首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical behavior and evolution of crystalline morphology during large deformation of eight types of virgin and crosslinked ultra high molecular weight polyethylene (UHMWPE) were studied using the small punch test and transmission electron microscopy (TEM). We investigated the hypothesis that both radiation and chemical crosslinking hinder molecular mobility at large deformations, and hence promote strain hardening and molecular alignment during the multiaxial loading of the small punch test. Chemical crosslinking of UHMWPE was performed using 0.25% dicumyl peroxide (GHR 8110, GUR 1020 and 1050), and radiation crosslinking was performed using 150 kGy of electron beam radiation (GUR 1150). Crosslinking increased the ultimate load at failure and decreased the ultimate displacement of the polyethylenes during the small punch test. Crosslinking also increased the near-ultimate hardening behavior of the polyethylenes. Transmission electron microscopy was used to characterize the crystalline morphology of the bulk material, undeformed regions of the small punch test specimens, and deformed regions of the specimens oriented perpendicular and parallel to the punch direction. In contrast with the virgin polyethylenes, which showed only subtle evidence of lamellar alignment, the crosslinked polyethylenes exhibited enhanced crystalline lamellae orientation after the small punch test, predominantly in the direction parallel to the punch direction or deformation axis. Thus, the results of this study support the hypothesis that crosslinking promotes strain hardening during multiaxial loading because of increased resistance to molecular mobility at large deformations effected by molecular alignment. The data also illustrate the sensitivity of large deformation mechanical behavior and crystalline morphology to the method of crosslinking and resin of polyethylene.  相似文献   

2.
Wear and wear debris of ultrahigh molecular weight polyethylene (UHMWPE) in joint replacements have been recognized as one of the major contributors to the failure of orthopedic implants. The detailed wear mechanism of polyethylene under biomechanic motions is not well understood. In simulation wear bench tests, it was found that unidirectional sliding produces the least amount of wear, reciprocating motion increases wear significantly, and cross-shear motion (similar to hip and knee joint motion in the human body) produces the highest amount of wear. Conventional wear theories are inadequate to explain this observation. This study utilizes resonant absorption of linearly polarized soft X-rays at a synchrotron radiation beam line to measure the molecular orientation of a UHMWPE surface layer subjected to different wear motions. Carbon-K-edge partial-electron-yield X-ray absorption measurements were done on the worn UHMWPE samples. X-ray absorption measurements show conclusively that the molecular chains of UHMWPE align preferentially parallel to the direction of sliding. Examination under various wear motions showed that unidirectional shear produced the maximum chain orientation, whereas cross-shear wear motions produced the least amount of orientation. When polymeric chains align, the surface layer tends to be more brittle and hard, thus resisting wear. When they do not align, loose chains may be subjected to both Mode I and Mode II fracture, hence increasing the wear rate. This molecular alignment observation may offer an explanation of why different wear motions have different wear characteristics.  相似文献   

3.
A novel pin-on-disk type wear tester is described allowing a rapid screening of different types of polyethylene under both unidirectional and multidirectional sliding motion. The wear of four polyethylene materials sliding against a roughened CoCrMo alloy was evaluated: a non-irradiated UHMWPE, a UHMWPE irradiated with a dose of 25 kGy in air, and two types of crosslinked UHMWPE (100 kGy, air), which were subjected to a stabilization heat treatment in nitrogen at 155 degrees C for 72 hours (XLPE I) and in water at 130 degrees C for 72 hours (XLPE II), respectively.Under multidirectional sliding conditions both types of XLPE exhibited significantly less wear with respect to the 25 kGy irradiated UHMWPE and the non-irradiated UHMWPE, even under the rough counterface conditions applied. Under unidirectional sliding motion both types of XLPE exhibited the highest wear of all materials tested, because the orientation hardening effect acting under linear lubricated condition is less pronounced for crosslinked polyethylene.  相似文献   

