshold stimuli (20-150 Hz) generated only the medium AHP. In contrast, just two suprathreshold stimuli >50 Hz triggered a prominent sAHP sensitive to bath-applications of isoproterenol, carbachol, or intracellularly applied BAPTA, suggesting that the underlying current is the Ca2+-activated K+ current, the sIAHP. The sAHP magnitude was positively related to stimulus train duration and frequency, consistent with its dependence on intracellular Ca2+ accumulation for activation. About 20% of neurons recorded did not have a sAHP. In response to high-frequency suprathreshold stimuli, these neurons developed a pronounced afterdepolarization (ADP) and multiple action potential firing. The ADP magnitude increased with successive stimuli and was positively related to stimulus intensity and frequency. It was sensitive to bath-applications of thapsigargin and nitrendipine, and abolished by d-AP5, indicating that it is supported by intracellular Ca2+ release, the L-type Ca2+ influx, and N-methyl-D-aspartate (NMDA) receptor-mediated influx. In the presence of D-AP5, we were unable to trigger an ADP with maximal stimulus intensity. Pharmacologically eliminating the sAHP allowed neurons to develop an ADP with the original stimulus train. We propose that the slow AHP acts to facilitate Mg2+ re-block of the activated NMDA receptors, thereby reducing temporal summation and preventing an NMDA receptor-dependent ADP during intense synaptic events. Neuromodulation of the sAHP may thus affect information throughput and regulate NMDA receptor-mediated plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号