4.
Turell MB  Bellare A 《Biomaterials》2004,25(17):3389-3398
Ultra-high molecular weight polyethylene (UHMWPE) has gained worldwide acceptance as a bearing material used in orthopaedic implants. Despite its widespread use, inherent properties of the polymer continue to limit the wear resistance and the clinical lifespan of implanted knee and hip prosthetics containing UHMWPE components. The degree of crystallinity of UHMWPE is known to strongly influence several of its tensile mechanical properties such as Young's modulus, yield stress, strain-hardening rates, work of fracture and ultimate tensile properties. In this study, medical grade UHMWPE was subjected to four different crystallization conditions resulting in UHMWPE with a range of crystalline morphologies. Thereafter, the crystalline nanostructure was quantitatively characterized using a combination of ultra-small angle X-ray scattering and differential scanning calorimetry. Low-voltage scanning electron microscopy was employed as a supplementary technique to compare the crystalline morphology resulting from each crystallization condition. In addition, uniaxial tensile tests were performed to assess the effects of crystallization conditions on the mechanical properties of UHMWPE. This study showed that while crystallization conditions strongly influenced the morphology of UHMWPE, in most cases the mechanical properties of the material were not significantly affected.  相似文献   

5.
A multidirectional pin-on-plate reciprocating machine was used to compare the wear performance of UHMWPE sliding against cast cobalt chrome (CoCr) plates that were either untreated or coated with Amorphous Diamond Like Carbon (ADLC). The test conditions were based on a 1/5 scale model representative of in vivo motion at the tibial counterfaces of unconstrained mobile bearing knees. The average +/- STERR wear rates were 13.78+/-1.06 mm3/Mcycles for the ADLC counterfaces and 0.504+/-0.12 mm3/Mcycles for the control CoCr counterfaces. All of the pins run on the ADLC counterfaces exhibited the same patterns of blistering along the central axis, and severe abrasion elsewhere to the extent that all of the original machining marks were removed after just one week of testing. The average value of friction coefficient was 0.24 for the ADLC counterfaces and 0.073 for the control CoCr counterfaces. The factor of 3.5 increase was statistically significant at p < 0.05. In the tribological evaluation of ADLC coatings for tibial trays in mobile bearing knees, this study shows that this specific Physical Vapour Deposition (PVD) ADLC showed significantly poorer frictional and wear performance than uncoated surfaces which was sufficient to negate any potential benefits of improved resistance to third body damage.  相似文献   

6.
Partially stabilized zirconia ceramic is being recognized among ceramics for its high strength and toughness. With this ceramic, is possible to manufacture a 22-mm-size femoral head for low friction arthroplasty of the hip joint in association with an ultra-high-molecular-weight polyethylene socket. Wear-resistant properties of zirconia ceramic were screened on two principally different wear devices. Sterile calf bovine serum, physiological saline, and distilled water were chosen as the lubricant fluid media. Depending on the lubricant medium, the wear factor of polyethylene against zirconia ceramic counterfaces was 40 to 60% less than that against alumina ceramic counterfaces, and 5 to 10 times lower than with the SUS316L metal counterfaces. Polyethylene wear against metal was more susceptible in saline in which it had 2 to 3 times higher wear rate than with serum. On the other hand, different fluid media had little effect on polyethylene wear against ceramic counterfaces. In each set of tests, the wear factor obtained on an unidirectional wear device showed 10 to 15 times higher values, in comparison to the wear factor estimated on a reciprocating wear device.  相似文献   

7.
The lifetime of total joint replacement prostheses utilizing ultrahigh-molecular-weight polyethylene (UHMWPE) components has historically been determined by their wear resistance. It has been discovered that radiation crosslinking of UHMWPE can substantially increase its wear resistance. However, it is also well recognized that there is a radiation-dose-dependent decrease in several important mechanical properties of UHMWPE, such as fracture toughness and resistance to fatigue crack propagation. In this study, the effect of radiation crosslinking (followed by remelting) on the morphology, tensile properties and wear resistance of UHMWPE was investigated. Wear tests were conducted against both the commonly used cobalt-chromium counterface polished to implant grade smoothness as well as a smoother ceramic (alumina) counterface. The results showed that 50kGy dose radiation crosslinking increased the wear resistance of UHMWPE against the cobalt-chromium counterface 7-fold, but the coupling of remelted, crosslinked UHMWPE against the smoother alumina counterface led to a 20-fold increase in wear resistance. This study shows that the use of an alumina counterface would circumvent the need to use a high radiation dose in crosslinking UHMWPE, associated with poor mechanical properties, without compromising wear resistance.  相似文献   

8.
P S Barbour  M H Stone  J Fisher 《Biomaterials》1999,20(22):2101-2106
Ultra high molecular weight polyethylene (UHMWPE) is routinely used as one half of a bearing couple in clinical orthopaedic applications. This material is generally one of two grades, compression moulded GUR 1120, with a molecular weight of 4.4x 10(6) g mol(-1), or ram extruded GUR 4150HP with a molecular weight of 7.3x10(6) g mol(-1) although other grades are used as well. This study examines the effect of molecular weight and processing method by comparing the wear resistance of these two materials together with a non-standard extruded form of GUR 1120. Wear studies have been conducted against counterface surfaces which represent new and scratch-damaged femoral heads with bovine serum lubricant in a uniaxial reciprocating test configuration. No difference in the wear resistance was found between any material when tested against smooth cobalt chrome counterfaces. On rough cobalt chrome counterfaces, although no statistically significant difference (P>0.05) was found between the extruded and compression moulded GUR 1120, the extruded GUR 4150HP had a consistently better wear resistance. These results are discussed with reference to previous wear studies as well as the physical and mechanical properties of these materials.  相似文献   

9.
It is well known that the wear factor for ultra-high molecular weight polyethylene (UHMWPE) sliding on metallic or ceramic counterfaces is largely independent of contact stress for modest loading conditions and sliding distances. However, it is now recognized that under more severe stress levels and with sliding distances comparable to those encountered in current replacement synovial joints, subsurface fatigue contributes to the volume of wear debris. Since the fatigue process is influenced by surface stress levels it is becoming increasingly important to limit the contact stress through design in order to minimize the volume of UHMWPE wear debris in implants. The contact pressure in UHMWPE acetabular cups has been predicted using both the simple elasticity analysis and the finite element method. It has been shown that the radial clearance between the femoral head and the socket is the dominant parameter in determining the contact stress. Thus, the radial clearance should be controlled so the contact half width is close to the femoral head radius (a total included angle of contact of 120°) to minimize the contact pressure. There is little benefit to be gained by increasing the contact half width greater than the femoral head radius. This is consistent with the geometrical constraint of the anatomical position and the direction of loading. It has been shown that the radius of the femoral head has the most significant effect on the maximum contact pressure for these closely conforming contacts where the contact half width is close to the femoral head radius. The effect of the elastic modulus and the thickness of UHMWPE is relatively small under these contact conditions. However, an increase of the elastic modulus and a decrease of the layer thickness both result in a decrease of the radial clearance required to minimize the contact stress and this may prove to be impractical. This places a further constraint on the design of the contact. This paper demonstrates that with careful selection of the tribological design parameters, contact stress on acetabular cups can be reduced and this is more easily achieved with larger diameter femoral heads.  相似文献   

10.
Studies of explanted Charnley hip prostheses have shown damage or scratching of the polished stainless steel femoral heads. This surface damage is probably due to third body wear by bone cement particles. Damaged femoral heads will produce increased wear rates of ultra high molecular weight polyethylene (UHMWPE) acetabular cups. Sliding wear tests carried out in the laboratory have shown that alumina ceramic counterfaces are more resistant to third body damage from bone cement particles than stainless steel counterfaces. The use of the ceramic femoral heads in artificial hip joints will help to preserve the smooth surface finish on the femoral bearing surface, which is necessary to ensure low wear rates of the UHMWPE cup throughout the lifetime of the prosthesis.  相似文献   

11.
Davey SM  Orr JF  Buchanan FJ  Nixon JR  Bennett D 《Biomaterials》2005,26(24):4993-5001
The wear of ultra-high molecular weight polyethylene (UHMWPE) acetabular components in total hip replacements (THRs) has been shown to be highly dependent on the direction of shear. Greatly reduced wear rates have been reported for unidirectional, compared to multidirectional, articulation in vitro. This work for the first time enables investigation of a relationship between clinical wear conditions, as determined by patient gait path, and the mechanical and structural changes that occur within the UHMWPE acetabular component. Individual patients' wear paths were determined prior to revision operation from hip joint kinematics measured by clinical gait analysis. The material properties of the acetabular components removed during the revision operation were subsequently analysed. A technique using Fourier transform infra- red analysis (FTIR) was developed to quantify the orientation of the individual UHMWPE lamellae. This study shows that there is a direct relationship between a patient's clinical gait path and the molecular properties of their UHMWPE acetabular socket. Patient kinematics are an important factor affecting the wear and long-term biocompatibility of UHMWPE used as a bearing surface in THR.  相似文献   

12.
The wear debris generated from ultra high molecular weight polyethylene (UHMWPE) have been recognised as one of the major causes of failure in total hip replacements (THR). It is essential to reduce the wear debris generated from UHMWPE acetabular cups in order to minimise this problem. Debris in the submicron size range is believed to have greater osteolytic potential. It is now known that crosslinked UHMWPE acetabular cups have reduced volumetric wear rates but little is known about the influence of crosslinking on the size and morphology of the wear debris. In this study, the wear of grade GUR 1020 crosslinked (vacuum gamma irradiated), GUR 1120 crosslinked (acetylene enhanced irradiated) and non cross linked (ethylene oxide sterilised) GUR 1020 UHMWPE was compared in multidirectional pin-on-plate wear tests under three different counterface conditions (smooth, isotropically rough and scratched counterfaces). Multidirectional motion was chosen because this motion was closer to the relative motion in the natural hip. From this study, better wear resistance of crosslinked UHMWPE compared with non-crosslinked UHMWPE was demonstrated for the smooth counterface conditions. However, in the rough and scratched counterface conditions, the vacuum gamma irradiated crosslinked material produced significantly higher wear rates than the non-crosslinked material. The analysis of the wear debris showed that the majority of the volume of the acetylene enhanced crosslinked UHMWPE wear debris was in the most biologically active size range (0.1 to 0.5 microm). In contrast, the non-crosslinked material and the vacuum gamma irradiated crosslinked material had a greater proportion of the volume of the debris in the larger size ranges which are less biologically active. This has important implications for its osteolytic potential.  相似文献   

13.
Solid-state deformation processing is a promising technique for modifying the physical and mechanical properties of highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) beyond simple thermal treatment cycles that have been employed previously. This study evaluates anisotropy and oxidative resistance in a novel, radiation crosslinked (50 kGy) UHMWPE material (ArComXL: Biomet, Inc., Warsaw, IN), incorporating solid-state, deformation processing by extrusion below the melt transition for application in total hip arthroplasty. Tensile, compression, and small punch tests were conducted to evaluate the material properties in the three principal axes of the resulting material. Furthermore, short-term oxidative resistance was evaluated using Fourier transform infrared spectroscopy and the small punch test in conjunction with accelerated shelf aging protocols. The results of this testing indicate that the material is anisotropic, with significantly enhanced strength oriented along the long axis of the rod. For certain other properties, the magnitude of the anisotropy was relatively slight, especially in the elastic regime, in which only a 20% difference was noted between the long axis of the rod and the orthogonal, radial direction. The highly crosslinked material contains detectable free radicals, at a concentration that is 90% less than control, gamma inert sterilized UHMWPE. An unexpected finding of this study was evidence of oxidative stability of the deformation-processed material, even after 4 weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003), which resulted in macroscopic embrittlement of the control material. The oxidative stability observed in ArComXL suggests that the deformation-processed material may be suitable for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPE.  相似文献   

14.
Ultra high molecular weight polyethylene (UHMWPE) is a semicrystalline polymer that has been used for over four decades as a bearing surface in total joint replacements. The mechanical properties and wear properties of UHMWPE are of interest with respect to the in vivo performance of UHMWPE joint replacement components. The mechanical properties of the polymer are dependent on both its crystalline and amorphous phases. Altering either phase (i.e., changing overall crystallinity, crystalline morphology, or crosslinking the amorphous phase) can affect the mechanical behavior of the material. There is also evidence that the morphology of UHMWPE, and, hence, its mechanical properties evolve with loading. UHMWPE has also been shown to be susceptible to oxidative degradation following gamma radiation sterilization with subsequent loss of mechanical properties. Contemporary UHMWPE sterilization methods have been developed to reduce or eliminate oxidative degradation. Also, crosslinking of UHMWPE has been pursued to improve the wear resistance of UHMWPE joint components. The 1st generation of highly crosslinked UHMWPEs have resulted in clinically reduced wear; however, the mechanical properties of these materials, such as ductility and fracture toughness, are reduced when compared with the virgin material. Therefore, a 2nd generation of highly crosslinked UHMWPEs are being introduced to preserve the wear resistance of the 1st generation while also seeking to provide oxidative stability and improved mechanical properties.  相似文献   

15.
After the gamma-irradiation sterilization, the most widely used orthopaedic grade polymer bearing liner material for the total joint replacement, ultra-high molecular weight polyethylene (UHMWPE), degrades through the progressive in vivo oxidation. The oxidative degradation makes UHMWPE brittle and leads to reduction of its mechanical properties. In this study, the effect of the in vivo post-irradiation ageing time on the wear of UHMWPE was investigated. Twelve retrieved polyethylene hip liners implanted for 3-16 years and then stored in the air for 1.5-8 years were used. Two types of the pin-on-disk wear testing were conducted. The uni-directional repeat pass rotating and the linear reciprocating wear testing were done with stainless steel disks against stationary polyethylene pins under 4MPa at 1Hz with bovine serum lubrication. Wear of the retrieved polyethylene hip liners does not have significant correlation with the in vivo or total ageing time. The linear reciprocal sliding motion generated a more pronounced wear than the uni-directional repeat pass sliding motion. This indicates that the kinematic motion significantly affects the wear of aged UHMWPE, having a brittle, white band region.  相似文献   

16.
The development of theoretical failure, fatigue, and wear models for ultra-high molecular weight polyethylene (UHMWPE) used in joint replacements has been hindered by the lack of a validated constitutive model that can accurately predict large deformation mechanical behavior under clinically relevant, multiaxial loading conditions. Recently, a new Hybrid constitutive model for unirradiated UHMWPE was developed Bergstr?m et al., (Biomaterials 23 (2002) 2329) based on a physics-motivated framework which incorporates the governing micro-mechanisms of polymers into an effective and accurate continuum representation. The goal of the present study was to compare the predictive capability of the new Hybrid model with the J(2)-plasticity model for four conventional and highly crosslinked UHMWPE materials during multiaxial loading. After calibration under uniaxial loading, the predictive capabilities of the J(2)-plasticity and Hybrid model were tested by comparing the load-displacement curves from experimental multiaxial (small punch) tests with simulated load-displacement curves calculated using a finite element model of the experimental apparatus. The quality of the model predictions was quantified using the coefficient of determination (r(2)). The results of the study demonstrate that the Hybrid model outperforms the J(2)-plasticity model both for combined uniaxial tension and compression predictions and for simulating multiaxial large deformation mechanical behavior produced by the small punch test. The results further suggest that the parameters of the HM may be generalizable for a wide range of conventional, highly crosslinked, and thermally treated UHMWPE materials, based on the characterization of four material properties related to the elastic modulus, yield stress, rate of strain hardening, and locking stretch of the polymer chains. Most importantly, from a practical perspective, these four key material properties for the Hybrid constitutive model can be measured by relatively simple uniaxial tension or compression tests.  相似文献   

17.
Six metacarpophalangeal prostheses were each wear tested to five million cycles. Each prosthesis consisted of a metacarpal component with an approximately hemispherical shell on a titanium body, articulating against a titanium phalangeal component. Four prostheses had a shell made from ultra-high molecular weight polyethylene (UHMWPE) and two had a shell made from polyether ether ketone (PEEK). The tests were undertaken using a finger wear simulator. Despite pre-soaking and the use of control components, lubricant uptake by the metacarpal components was significant. Gravimetrically, the UHMWPE test components showed a greater weight gain than the UHMWPE control components. Therefore there was no apparent wear of any of the UHMWPE test metacarpal components. The original concentric machining marks of the UHMWPE components could still be seen after five million cycles of testing. For the metacarpal components with PEEK shells, gravimetric wear could be measured. Gravimetrically, all of the titanium phalangeal components showed little or no wear. Light scratches in the direction of sliding appeared on the articulating faces of all metacarpal and phalangeal test components, indicating slight abrasive wear.  相似文献   

18.
Characterization of irradiated blends of alpha-tocopherol and UHMWPE   总被引:2,自引:0,他引:2  
Adhesive/abrasive wear in ultra-high molecular weight polyethylene (UHMWPE) has been minimized by radiation cross-linking. Irradiation is followed by melting to eliminate residual free radicals and avoid long-term oxidative embrittlement. However, post-irradiation melting reduces the crystallinity of the polymer and hence its strength and fatigue resistance. We proposed an alternative to post-irradiation melting to be the incorporation of the antioxidant alpha-tocopherol into UHMWPE prior to consolidation. alpha-Tocopherol is known to react with oxygen and oxidized lipids, stabilizing them against further oxidative degradation reactions. We blended GUR 1050 UHMWPE resin powder with alpha-tocopherol at 0.1 and 0.3 wt% and consolidated these blends. Then we gamma-irradiated these blends to 100-kGy. We characterized the effect of alpha-tocopherol on the cross-linking efficiency, oxidative stability, wear behavior and mechanical properties of the blends. (I) The cross-link density of virgin, 0.1 and 0.3 wt% alpha-tocopherol blended, 100-kGy irradiated UHMWPEs were 175+/-19, 146+/-4 and 93+/-4 mol/m3, respectively. (II) Maximum oxidation indices for 100-kGy irradiated UHMWPE previously blended with 0, 0.1 and 0.3 wt% alpha-tocopherol that were subjected to accelerated aging at 80 degrees C in air for 5 weeks were 3.32, 0.09, and 0.05, respectively. (III) The pin-on-disc wear rates of 100-kGy irradiated UHMWPE previously blended with 0.1 and 0.3 wt% alpha-tocopherol that were subjected to accelerated aging at 80 degrees C in air for 5 weeks were 2.10+/-0.17 and 5.01+/-0.76 mg/million cycles, respectively. (IV) Both accelerated aged, alpha-tocopherol-blended 100-kGy irradiated UHMWPEs showed higher ultimate tensile strength, higher yield strength, and lower elastic modulus when compared to 100-kGy irradiated, virgin UHMWPE. These results showed that alpha-tocopherol-blended 100-kGy irradiated UHMWPEs were not cross-linked to the same extent as the 100-kGy irradiated, virgin UHMWPE.  相似文献   

19.
Hydroxyapatite has been rubbed against ultra-high-molecular-weight-polyethylene (UHMWPE) under calcium-containg aqueous solutions. Further, hardness tests were carried out in air and in calcium-containing solutions whose pH ranged from pH 5 to pH 9. Hardness was found to vary with pH with a peak at around pH 7, i.e. - a chemomechanical effect was observed. Wear tests consisted in sliding hydroxyapatite samples against a UHMWPE disk for eight hours when lubricated by the same solutions as those used for the hardness tests. Volume loss, pH and calcium concentration were measured for up to 8 hours of sliding. Linking wear tests results with hardness results and supersaturation levels, it was concluded that two wear mechanisms occurred. A chemical mechanism depending on supersaturation occurred at the early stages of sliding. The wear rate was essentially independent of hardness during this stage. After a few hours, depending on the supersaturation of the lubricant, the chemical mechanism turned into a chemomechanical mechanism dependant on hardness.  相似文献   

20.
Many aspects of the proposed relationship between material properties and clinical performance of UHMWPE components remain unclear. In this study, we explored the hypothesis that the clinical performance of tibial inserts is directly related to its large-deformation mechanical behavior measured near the articulating surface. Retrieval analysis was performed on three conventional UHMWPE and three Hylamer-M tibial components of the same design and manufacturer. Samples of material were then obtained from the worn regions of each implant and subjected to mechanical characterization using the small punch test. Statistically significant relationships were observed between the metrics of the small punch test and the total damage score and the burnishing damage score of the implants. We also examined the near-surface morphology of the retrievals using transmission electron microscopy. TEM analysis revealed lamellar alignment at and below the wear surfaces of the conventional UHMWPE retrievals up to a maximum depth of approximately 8 microm, consistent with large-deformation crystalline plasticity. The depth of the plasticity-induced damage layer varied not only between the retrievals, but also between the conventional UHMWPE and Hylamer-M components. Thus, the results of this study support the hypothesis that the clinical performance of UHMWPE tibial inserts is related to the large-deformation mechanical behavior measured near the articulating surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号